Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado
ilustraciones, diagramas
- Autores:
-
Velásquez Ayala, Fabián Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86054
- Palabra clave:
- 660 - Ingeniería química::664 - Tecnología de alimentos
Tecnología del azúcar
Bagazo
Edulcorantes
sugar technology
bagasse
sweeteners
Dinámica computacional de fluidos
Modelación matemática
Combustión en lecho fijo
Biomasa
Bagazo de caña
Computational fluid dynamics
Mathematical modelling
Fixed bed combustion
Biomass
Sugar cane bagasse
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_5c665bcd7949ecae396d1038453ad5d3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86054 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado |
dc.title.translated.eng.fl_str_mv |
Modeling of sugarcane bagasse combustion in a non-centrifugal sugar production module |
title |
Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado |
spellingShingle |
Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado 660 - Ingeniería química::664 - Tecnología de alimentos Tecnología del azúcar Bagazo Edulcorantes sugar technology bagasse sweeteners Dinámica computacional de fluidos Modelación matemática Combustión en lecho fijo Biomasa Bagazo de caña Computational fluid dynamics Mathematical modelling Fixed bed combustion Biomass Sugar cane bagasse |
title_short |
Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado |
title_full |
Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado |
title_fullStr |
Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado |
title_full_unstemmed |
Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado |
title_sort |
Modelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado |
dc.creator.fl_str_mv |
Velásquez Ayala, Fabián Andrés |
dc.contributor.advisor.spa.fl_str_mv |
Rodriguez Cortina, jader Rincón Prat, Sonia Lucía |
dc.contributor.author.spa.fl_str_mv |
Velásquez Ayala, Fabián Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Biomasa y Optimización Térmica de Procesos, (BIOT) |
dc.contributor.orcid.spa.fl_str_mv |
Fabian Velasquez [000-0003-1535-3549] |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::664 - Tecnología de alimentos |
topic |
660 - Ingeniería química::664 - Tecnología de alimentos Tecnología del azúcar Bagazo Edulcorantes sugar technology bagasse sweeteners Dinámica computacional de fluidos Modelación matemática Combustión en lecho fijo Biomasa Bagazo de caña Computational fluid dynamics Mathematical modelling Fixed bed combustion Biomass Sugar cane bagasse |
dc.subject.agrovoc.spa.fl_str_mv |
Tecnología del azúcar Bagazo Edulcorantes |
dc.subject.agrovoc.eng.fl_str_mv |
sugar technology bagasse sweeteners |
dc.subject.proposal.spa.fl_str_mv |
Dinámica computacional de fluidos Modelación matemática Combustión en lecho fijo Biomasa Bagazo de caña |
dc.subject.proposal.eng.fl_str_mv |
Computational fluid dynamics Mathematical modelling Fixed bed combustion Biomass Sugar cane bagasse |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-08T20:01:15Z |
dc.date.available.none.fl_str_mv |
2024-05-08T20:01:15Z |
dc.date.issued.none.fl_str_mv |
2024-01-30 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86054 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86054 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Agronegocios (2021). Colombia es el segundo mayor productor de panela a nivel mundial. Excerpted from 5th edition of the APA Publication Manual. Allison, T. C. (2013). Nist-janaf thermochemical tables - srd 13 (version 1.0.2) [data set]. National Institute of Standards and Technology. Anca-Couce, A., Sommersacher, P., Shiehnejadhesar, A., Mehrabian, R., Hochenauer, C., and Scharler, R. (2017). CO/CO2 ratio in biomass char oxidation. Energy Procedia, 120:238--245. INFUB - 11th European Conference on Industrial Furnaces and Boilers, INFUB-11. Anwar, S. (2010). Fuel and energy saving in open pan furnace used in jaggery making through modified juice boiling/concentrating pans. Energy Conversion and Management, 51(2):360--364. Bauer, R., Gölles, M., Brunner, T., Dourdoumas, N., and Obernberger, I. (2010). Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass and Bioenergy, 34:417--427. Borray, G. A. R., Carranza, B. H., Murcia, S. M. P., Chavarro, C. F. G., Muñoz, J. L. T., Cortina, J. R., Ayala, F. A. V., Durán, J. R., González, J. J. E., and Zaraza, R. A. L. (2020). Modelo productivo de la caña de azúcar (saccharum officinarum) para la producción de panela en cundinamarca. Cadavid, G. O. (2007). Buenas prácticas agrícolas [BPA] y buenas prácticas de manufactura [BPM] en la producción de caña y panela. Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO. Canedo, M. S., Figueiredo, M. F. S., Thomik, M., Vorhauer-Huget, N., Tsotsas, E., and Thoméo, J. C. (2021). Porosity and pore size distribution of beds composed by sugarcane bagasse and wheat bran for solid-state cultivation. Powder Technology, 386:166--175. Cengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education. Daood, S. S., Munir, S., Nimmo, W., and Gibbs, B. M. (2010). Char oxidation study of sugar cane bagasse, cotton stalk and pakistani coal under 1 % and 3 % oxygen concentrations. Biomass and Bioenergy, 34:263--271. de Souza-Santos, M. L. (2010). Solid fuels combustion and gasification: modeling, simulation. CRC Press. Dernbecher, A., Dieguez-Alonso, A., Ortwein, A., and Tabet, F. (2019). Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Conversion and Biorefinery, 9:129--182. Di Blasi, C. (1997). Simultaneous Heat, Mass and Momentum Transfer during Biomass Drying, pages 117--131. Springer Netherlands, Dordrecht. Di Blasi, C. (2004). Modeling wood gasification in a countercurrent fixed-bed reactor. AIChE Journal, 50(9):2306--2319. Edwards, C. M. L. (2018). Technical evaluation of available residual biomass in colombia for its thermochemical conversion in fluidized bed reactors. Eisermann, W., Johnson, P., and Conger, W. L. (1980). Estimating thermodynamic properties of coal, char, tar and ash. Fuel Processing Technology, 3:39--53. Espitia, J., Velásquez, F., López, R., Escobar, S., and Rodríguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274:109843. Ferziger, J. H., Perić, M., and Street, R. L. (2019). Computational methods for fluid dynamics. springer. Figura, L. O. and Teixeira, A. A. (2007). Geometric Properties: Size and Shape, pages 73--115. Springer Berlin Heidelberg, Berlin, Heidelberg. Forero, L. E. P., Castro, Z. S., Bernal, H. R. G., and Ávila, H. S. R. (2012). Hornillas paneleras ward-cimpa: Validación de los modelos matemáticos de diseño corpoica-uis. Fuentes: El reventón energético, 10:6. Frigerio, S., Thunman, H., Leckner, B., and Hermansson, S. (2008). Estimation of gas phase mixing in packed beds. Combustion and Flame, 153:137--148. Gordillo, G. and García, H. (1992). Manual para el diseño y operación de hornillas paneleras. Technical report, Convenio de Investigación y Divulgación para el Mejoramiento de la Industria Panelera, Bogotá (Colombia). Greenshields, C. J. and Weller, H. G. (2022). Notes on computational fluid dynamics: General principles. Guevara Enciso, J. I. (2014). Modelo computacional de la combustión del bagazo de caña en una cámara de combustión tipo ward-cimpa de una hornilla panelera. Gunn, D. J. (1987). Axial and radial dispersion in fixed beds. Chemical engineering science, 42:363--373. Gómez, A., Klose, W., and Rincón, S. (2008). Pirólisis de biomasa: cuesco de palma de aceite. kassel university press GmbH. Gómez, M., Porteiro, J., Patiño, D., and Míguez, J. (2014). Cfd modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel, 117:716--732. Hugot, E. and Jenkins, G. (1986). Manual de ingeniería de la caña de azúcar. Estados Unidos: Elsevier Scienci. Invima (2015). Registro nacional de trapiches paneleros. Instituto nacional de vigilancia de medicamentos y alimentos Invima. Jader, R., Fabián, V., John, E., Sebastián, E., and Oscar, M. (2018). Thermal performance evaluation of production technologies for non-centrifuged sugar for improvement in energy utilization. Energy, 152:858--865. Jaffé, W. (2012). Non-centrifugal sugar: world production and trade. Panela monitor, pages 