Conformación automática de portafolios de inversión usando analítica financiera
ilustraciones, diagramas, tablas
- Autores:
-
Echeverri Sánchez, Laura Cristina
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81198
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales
330 - Economía::332 - Economía financiera
Investments Portfolio
Portafolio de inversiones
Comercio algorítmico
Inteligencia artificial
Aprendizaje supervisado
Mercado financiero
Algorithmic trading
Artificial intelligence
Supervised learning
Financial market
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_5c668235572f64ceb7cb81b916b11bbb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81198 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Conformación automática de portafolios de inversión usando analítica financiera |
dc.title.translated.eng.fl_str_mv |
Automatic conformation of investment portfolios using financial analytics |
title |
Conformación automática de portafolios de inversión usando analítica financiera |
spellingShingle |
Conformación automática de portafolios de inversión usando analítica financiera 000 - Ciencias de la computación, información y obras generales 330 - Economía::332 - Economía financiera Investments Portfolio Portafolio de inversiones Comercio algorítmico Inteligencia artificial Aprendizaje supervisado Mercado financiero Algorithmic trading Artificial intelligence Supervised learning Financial market |
title_short |
Conformación automática de portafolios de inversión usando analítica financiera |
title_full |
Conformación automática de portafolios de inversión usando analítica financiera |
title_fullStr |
Conformación automática de portafolios de inversión usando analítica financiera |
title_full_unstemmed |
Conformación automática de portafolios de inversión usando analítica financiera |
title_sort |
Conformación automática de portafolios de inversión usando analítica financiera |
dc.creator.fl_str_mv |
Echeverri Sánchez, Laura Cristina |
dc.contributor.advisor.none.fl_str_mv |
Velásquez Henao, Juan David |
dc.contributor.author.none.fl_str_mv |
Echeverri Sánchez, Laura Cristina |
dc.contributor.researchgroup.spa.fl_str_mv |
Big Data y Data Analytics |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales 330 - Economía::332 - Economía financiera |
topic |
000 - Ciencias de la computación, información y obras generales 330 - Economía::332 - Economía financiera Investments Portfolio Portafolio de inversiones Comercio algorítmico Inteligencia artificial Aprendizaje supervisado Mercado financiero Algorithmic trading Artificial intelligence Supervised learning Financial market |
dc.subject.lemb.none.fl_str_mv |
Investments Portfolio Portafolio de inversiones |
dc.subject.proposal.spa.fl_str_mv |
Comercio algorítmico Inteligencia artificial Aprendizaje supervisado Mercado financiero |
dc.subject.proposal.eng.fl_str_mv |
Algorithmic trading Artificial intelligence Supervised learning Financial market |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11 |
dc.date.accessioned.none.fl_str_mv |
2022-03-14T14:48:55Z |
dc.date.available.none.fl_str_mv |
2022-03-14T14:48:55Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81198 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81198 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aloud, M. E. (2020). The role of attribute selection in Deep ANNs learning framework for high‐frequency financial trading. Intelligent Systems in Accounting, Finance and Management, 27(2), 43-54. Ardanuy, J. (2012). Breve introducción a la bibliometría. Universidad de Barcelona. Atsalakis, G. S., & Valavanis, K. P. (2009). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert systems with Applications, 36(7), 10696-10707 Azzini, A & Tettamanzi, A. (2008). Evolutionary single-position automated trading. Workshops on Applications of Evolutionary Computation, Springer, Berlin, Heidelberg, pp. 62-72. Bahadur, L. R. (2015). Financial Literacy: The Indian Story. World Journal of Social Sciences, 5(3), 45-57. Banco de la República. (s.f.). Mercado accionario. https://www.banrep.gov.co/es/estadisticas/mercado-accionario Barbosa, R. P., & Belo, O. (2008). Algorithmic Trading Using Intelligent Agents. In IC-AI (pp. 136-142). BBC (2018a). Wall Street: qué hay detrás de la estrepitosa caída de la bolsa en el último mes que borró las ganancias de todo 2018. https://www.bbc.com/mundo/noticias-45983822 BBC (2018b). Wall Street sufre su peor semana en 10 años (qué significa para la economía global). https://www.bbc.com/mundo/noticias-46651665 Berutich, J. M., López, F., Luna, F., & Quintana, D. (2016). Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Systems with Applications, 46, 307-315. Berutich, J. M., López, F., Luna, F., & Quintana, D. (2016). Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Systems with Applications, 46, 307-315. Blitz, D., & Huij, J. (2012). Evaluating the performance of global emerging markets equity exchange-traded funds. Emerging markets review, 13(2), 149-158. Bolsa de Valores de Colombia (BVC) (2011). METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP. https://www.bvc.com.co/recursos/Files/Mercados/Indices_Accionarios/Nueva_Metodologia_Calculo_Indice_COLCAP.pdf Bolsa de Valores de Colombia (BVC) (2020). Noticias Generales. https://www.bvc.com.co/pps/tibco/portalbvc/Home/NoticiasDetalle?com.tibco.ps.pagesvc.renderParams.sub5d9e2b27_11de9ed172b_-783b7f000001=rp.docURI%3Dpof%253A%252Fcom.tibco.psx.model.cp.Document%252F6ed219b4_1700ab5155b_-4a2ac0a84ca9%26rp.currentDocumentID%3D6ed219b4_1700ab5155b_-4a2ac0a84ca9%26action%3DopenDocument%26addDefaultTarget%3Dfalse%26 Bolsa de Valores de Colombia (BVC) (s.f.-a). Diccionario de Finanzas. https://www.bvc.com.co/pps/tibco/portalbvc/Home/Glosario Bolsa de Valores de Colombia (BVC) (s.f.-b). Mercado de Renta Variable. https://www.bvc.com.co/pps/tibco/portalbvc/Home/Mercados/enlinea/acciones?action=dummy Brogaard, J., Hendershott, T., & Riordan, R. (2014). High-frequency trading and price discovery. The Review of Financial Studies, 27(8), 2267-2306. Brogaard, J., Hendershott, T., & Riordan, R. (2017). High frequency trading and the 2008 short-sale ban. Journal of Financial Economics, 124(1), 22-42. Brogaard, J., Hendershott, T., Hunt, S., & Ysusi, C. (2014). High‐frequency trading and the execution costs of institutional investors. Financial Review, 49(2), 345-369. Brownlees, C. T., Cipollini, F., & Gallo, G. M. (2010). Intra-daily volume modeling and prediction for algorithmic trading. Journal of Financial Econometrics, 9(3), 489-518. Cartea, A., & Jaimungal, S. (2013). Modelling asset prices for algorithmic and high-frequency trading. Applied Mathematical Finance, 20(6), 512-547. Cartea, Á., Jaimungal, S., & Kinzebulatov, D. (2016). Algorithmic trading with learning. International Journal of Theoretical and Applied Finance, 19(04), 1650028. Cartlidge, J., Szostek, C., De Luca, M., & Cliff, D. (2012). Too Fast Too Furious-Faster Financial-market Trading Agents Can Give Less Efficient Markets. In ICAART (2) (pp. 126-135). Chakole, J. B., Kolhe, M. S., Mahapurush, G. D., Yadav, A., & Kurhekar, M. P. (2021). A Q-learning agent for automated trading in equity stock markets. Expert Systems with Applications, 163, 113761. Chen, A. S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Computers & Operations Research, 30(6), 901-923. Choudhry, R., & Garg, K. (2008). A hybrid machine learning system for stock market forecasting. World Academy of Science, Engineering and Technology, 39(3), 315-318. Chu, J., Chan, S., & Zhang, Y. (2020). High frequency momentum trading with cryptocurrencies. Research in International Business and Finance, 52, 101176. Cordón, O., Herrera, F., Holfmann, F., & Magdalena, L. (2001). Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases (Vol. 19). World Scientific. Dejavite, C. H & Lima, P. A. (2010). Towards automated trading based on fundamentalist and technical data. Brazilian Symposium on Artificial Intelligence, Springer, Berlin, Heidelberg, pp. 112-121. Ding, S., Hanna, J., & Hendershott, T. (2014). How slow is the NBBO? A comparison with direct exchange feeds. Financial Review, 49(2), 313-332. Driaunys, K., Masteika, S., Sakalauskas, V., & Vaitonis, M. (2014). An algorithm-based statistical arbitrage high frequency trading system to forecast prices of natural gas fu-tures. Transformations in Business & Economics, 13(3), 96-109. Eom, C., Kaizoji, T., Livan, G., & Scalas, E. (2021). Limitations of portfolio diversification through fat tails of the return Distributions: Some empirical evidence. The North American Journal of Economics and Finance, 56, 101358. Farjam, M., & Kirchkamp, O. (2018). Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading. Journal of Economic Behavior & Organization, 146, 248-269. Fister, D., Mun, J. C., Jagrič, V., & Jagrič, T. (2019). Deep Learning for Stock Market Trading: A Superior Trading Strategy?. Neural Network World, 29(3), 151-171. Fukuma, N., & Kadogawa, Y. (2020). An Overview of Algorithmic Trading in Foreign Exchange Markets and Its Impacts on Market Liquidity. Bank of Japan Review Series, (20-E-5). Gabrielsson, P., & Johansson, U. (2015, December). High-frequency equity index futures trading using recurrent reinforcement learning with candlesticks. In 2015 IEEE Symposium Series on Computational Intelligence (pp. 734-741). IEEE. Gloukhov, V. V., Ilin, I. V., Koposov, V. I., & Levina, A. I. (2014). Market risk neutral strategies: modeling and algorithmization. Asian Social Science, 10(24), 209. Hadavandi, E., Shavandi, H., & Ghanbari, A. (2010). Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based Systems, 23(8), 800-808. Hendershott, T., & Riordan, R. (2013). Algorithmic trading and the market for liquidity. Journal of Financial and Quantitative Analysis, 48(4),1001-1024. Hendershott, T., Jones, C. M., & Menkveld, A. J. (2011). Does algorithmic trading improve liquidity?. The Journal of finance, 66(1), 1-33. Hi'ovská, K., & Koncz, P. (2012). Application of Artificial Intelligence and Data Mining Techniques to Financial Markets. Economic Studies & Analyses/Acta VSFS, 6(1), 62-76. Hogenboom. F. (2012). Financial events recognition in web news for algorithmic trading. International Conference on Conceptual Modeling, Springer, Berlin, Heidelberg, pp. 368-377. Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E & Liu. M. (2015). Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review. Applied Soft Computing, 36, 534-551. Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & operations research, 32(10), 2513-2522. Janosek, M., Volna, E., & Kotyrba, M. (2015). Knowledge discovery in dynamic data using neural networks. Cluster Computing, 18(4), 1411-1421. Kablan, A. (2009, October). Adaptive neuro fuzzy inference systems for high frequency financial trading and forecasting. In 2009 Third International Conference on Advanced Engineering Computing and Applications in Sciences (pp. 105-110). IEEE. Kayal, A. (2010, October). A neural networks filtering mechanism for foreign exchange trading signals. In Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on (Vol. 3, pp. 159-167). IEEE. Khoury, P., & Gorse, D. (2015). Investing in emerging markets using neural networks and particle swarm optimization. In 2015 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE. Kissell, R. L. (2013). The science of algorithmic trading and portfolio management. Academic Press, pp. 1-473. Kong, X. (2013). Study of cep based on dynamic data management system and algorithmic trading. Journal of Theoretical & Applied Information Technology, 48(2). Kunz, K., & Martin, J. (2015). Into the breech: the increasing gap between algorithmic trading and securities regulation. Journal of Financial Services Research, 47(1), 135-152. le Calvez, A., & Cliff, D. (2018, November). Deep learning can replicate adaptive traders in a limit-order-book financial market. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1876-1883). IEEE. Lechman, E., & Marszk, A. (2017). Information and Communication Technologies for Economic Development. In Catalyzing Development through ICT Adoption (pp. 3-14). Springer, Cham. Lima, PA & Sichman, JS. (2007). Towards Cooperation Among Competitive Trader Agents. ICEIS, (4), 138-143. Litzenberger, R., Castura, J & Gorelick, R. (2012). The impacts of automation and high frequency trading on market quality. Annual Review of Financial Economics, 4(1), 59-98. Lozada, J. (2014). Investigación Aplicada: Definición, propiedad intelectual e industria. CienciAmérica: Revista de divulgación científica de la Universidad Tecnológica Indoamérica, 3(1), 47-50. Ma, C., Zhang, J., Liu, J., Ji, L., & Gao, F. (2021). A parallel multi-module deep reinforcement learning algorithm for stock trading. Neurocomputing, 449, 290-302. Mankad, S., Michailidis, G & Kirilenko, A (2013). Discovering the ecosystem of an electronic financial market with a dynamic machine-learning method. Algorithmic Finance, 2(2), 151-165. Maringer, D., & Ramtohul, T. (2010, April). Threshold recurrent reinforcement learning model for automated trading. In European Conference on the Applications of Evolutionary Computation (pp. 212-221). Springer, Berlin, Heidelberg. Masteika, S., & Vaitonis, M. (2015, June). Quantitative research in high frequency trading for natural gas futures market. In International Conference on Business Infor-mation Systems (pp. 29-35). Springer, Cham. Medina, L. Á. (2003). Aplicación de la teoría del portafolio en el mercado accionario colombiano. Cuadernos de economía, 22(39), 129-168. Menkveld, A. J. (2013). High frequency trading and the new market makers. Journal of financial Markets, 16(4), 712-740. Mirabovich, T. (2014). Academic citation indices and databases. Law and modern states, (3). Morales, J. J. R., Yepez, E. R., & Castañeda, B. G. (2015). Hipótesis de Mercados Eficientes en el Mercado Accionario Colombiano a través del Estudio de Eventos. In Memorias XX Congreso Internacional de Contaduría, Administración e Informática. Nettles, J., Brayer, N., Jenner, C., Ngo, A., Putnam, C., Shank, T., ... & Beling, P. (2015, April). Forecasting intraday volume distributions. In Systems and Information Engineering Design Symposium (SIEDS), 2015 (pp. 97-102). IEEE. Ng, C. Y., Mustaffa, Z., & Kurian, J. (2019). Impact of International Co-Authorships to a Young Malaysian University Specialising in Science, Technology, Engineering and Mathematics. DESIDOC Journal of Library & Information Technology, 39(5), 238-243. Panourgias, N.S. (2015). Capital markets integration: A sociotechnical study of the development of a cross-border securities settlement system. Technological Forecasting & Social Change, 99, 317-338. Parkes, D. C., & Wellman, M. P. (2015). Economic reasoning and artificial intelligence. Science, 349(6245), 267-272. Pellens, M., da Silva, M & da Silva, AT. (2017). Augmented Reality and Serious Games: A Systematic Literature Mapping. In 19th Symposium on Virtual and Augmented Reality (SVR) (pp. 227-235), IEEE. Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008, June). Systematic mapping studies in software engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12 (pp. 1-10). Pino, A., Uribe, J. M., & Jímenez, D. M. (2018). Relevancia de los inversionistas institucionales en el mercado accionario colombiano. Semestre Económico, 20(44), 45-65. Rankia (2017). ¿Qué es stop loss y take profit?. https://www.rankia.co/blog/analisis-colcap/3601459-que-stop-loss-take-profit Rankia (2020). Los 10 mejores ETFs: NASDAQ-100, S&P 500, Oro, Tecnologías de la información y Biotecnología. https://www.rankia.com/blog/opiniones/4585266-10-mejores-etfs-nasdaq-100-s-p-500-oro-tecnologias-informacion-biotecnologia Raudys, A., Plikynas, D & Masteika, S. (2014). Novel Automated Multi-Agent Investment System Based on Simulation of Self-Excitatory Oscillations. Transformation in Business & Economics, 13(2). Roledene, S., Ariyathilaka, L., Liyanage, N., Lakmal, P., & Bamunusinghe, J. (2016, December). GeniBux-event based intelligent Forex trading strategy enhancer. In 2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS) (pp. 1-6). IEEE. Ruta, A., Ruta, D & Cen, L. (2017). Algorithmic Daily Trading Based on Experts’ Recommendations. International Symposium on Methodologies for Intelligent Systems, Springer, 735-744. Seo, J. Y., & Chai, S. (2013). The role of algorithmic trading systems on stock market efficiency. Information Systems Frontiers, 15(5), 873-888. Sezer, O. B., Ozbayoglu, A. M., & Dogdu, E. (2017, April). An artificial neural network-based stock trading system using technical analysis and big data framework. In Proceedings of the South East Conference (pp. 223-226). ACM. Ta, V. D., Liu, C. M., & Addis, D. (2018, December). Prediction and portfolio optimization in quantitative trading using machine learning techniques. In Proceedings of the Ninth International Symposium on Information and Communication Technology (pp. 98-105). Urbizagástegui-Alvarado, R., & Cortés-Contreras, M. T. (2002). La productividad de autores en la Revista Geológica de Chile. Ciencias de la Información, 33(2), 15-25. Van Kervel, V., & Menkveld, A. J. (2019). High‐frequency trading around large institutional orders. The Journal of Finance, 74(3), 1091-1137. Vella, V., & Ng, W. L. (2014). Enhancing risk-adjusted performance of stock market intraday trading with neuro-fuzzy systems. Neurocomputing, 141, 170-187. Veryzhenko, I., Arena, L., Harb, E., & Oriol, N. (2017). Time to slow down for high‐frequency trading? Lessons from artificial markets. Intelligent Systems in Accounting, Finance and Management, 24(2-3), 73-79. Villada, F., Muñoz, N., & García, E. (2012). Aplicación de las Redes Neuronales al Pronóstico de Precios en el Mercado de Valores. Información tecnológica, 23(4), 11-20. Zhang, H., Li, Z., Shahriar, H., Tao, L., Bhattacharya, P., & Qian, Y. (2019, July). Improving prediction accuracy for logistic regression on imbalanced datasets. In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC) (Vol. 1, pp. 918-919). IEEE. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 87 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81198/1/1036950970.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81198/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81198/3/1036950970.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
9018c31fd249b1f29d2e110ca88397fa 8153f7789df02f0a4c9e079953658ab2 6303ef83bda67d36e9881d5ad089344d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089372808511488 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velásquez Henao, Juan David7b16d4a5377f0f1b1f90d3c8c6fd9f8b600Echeverri Sánchez, Laura Cristina484bf265e548bca9057f11a8e8aa2fd4600Big Data y Data Analytics2022-03-14T14:48:55Z2022-03-14T14:48:55Z2021-11https://repositorio.unal.edu.co/handle/unal/81198Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn este trabajo se presenta un prototipo de simulación para evaluar diferentes estrategias de Comercio Algorítmico en el mercado financiero colombiano; esto con el fin de analizar si es posible incorporar este tipo de estrategias por parte de los inversionistas. Para construir las estrategias, se hacen uso de diversos tipos de modelos de Inteligencia Artificial, como por ejemplo redes neuronales, bosques aleatorios y regresión logística, los cuales predicen la tendencia del precio del día siguiente. Estas predicciones son transformadas en señales de compra y venta de las acciones que permiten la conformación diaria del portafolio. Las diferentes estrategias varían en cuanto al tipo de modelo entrenado para cada activo, el subconjunto de acciones seleccionado y otros parámetros que se dan en la negociación y que dependen exclusivamente de la aversión al riesgo del inversionista, tal como el porcentaje invertido en cada movimiento y la pérdida máxima aceptada. Las diferentes simulaciones permiten establecer la estrategia que logra la mayor rentabilidad para el inversionista, que en el escenario planteado en este trabajo consta de la selección de 11 acciones y un tipo de modelo diferente para cada activo según su mejor desempeño predictivo. Dicha estrategia alcanza una rentabilidad de 78% sobre la inversión. Los resultados de esta estrategia automática de negociación fueron comparados con la rentabilidad generada por la estrategia tradicional de conformación de portafolio Markowitz, la cual genera un 5% de pérdida. Al contrastar estos resultados se aprecian las bondades que trae para el inversionista implementar una estrategia automática de negociación basada en la predicción de la dirección del precio de las acciones. (Texto tomado de la fuente)In this work a simulation prototype is presented to evaluate different Algorithmic Trading strategies in the Colombian financial market; the purpose is to analyze the possibility to incorporate this type of strategy by investors. In order to build the strategies, various types of Artificial Intelligence models are applied, such as neural networks, random forests and logistic regression, which predict the price trend of the next day. These predictions are transformed into buy and sell signals for the stocks that allow the daily formation of the portfolio. The different strategies vary in terms of the type of model trained for each asset, the selected subset of stocks and other parameters that occur in the negotiation and that depend exclusively on the investor's aversion to risk, such as the percentage invested in each movement and the maximum accepted loss. The different simulations make it possible to establish the strategy that achieves the highest profitability for the investor, which in the scenario proposed in this work consists of the selection of 11 stocks and a different type of model for each asset according to its best predictive performance. This strategy achieves a 78% return on investment. The results of this automatic trading strategy were compared with the profitability generated by the traditional Markowitz portfolio formation strategy, which generates a 5% loss. When comparing these results, the benefits that the investor brings to implement an automatic negotiation strategy based on the prediction of the direction of the share price can be appreciated.Las series de tiempo de las acciones seleccionadas son tomadas a modo de ejemplo con los datos disponibles de la Bolsa de Valores de Colombia, por lo que dicha información es netamente para uso práctico.MaestríaMagíster en Ingeniería - Ingeniería de SistemasAnalítica PredictivaÁrea Curricular de Ingeniería de Sistemas e Informáticaxiv, 87 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería de SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales330 - Economía::332 - Economía financieraInvestments PortfolioPortafolio de inversionesComercio algorítmicoInteligencia artificialAprendizaje supervisadoMercado financieroAlgorithmic tradingArtificial intelligenceSupervised learningFinancial marketConformación automática de portafolios de inversión usando analítica financieraAutomatic conformation of investment portfolios using financial analyticsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAloud, M. E. (2020). The role of attribute selection in Deep ANNs learning framework for high‐frequency financial trading. Intelligent Systems in Accounting, Finance and Management, 27(2), 43-54.Ardanuy, J. (2012). Breve introducción a la bibliometría. Universidad de Barcelona.Atsalakis, G. S., & Valavanis, K. P. (2009). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert systems with Applications, 36(7), 10696-10707Azzini, A & Tettamanzi, A. (2008). Evolutionary single-position automated trading. Workshops on Applications of Evolutionary Computation, Springer, Berlin, Heidelberg, pp. 62-72.Bahadur, L. R. (2015). Financial Literacy: The Indian Story. World Journal of Social Sciences, 5(3), 45-57.Banco de la República. (s.f.). Mercado accionario. https://www.banrep.gov.co/es/estadisticas/mercado-accionarioBarbosa, R. P., & Belo, O. (2008). Algorithmic Trading Using Intelligent Agents. In IC-AI (pp. 136-142).BBC (2018a). Wall Street: qué hay detrás de la estrepitosa caída de la bolsa en el último mes que borró las ganancias de todo 2018. https://www.bbc.com/mundo/noticias-45983822BBC (2018b). Wall Street sufre su peor semana en 10 años (qué significa para la economía global). https://www.bbc.com/mundo/noticias-46651665Berutich, J. M., López, F., Luna, F., & Quintana, D. (2016). Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Systems with Applications, 46, 307-315.Berutich, J. M., López, F., Luna, F., & Quintana, D. (2016). Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Systems with Applications, 46, 307-315.Blitz, D., & Huij, J. (2012). Evaluating the performance of global emerging markets equity exchange-traded funds. Emerging markets review, 13(2), 149-158.Bolsa de Valores de Colombia (BVC) (2011). METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP. https://www.bvc.com.co/recursos/Files/Mercados/Indices_Accionarios/Nueva_Metodologia_Calculo_Indice_COLCAP.pdfBolsa de Valores de Colombia (BVC) (2020). Noticias Generales. https://www.bvc.com.co/pps/tibco/portalbvc/Home/NoticiasDetalle?com.tibco.ps.pagesvc.renderParams.sub5d9e2b27_11de9ed172b_-783b7f000001=rp.docURI%3Dpof%253A%252Fcom.tibco.psx.model.cp.Document%252F6ed219b4_1700ab5155b_-4a2ac0a84ca9%26rp.currentDocumentID%3D6ed219b4_1700ab5155b_-4a2ac0a84ca9%26action%3DopenDocument%26addDefaultTarget%3Dfalse%26Bolsa de Valores de Colombia (BVC) (s.f.-a). Diccionario de Finanzas. https://www.bvc.com.co/pps/tibco/portalbvc/Home/GlosarioBolsa de Valores de Colombia (BVC) (s.f.-b). Mercado de Renta Variable. https://www.bvc.com.co/pps/tibco/portalbvc/Home/Mercados/enlinea/acciones?action=dummyBrogaard, J., Hendershott, T., & Riordan, R. (2014). High-frequency trading and price discovery. The Review of Financial Studies, 27(8), 2267-2306.Brogaard, J., Hendershott, T., & Riordan, R. (2017). High frequency trading and the 2008 short-sale ban. Journal of Financial Economics, 124(1), 22-42.Brogaard, J., Hendershott, T., Hunt, S., & Ysusi, C. (2014). High‐frequency trading and the execution costs of institutional investors. Financial Review, 49(2), 345-369.Brownlees, C. T., Cipollini, F., & Gallo, G. M. (2010). Intra-daily volume modeling and prediction for algorithmic trading. Journal of Financial Econometrics, 9(3), 489-518.Cartea, A., & Jaimungal, S. (2013). Modelling asset prices for algorithmic and high-frequency trading. Applied Mathematical Finance, 20(6), 512-547.Cartea, Á., Jaimungal, S., & Kinzebulatov, D. (2016). Algorithmic trading with learning. International Journal of Theoretical and Applied Finance, 19(04), 1650028.Cartlidge, J., Szostek, C., De Luca, M., & Cliff, D. (2012). Too Fast Too Furious-Faster Financial-market Trading Agents Can Give Less Efficient Markets. In ICAART (2) (pp. 126-135).Chakole, J. B., Kolhe, M. S., Mahapurush, G. D., Yadav, A., & Kurhekar, M. P. (2021). A Q-learning agent for automated trading in equity stock markets. Expert Systems with Applications, 163, 113761.Chen, A. S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Computers & Operations Research, 30(6), 901-923.Choudhry, R., & Garg, K. (2008). A hybrid machine learning system for stock market forecasting. World Academy of Science, Engineering and Technology, 39(3), 315-318.Chu, J., Chan, S., & Zhang, Y. (2020). High frequency momentum trading with cryptocurrencies. Research in International Business and Finance, 52, 101176.Cordón, O., Herrera, F., Holfmann, F., & Magdalena, L. (2001). Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases (Vol. 19). World Scientific.Dejavite, C. H & Lima, P. A. (2010). Towards automated trading based on fundamentalist and technical data. Brazilian Symposium on Artificial Intelligence, Springer, Berlin, Heidelberg, pp. 112-121.Ding, S., Hanna, J., & Hendershott, T. (2014). How slow is the NBBO? A comparison with direct exchange feeds. Financial Review, 49(2), 313-332.Driaunys, K., Masteika, S., Sakalauskas, V., & Vaitonis, M. (2014). An algorithm-based statistical arbitrage high frequency trading system to forecast prices of natural gas fu-tures. Transformations in Business & Economics, 13(3), 96-109.Eom, C., Kaizoji, T., Livan, G., & Scalas, E. (2021). Limitations of portfolio diversification through fat tails of the return Distributions: Some empirical evidence. The North American Journal of Economics and Finance, 56, 101358.Farjam, M., & Kirchkamp, O. (2018). Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading. Journal of Economic Behavior & Organization, 146, 248-269.Fister, D., Mun, J. C., Jagrič, V., & Jagrič, T. (2019). Deep Learning for Stock Market Trading: A Superior Trading Strategy?. Neural Network World, 29(3), 151-171.Fukuma, N., & Kadogawa, Y. (2020). An Overview of Algorithmic Trading in Foreign Exchange Markets and Its Impacts on Market Liquidity. Bank of Japan Review Series, (20-E-5).Gabrielsson, P., & Johansson, U. (2015, December). High-frequency equity index futures trading using recurrent reinforcement learning with candlesticks. In 2015 IEEE Symposium Series on Computational Intelligence (pp. 734-741). IEEE.Gloukhov, V. V., Ilin, I. V., Koposov, V. I., & Levina, A. I. (2014). Market risk neutral strategies: modeling and algorithmization. Asian Social Science, 10(24), 209.Hadavandi, E., Shavandi, H., & Ghanbari, A. (2010). Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based Systems, 23(8), 800-808.Hendershott, T., & Riordan, R. (2013). Algorithmic trading and the market for liquidity. Journal of Financial and Quantitative Analysis, 48(4),1001-1024.Hendershott, T., Jones, C. M., & Menkveld, A. J. (2011). Does algorithmic trading improve liquidity?. The Journal of finance, 66(1), 1-33.Hi'ovská, K., & Koncz, P. (2012). Application of Artificial Intelligence and Data Mining Techniques to Financial Markets. Economic Studies & Analyses/Acta VSFS, 6(1), 62-76.Hogenboom. F. (2012). Financial events recognition in web news for algorithmic trading. International Conference on Conceptual Modeling, Springer, Berlin, Heidelberg, pp. 368-377.Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E & Liu. M. (2015). Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review. Applied Soft Computing, 36, 534-551.Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & operations research, 32(10), 2513-2522.Janosek, M., Volna, E., & Kotyrba, M. (2015). Knowledge discovery in dynamic data using neural networks. Cluster Computing, 18(4), 1411-1421.Kablan, A. (2009, October). Adaptive neuro fuzzy inference systems for high frequency financial trading and forecasting. In 2009 Third International Conference on Advanced Engineering Computing and Applications in Sciences (pp. 105-110). IEEE.Kayal, A. (2010, October). A neural networks filtering mechanism for foreign exchange trading signals. In Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on (Vol. 3, pp. 159-167). IEEE.Khoury, P., & Gorse, D. (2015). Investing in emerging markets using neural networks and particle swarm optimization. In 2015 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE.Kissell, R. L. (2013). The science of algorithmic trading and portfolio management. Academic Press, pp. 1-473.Kong, X. (2013). Study of cep based on dynamic data management system and algorithmic trading. Journal of Theoretical & Applied Information Technology, 48(2).Kunz, K., & Martin, J. (2015). Into the breech: the increasing gap between algorithmic trading and securities regulation. Journal of Financial Services Research, 47(1), 135-152.le Calvez, A., & Cliff, D. (2018, November). Deep learning can replicate adaptive traders in a limit-order-book financial market. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1876-1883). IEEE.Lechman, E., & Marszk, A. (2017). Information and Communication Technologies for Economic Development. In Catalyzing Development through ICT Adoption (pp. 3-14). Springer, Cham.Lima, PA & Sichman, JS. (2007). Towards Cooperation Among Competitive Trader Agents. ICEIS, (4), 138-143.Litzenberger, R., Castura, J & Gorelick, R. (2012). The impacts of automation and high frequency trading on market quality. Annual Review of Financial Economics, 4(1), 59-98.Lozada, J. (2014). Investigación Aplicada: Definición, propiedad intelectual e industria. CienciAmérica: Revista de divulgación científica de la Universidad Tecnológica Indoamérica, 3(1), 47-50.Ma, C., Zhang, J., Liu, J., Ji, L., & Gao, F. (2021). A parallel multi-module deep reinforcement learning algorithm for stock trading. Neurocomputing, 449, 290-302.Mankad, S., Michailidis, G & Kirilenko, A (2013). Discovering the ecosystem of an electronic financial market with a dynamic machine-learning method. Algorithmic Finance, 2(2), 151-165.Maringer, D., & Ramtohul, T. (2010, April). Threshold recurrent reinforcement learning model for automated trading. In European Conference on the Applications of Evolutionary Computation (pp. 212-221). Springer, Berlin, Heidelberg.Masteika, S., & Vaitonis, M. (2015, June). Quantitative research in high frequency trading for natural gas futures market. In International Conference on Business Infor-mation Systems (pp. 29-35). Springer, Cham.Medina, L. Á. (2003). Aplicación de la teoría del portafolio en el mercado accionario colombiano. Cuadernos de economía, 22(39), 129-168.Menkveld, A. J. (2013). High frequency trading and the new market makers. Journal of financial Markets, 16(4), 712-740.Mirabovich, T. (2014). Academic citation indices and databases. Law and modern states, (3).Morales, J. J. R., Yepez, E. R., & Castañeda, B. G. (2015). Hipótesis de Mercados Eficientes en el Mercado Accionario Colombiano a través del