4--48. Jaffé, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43:194--202. Jensen, S. (2001). Zur modellierung eines indirekt beheizten festbettbiomassevergasers. Johansson, R., Thunman, H., and Leckner, B. (2007). Sensitivity analysis of a fixed bed combustion model. Energy & Fuels, 21:1493--1503. doi: 10.1021/ef060500z. Jurena, T. (2012). Numerical modelling of grate combustion. Brno University of Technology, Brno. Karim, M. R. and Naser, J. (2017). Numerical modelling of solid biomass combustion: Difficulties in initiating the fixed bed combustion. Energy Procedia, 110:390--395. Khodaei, H., Al-Abdeli, Y. M., Guzzomi, F., and Yeoh, G. H. (2015). An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy, 88:946--972. Khodaei, H., Yeoh, G. H., Guzzomi, F., and Porteiro, J. (2018). A cfd-based comparative analysis of drying in various single biomass particles. Applied Thermal Engineering, 128:1062--1073. Klason, T. (2006). Modelling of biomass combustion in furnaces. Lund University. Kumar, A. and Tiwari, G. N. (2006). Effect of shape and size on convective mass transfer coefficient during greenhouse drying (ghd) of jaggery. Journal of Food Engineering, 73:121--134. La Madrid, R., Marcelo, D., Orbegoso, E. M., and Saavedra, R. (2016). Heat transfer study on open heat exchangers used in jaggery production modules – computational fluid dynamics simulation and field data assessment. Energy Conversion and Management, 125:107--120. Sustainable development of energy, water and environment systems for future energy technologies and concepts. La Madrid, R., Orbegoso, E. M., Saavedra, R., and Marcelo, D. (2017). Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger. Journal of Environmental Management, 204:622--636. Lam, P. S., Sokhansanj, S., Bi, X., Mani, S., Lim, J., and (or initial) (or initial) (2007). Physical characterization of wet and dry wheat straw and switchgrass - bulk and specific density. American Society of Agricultural and Biological Engineers. Lu, H., Robert, W., Peirce, G., Ripa, B., and Baxter, L. L. (2008). Comprehensive study of biomass particle combustion. Energy & Fuels, 22:2826--2839. MADR (2018). Cadena agroindustrial de la panela. (No Title), page 15. Manya, J. J., Velo, E., and Puigjaner, L. (2003). Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Industrial and engineering chemistry research, 42(3):434-- 441. McBride, B. J., Gordon, S., and Reno, M. A. (1993). Coefficients for calculating thermodynamic and transport properties of individual species. Mendes, R. F., Vilela, A. P., Farrapo, C. L., Mendes, J. F., Denzin Tonoli, G. H., and Mendes, L. M. (2017). 1 - lignocellulosic residues in cement-bonded panels. In Savastano Junior, H., Fiorelli, J., and dos Santos, S. F., editors, Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites, pages 3--16. Woodhead Publishing. Miltner, M., Makaruk, A., Harasek, M., and Friedl, A. (2008). Computational fluid dynamic simulation of a solid biomass combustor: modelling approaches. Clean Technologies and Environmental Policy, 10:165--174. Mitsakis, P. (2011). Online analysis of the tar content of biomass gasification producer gas. Moukalled, F., Mangani, L., and Darwish, M. (2016). Solving the System of Algebraic Equations, pages 303--364. Springer International Publishing, Cham. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. Patiño, H. J. G. (2011). Modelación de la gasificación de biomasa en un reactor de lecho fijo. Peters, B. (2002). Measurements and application of a discrete particle model (dpm) to simulate combustion of a packed bed of individual fuel particles. Combustion and Flame, 131:132--146. Plaza, M. (2022). Evaluación del efecto de variables asociadas a la calidad del bagazo de caña en el proceso de combustión para uso en unidades productivas de cámara plana en la hoya del rio suarez. Pérez, N. P., Pedroso, D. T., Machin, E. B., Antunes, J. S., Tuna, C. E., and Silveira, J. L. (2019). Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies. Renewable Energy, 143:1210--1224. Rasul, M. G., Rudolph, V., and Carsky, M. (1999). Physical properties of bagasse. Fuel, 78:905--910. Reid, R. C., Prausnitz, J. M., and Poling, B. E. (1987). The properties of gases and liquids. Rincón, S. and Gómez, A. (2008). Pyrolysis of agroindustrial biomass residues. pages 1200--1204. Ryu, C., Yang, Y. B., Khor, A., Yates, N. E., Sharifi, V. N., and Swithenbank, J. (2006). Effect of fuel properties on biomass combustion: Part i. experiments—fuel type, equivalence ratio and particle size. Fuel, 85(7):1039--1046. Sánchez Castro, Z. and Mendieta Menjura, O. A. (2014). Ajuste de un modelo matemático para la combustión de bagazo de caña en una cámara ward-cimpa. Ciencia y Tecnología Agropecuaria, 15(2):133--151. Schlünder, E.-U. and Tsotsas, E. (1988). Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten. Georg Thieme-Verlag. Skinner, F. D. and Smoot, L. D. (1979). Heterogeneous Reactions of Char and Carbon, pages 149--167. Springer US. Srikiatden, J. and Roberts, J. S. (2008). Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. Journal of Food Engineering, 84:516--525. Telles, R. S. and Trevisan, O. V. (1993). Dispersion in heat and mass transfer natural convection along vertical boundaries in porous media. International Journal of Heat and Mass Transfer, 36(5):1357--1365. Thunman, H. and Leckner, B. (2003). Co-current and counter-current fixed bed combustion of biofuel—a comparison. Fuel, 82:275--283. Tiwari, G. N., Prakash, O., and Kumar, S. (2004). Evaluation of convective heat and mass transfer for pool boiling of sugarcane juice. Energy Conversion and Management, 45:171--179. Turns, S. (2000). An introduction to combustion: concepts and applications. McGrw-Hill Companies, Inc. van Antwerpen, W., du Toit, C., and Rousseau, P. (2010). A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nuclear Engineering and Design, 240(7):1803--1818. Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., and Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255:32--40. Velásquez Arredondo, H. I., Chejne Janna, F., and Agudelo Santamaría, A. F. (2004). Diagnóstico energético de los procesos productivos de la panela en colombia. Revista Facultad Nacional de Agronomía Medellín, 57(2):2453–2465. Verissimo, G. L. (2018). SimulaÇÃo computacional e anÁlise exergÉtica da gaseificaÇÃo de bagaÇo de cana-de-aÇÚcar em leitos fluidizados borbulhantes. Verissimo, G. L., Leiroz, A. J. K., and Cruz, M. E. (2020). Influence of the pyrolysis and heterogeneous char reactions modeling in the simulation of sugarcane bagasse gasification in a bubbling fluidized bed reactor. Fuel, 281:118750. Versteeg, H. K. and Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2 edition. Yang, Y., Nasserzadeh, V., Goodfellow, J., and Swithenbank, J. (2003). Simulation of channel growth in a burning bed of solids. Chemical Engineering Research and Design, 81(2):221--232. Yang, Y. B., Goh, Y. R., Zakaria, R., Nasserzadeh, V., and Swithenbank, J. (2002). Mathematical modelling of msw incineration on a travelling bed. Waste Management, 22:369--380. Yin, C., Rosendahl, L., Kær, S. K., Clausen, S., Hvid, S. L., and Hille, T. (2008). Mathematical modeling and experimental study of biomass combustion in a thermal 108 mw grate-fired boiler. Energy & Fuels, 22:1380--1390. Zhou, H., Jensen, A. D., Glarborg, P., Jensen, P. A., and Kavaliauskas, A. (2005). Numerical modeling of straw combustion in a fixed bed. Fuel, 84:389--403. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 110 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86054/2/1110506157.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86054/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86054/3/1110506157.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
0204e2a5c859f4995eae9fe64189222e eb34b1cf90b7e1103fc9dfd26be24b4a 1965ebc6e36efb815e65b2c645401ed0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090167031431168 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodriguez Cortina, jader61975065c7fa0b408638aa2508e4749a600Rincón Prat, Sonia Lucía56b090576ed33831287c0cd0fe5bd10bVelásquez Ayala, Fabián Andrés2eeed846e8dc98d5c82fe5e9db5e21bfGrupo de Investigación en Biomasa y Optimización Térmica de Procesos, (BIOT)Fabian Velasquez [000-0003-1535-3549]2024-05-08T20:01:15Z2024-05-08T20:01:15Z2024-01-30https://repositorio.unal.edu.co/handle/unal/86054Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl azúcar no centrifugado de caña (ANC) es un edulcorante sólido no refinado con un gran potencial de comercialización debido a sus atributos nutracéuticos. Sin embargo, los módulos de producción de ANC presentan problemas de baja eficiencia térmica debido al diseño empírico de sus componentes como la cámara de combustión causando que la energía suministrada por el combustible (bagazo de caña) no sea suficiente para cubrir la demanda energética del proceso. Como resultado, se obtienen bajas temperaturas de combustión y altas tasas de emisión de gases contaminantes. Consecuentemente, para establecer modificaciones y criterios de diseño en estos equipos, es necesario comprender los fenómenos de conversión termoquímica que experimenta el combustible. Por lo tanto, se planteó el desarrollo de un modelo de combustión de bagazo de caña a partir de técnicas de dinámica computacional de fluidos (CFD) en una cámara de combustión plana de lecho fijo. El modelo fue planteado a partir de los balances de energía y masa en estado transitorio para un sistema heterogéneo compuesto por dos fases: gas y sólido. Se tiene en cuenta los procesos de transferencia de calor, masa y las reacciones químicas derivadas de los procesos de degradación térmica del combustible. El modelo fue validado a partir de datos experimentales tomados en una cámara de combustión de lecho fijo para bagazo de caña, dónde se midieron los perfiles de distribución de temperatura y la composición de especies (CO2, CO y O2). El modelo permite determinar la distribución de los perfiles de temperatura y la concentración de especies generadas o destruidas durante el proceso. La validación del modelo muestra la capacidad de predecir un comportamiento promedio de la temperatura y composición de especies que se generan en la combustión de bagazo de caña. (Texto tomado de la fuente).Non-centrifuged cane sugar (NCS) is an unrefined solid sweetener with great commercialization potential due to its nutraceutical attributes. However, NCS production modules present problems of low thermal efficiency due to the empirical design of its components such as the combustion chamber causing the energy supplied by the fuel (cane bagasse) is not sufficient to cover the energy demand of the process. As a result, low combustion temperatures and high pollutant gas emission rates are obtained. Consequently, to establish modifications and design criteria for these equipment, it is necessary to understand the thermochemical conversion phenomena experienced by the fuel. Therefore, the development of a cane bagasse combustion model was proposed using computational fluid dynamics (CFD) techniques in a flat fixed-bed combustion chamber. The model was based on the energy and mass balances in transient state for a heterogeneous system composed of two phases: gas and solid. It takes into account the heat and mass transfer processes and the chemical reactions derived from the thermal degradation processes of the fuel. The model was validated from experimental data taken in a fixed bed combustion chamber for sugarcane bagasse, where temperature distribution profiles and species composition (CO2, CO y O2) were measured. The model allows determining the distribution of temperature profiles and the concentration of species generated or destroyed during the process. The validation of the model shows the ability to predict an average behavior of the temperature and species composition generated in the combustion of sugarcane bagasse.Corporación Colombiana de investigación Agropecuaria (AGROSAVIA)MaestríaMagíster en Ingeniería - Ingeniería QuímicaConversión termoquímica de biomasaxvi, 110 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::664 - Tecnología de alimentosTecnología del azúcarBagazoEdulcorantessugar technologybagassesweetenersDinámica computacional de fluidosModelación matemáticaCombustión en lecho fijoBiomasaBagazo de cañaComputational fluid dynamicsMathematical modellingFixed bed combustionBiomassSugar cane bagasseModelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugadoModeling of sugarcane bagasse combustion in a non-centrifugal sugar production moduleTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgronegocios (2021). Colombia es el segundo mayor productor de panela a nivel mundial. Excerpted from 5th edition of the APA Publication Manual.Allison, T. C. (2013). Nist-janaf thermochemical tables - srd 13 (version 1.0.2) [data set]. National Institute of Standards and Technology.Anca-Couce, A., Sommersacher, P., Shiehnejadhesar, A., Mehrabian, R., Hochenauer, C., and Scharler, R. (2017). CO/CO2 ratio in biomass char oxidation. Energy Procedia, 120:238--245. INFUB - 11th European Conference on Industrial Furnaces and Boilers, INFUB-11.Anwar, S. (2010). Fuel and energy saving in open pan furnace used in jaggery making through modified juice boiling/concentrating pans. Energy Conversion and Management, 51(2):360--364.Bauer, R., Gölles, M., Brunner, T., Dourdoumas, N., and Obernberger, I. (2010). Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass and Bioenergy, 34:417--427.Borray, G. A. R., Carranza, B. H., Murcia, S. M. P., Chavarro, C. F. G., Muñoz, J. L. T., Cortina, J. R., Ayala, F. A. V., Durán, J. R., González, J. J. E., and Zaraza, R. A. L. (2020). Modelo productivo de la caña de azúcar (saccharum officinarum) para la producción de panela en cundinamarca.Cadavid, G. O. (2007). Buenas prácticas agrícolas [BPA] y buenas prácticas de manufactura [BPM] en la producción de caña y panela. Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO.Canedo, M. S., Figueiredo, M. F. S., Thomik, M., Vorhauer-Huget, N., Tsotsas, E., and Thoméo, J. C. (2021). Porosity and pore size distribution of beds composed by sugarcane bagasse and wheat bran for solid-state cultivation. Powder Technology, 386:166--175.Cengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.Daood, S. S., Munir, S., Nimmo, W., and Gibbs, B. M. (2010). Char oxidation study of sugar cane bagasse, cotton stalk and pakistani coal under 1 % and 3 % oxygen concentrations. Biomass and Bioenergy, 34:263--271.de Souza-Santos, M. L. (2010). Solid fuels combustion and gasification: modeling, simulation. CRC Press.Dernbecher, A., Dieguez-Alonso, A., Ortwein, A., and Tabet, F. (2019). Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Conversion and Biorefinery, 9:129--182.Di Blasi, C. (1997). Simultaneous Heat, Mass and Momentum Transfer during Biomass Drying, pages 117--131. Springer Netherlands, Dordrecht.Di Blasi, C. (2004). Modeling wood gasification in a countercurrent fixed-bed reactor. AIChE Journal, 50(9):2306--2319.Edwards, C. M. L. (2018). Technical evaluation of available residual biomass in colombia for its thermochemical conversion in fluidized bed reactors.Eisermann, W., Johnson, P., and Conger, W. L. (1980). Estimating thermodynamic properties of coal, char, tar and ash. Fuel Processing Technology, 3:39--53.Espitia, J., Velásquez, F., López, R., Escobar, S., and Rodríguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274:109843.Ferziger, J. H., Perić, M., and Street, R. L. (2019). Computational methods for fluid dynamics. springer.Figura, L. O. and Teixeira, A. A. (2007). Geometric Properties: Size and Shape, pages 73--115. Springer Berlin Heidelberg, Berlin, Heidelberg.Forero, L. E. P., Castro, Z. S., Bernal, H. R. G., and Ávila, H. S. R. (2012). Hornillas paneleras ward-cimpa: Validación de los modelos matemáticos de diseño corpoica-uis. Fuentes: El reventón energético, 10:6.Frigerio, S., Thunman, H., Leckner, B., and Hermansson, S. (2008). Estimation of gas phase mixing in packed beds. Combustion and Flame, 153:137--148.Gordillo, G. and García, H. (1992). Manual para el diseño y operación de hornillas paneleras. Technical report, Convenio de Investigación y Divulgación para el Mejoramiento de la Industria Panelera, Bogotá (Colombia).Greenshields, C. J. and Weller, H. G. (2022). Notes on computational fluid dynamics: General principles.Guevara Enciso, J. I. (2014). Modelo computacional de la combustión del bagazo de caña en una cámara de combustión tipo ward-cimpa de una hornilla panelera.Gunn, D. J. (1987). Axial and radial dispersion in fixed beds. Chemical engineering science, 42:363--373.Gómez, A., Klose, W., and Rincón, S. (2008). Pirólisis de biomasa: cuesco de palma de aceite. kassel university press GmbH.Gómez, M., Porteiro, J., Patiño, D., and Míguez, J. (2014). Cfd modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel, 117:716--732.Hugot, E. and Jenkins, G. (1986). Manual de ingeniería de la caña de azúcar. Estados Unidos: Elsevier Scienci.Invima (2015). Registro nacional de trapiches paneleros. Instituto nacional de vigilancia de medicamentos y alimentos Invima.Jader, R., Fabián, V., John, E., Sebastián, E., and Oscar, M. (2018). Thermal performance evaluation of production technologies for non-centrifuged sugar for improvement in energy utilization. Energy, 152:858--865.Jaffé, W. (2012). Non-centrifugal sugar: world production and trade. Panela monitor, pages 4--48.Jaffé, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43:194--202.Jensen, S. (2001). Zur modellierung eines indirekt beheizten festbettbiomassevergasers.Johansson, R., Thunman, H., and Leckner, B. (2007). Sensitivity analysis of a fixed bed combustion model. Energy & Fuels, 21:1493--1503. doi: 10.1021/ef060500z.Jurena, T. (2012). Numerical modelling of grate combustion. Brno University of Technology, Brno.Karim, M. R. and Naser, J. (2017). Numerical modelling of solid biomass combustion: Difficulties in initiating the fixed bed combustion. Energy Procedia, 110:390--395.Khodaei, H., Al-Abdeli, Y. M., Guzzomi, F., and Yeoh, G. H. (2015). An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy, 88:946--972.Khodaei, H., Yeoh, G. H., Guzzomi, F., and Porteiro, J. (2018). A cfd-based comparative analysis of drying in various single biomass particles. Applied Thermal Engineering, 128:1062--1073.Klason, T. (2006). Modelling of biomass combustion in furnaces. Lund University.Kumar, A. and Tiwari, G. N. (2006). Effect of shape and size on convective mass transfer coefficient during greenhouse drying (ghd) of jaggery. Journal of Food Engineering, 73:121--134.La Madrid, R., Marcelo, D., Orbegoso, E. M., and Saavedra, R. (2016). Heat transfer study on open heat exchangers used in jaggery production modules – computational fluid dynamics simulation and field data assessment. Energy Conversion and Management, 125:107--120. Sustainable development of energy, water and environment systems for future energy technologies and concepts.La Madrid, R., Orbegoso, E. M., Saavedra, R., and Marcelo, D. (2017). Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger. Journal of Environmental Management, 204:622--636.Lam, P. S., Sokhansanj, S., Bi, X., Mani, S., Lim, J., and (or initial) (or initial) (2007). Physical characterization of wet and dry wheat straw and switchgrass - bulk and specific density. American Society of Agricultural and Biological Engineers.Lu, H., Robert, W., Peirce, G., Ripa, B., and Baxter, L. L. (2008). Comprehensive study of biomass particle combustion. Energy & Fuels, 22:2826--2839.MADR (2018). Cadena agroindustrial de la panela. (No Title), page 15.Manya, J. J., Velo, E., and Puigjaner, L. (2003). Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Industrial and engineering chemistry research, 42(3):434-- 441.McBride, B. J., Gordon, S., and Reno, M. A. (1993). Coefficients for calculating thermodynamic and transport properties of individual species.Mendes, R. F., Vilela, A. P., Farrapo, C. L., Mendes, J. F., Denzin Tonoli, G. H., and Mendes, L. M. (2017). 1 - lignocellulosic residues in cement-bonded panels. In Savastano Junior, H., Fiorelli, J., and dos Santos, S. F., editors, Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites, pages 3--16. Woodhead Publishing.Miltner, M., Makaruk, A., Harasek, M., and Friedl, A. (2008). Computational fluid dynamic simulation of a solid biomass combustor: modelling approaches. Clean Technologies and Environmental Policy, 10:165--174.Mitsakis, P. (2011). Online analysis of the tar content of biomass gasification producer gas.Moukalled, F., Mangani, L., and Darwish, M. (2016). Solving the System of Algebraic Equations, pages 303--364. Springer International Publishing, Cham.Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation.Patiño, H. J. G. (2011). Modelación de la gasificación de biomasa en un reactor de lecho fijo.Peters, B. (2002). Measurements and application of a discrete particle model (dpm) to simulate combustion of a packed bed of individual fuel particles. Combustion and Flame, 131:132--146.Plaza, M. (2022). Evaluación del efecto de variables asociadas a la calidad del bagazo de caña en el proceso de combustión para uso en unidades productivas de cámara plana en la hoya del rio suarez.Pérez, N. P., Pedroso, D. T., Machin, E. B., Antunes, J. S., Tuna, C. E., and Silveira, J. L. (2019). Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies. Renewable Energy, 143:1210--1224.Rasul, M. G., Rudolph, V., and Carsky, M. (1999). Physical properties of bagasse. Fuel, 78:905--910.Reid, R. C., Prausnitz, J. M., and Poling, B. E. (1987). The properties of gases and liquids.Rincón, S. and Gómez, A. (2008). Pyrolysis of agroindustrial biomass residues. pages 1200--1204.Ryu, C., Yang, Y. B., Khor, A., Yates, N. E., Sharifi, V. N., and Swithenbank, J. (2006). Effect of fuel properties on biomass combustion: Part i. experiments—fuel type, equivalence ratio and particle size. Fuel, 85(7):1039--1046.Sánchez Castro, Z. and Mendieta Menjura, O. A. (2014). Ajuste de un modelo matemático para la combustión de bagazo de caña en una cámara ward-cimpa. Ciencia y Tecnología Agropecuaria, 15(2):133--151.Schlünder, E.-U. and Tsotsas, E. (1988). Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten. Georg Thieme-Verlag.Skinner, F. D. and Smoot, L. D. (1979). Heterogeneous Reactions of Char and Carbon, pages 149--167. Springer US.Srikiatden, J. and Roberts, J. S. (2008). Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. Journal of Food Engineering, 84:516--525.Telles, R. S. and Trevisan, O. V. (1993). Dispersion in heat and mass transfer natural convection along vertical boundaries in porous media. International Journal of Heat and Mass Transfer, 36(5):1357--1365.Thunman, H. and Leckner, B. (2003). Co-current and counter-current fixed bed combustion of biofuel—a comparison. Fuel, 82:275--283.Tiwari, G. N., Prakash, O., and Kumar, S. (2004). Evaluation of convective heat and mass transfer for pool boiling of sugarcane juice. Energy Conversion and Management, 45:171--179.Turns, S. (2000). An introduction to combustion: concepts and applications. McGrw-Hill Companies, Inc.van Antwerpen, W., du Toit, C., and Rousseau, P. (2010). A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nuclear Engineering and Design, 240(7):1803--1818.Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., and Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255:32--40.Velásquez Arredondo, H. I., Chejne Janna, F., and Agudelo Santamaría, A. F. (2004). Diagnóstico energético de los procesos productivos de la panela en colombia. Revista Facultad Nacional de Agronomía Medellín, 57(2):2453–2465.Verissimo, G. L. (2018). SimulaÇÃo computacional e anÁlise exergÉtica da gaseificaÇÃo de bagaÇo de cana-de-aÇÚcar em leitos fluidizados borbulhantes.Verissimo, G. L., Leiroz, A. J. K., and Cruz, M. E. (2020). Influence of the pyrolysis and heterogeneous char reactions modeling in the simulation of sugarcane bagasse gasification in a bubbling fluidized bed reactor. Fuel, 281:118750.Versteeg, H. K. and Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2 edition.Yang, Y., Nasserzadeh, V., Goodfellow, J., and Swithenbank, J. (2003). Simulation of channel growth in a burning bed of solids. Chemical Engineering Research and Design, 81(2):221--232.Yang, Y. B., Goh, Y. R., Zakaria, R., Nasserzadeh, V., and Swithenbank, J. (2002). Mathematical modelling of msw incineration on a travelling bed. Waste Management, 22:369--380.Yin, C., Rosendahl, L., Kær, S. K., Clausen, S., Hvid, S. L., and Hille, T. (2008). Mathematical modeling and experimental study of biomass combustion in a thermal 108 mw grate-fired boiler. Energy & Fuels, 22:1380--1390.Zhou, H