Estudio de Eventos. In Memorias XX Congreso Internacional de Contaduría, Administración e Informática.Nettles, J., Brayer, N., Jenner, C., Ngo, A., Putnam, C., Shank, T., ... & Beling, P. (2015, April). Forecasting intraday volume distributions. In Systems and Information Engineering Design Symposium (SIEDS), 2015 (pp. 97-102). IEEE.Ng, C. Y., Mustaffa, Z., & Kurian, J. (2019). Impact of International Co-Authorships to a Young Malaysian University Specialising in Science, Technology, Engineering and Mathematics. DESIDOC Journal of Library & Information Technology, 39(5), 238-243.Panourgias, N.S. (2015). Capital markets integration: A sociotechnical study of the development of a cross-border securities settlement system. Technological Forecasting & Social Change, 99, 317-338.Parkes, D. C., & Wellman, M. P. (2015). Economic reasoning and artificial intelligence. Science, 349(6245), 267-272.Pellens, M., da Silva, M & da Silva, AT. (2017). Augmented Reality and Serious Games: A Systematic Literature Mapping. In 19th Symposium on Virtual and Augmented Reality (SVR) (pp. 227-235), IEEE.Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008, June). Systematic mapping studies in software engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12 (pp. 1-10).Pino, A., Uribe, J. M., & Jímenez, D. M. (2018). Relevancia de los inversionistas institucionales en el mercado accionario colombiano. Semestre Económico, 20(44), 45-65.Rankia (2017). ¿Qué es stop loss y take profit?. https://www.rankia.co/blog/analisis-colcap/3601459-que-stop-loss-take-profitRankia (2020). Los 10 mejores ETFs: NASDAQ-100, S&P 500, Oro, Tecnologías de la información y Biotecnología. https://www.rankia.com/blog/opiniones/4585266-10-mejores-etfs-nasdaq-100-s-p-500-oro-tecnologias-informacion-biotecnologiaRaudys, A., Plikynas, D & Masteika, S. (2014). Novel Automated Multi-Agent Investment System Based on Simulation of Self-Excitatory Oscillations. Transformation in Business & Economics, 13(2).Roledene, S., Ariyathilaka, L., Liyanage, N., Lakmal, P., & Bamunusinghe, J. (2016, December). GeniBux-event based intelligent Forex trading strategy enhancer. In 2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS) (pp. 1-6). IEEE.Ruta, A., Ruta, D & Cen, L. (2017). Algorithmic Daily Trading Based on Experts’ Recommendations. International Symposium on Methodologies for Intelligent Systems, Springer, 735-744.Seo, J. Y., & Chai, S. (2013). The role of algorithmic trading systems on stock market efficiency. Information Systems Frontiers, 15(5), 873-888.Sezer, O. B., Ozbayoglu, A. M., & Dogdu, E. (2017, April). An artificial neural network-based stock trading system using technical analysis and big data framework. In Proceedings of the South East Conference (pp. 223-226). ACM.Ta, V. D., Liu, C. M., & Addis, D. (2018, December). Prediction and portfolio optimization in quantitative trading using machine learning techniques. In Proceedings of the Ninth International Symposium on Information and Communication Technology (pp. 98-105).Urbizagástegui-Alvarado, R., & Cortés-Contreras, M. T. (2002). La productividad de autores en la Revista Geológica de Chile. Ciencias de la Información, 33(2), 15-25.Van Kervel, V., & Menkveld, A. J. (2019). High‐frequency trading around large institutional orders. The Journal of Finance, 74(3), 1091-1137.Vella, V., & Ng, W. L. (2014). Enhancing risk-adjusted performance of stock market intraday trading with neuro-fuzzy systems. Neurocomputing, 141, 170-187.Veryzhenko, I., Arena, L., Harb, E., & Oriol, N. (2017). Time to slow down for high‐frequency trading? Lessons from artificial markets. Intelligent Systems in Accounting, Finance and Management, 24(2-3), 73-79.Villada, F., Muñoz, N., & García, E. (2012). Aplicación de las Redes Neuronales al Pronóstico de Precios en el Mercado de Valores. Información tecnológica, 23(4), 11-20.Zhang, H., Li, Z., Shahriar, H., Tao, L., Bhattacharya, P., & Qian, Y. (2019, July). Improving prediction accuracy for logistic regression on imbalanced datasets. In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC) (Vol. 1, pp. 918-919). IEEE.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1036950970.2022.pdf1036950970.2022.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemasapplication/pdf2247704https://repositorio.unal.edu.co/bitstream/unal/81198/1/1036950970.2022.pdf9018c31fd249b1f29d2e110ca88397faMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81198/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1036950970.2022.pdf.jpg1036950970.2022.pdf.jpgGenerated Thumbnailimage/jpeg4483https://repositorio.unal.edu.co/bitstream/unal/81198/3/1036950970.2022.pdf.jpg6303ef83bda67d36e9881d5ad089344dMD53unal/81198oai:repositorio.unal.edu.co:unal/811982023-10-06 14:53:15.831Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |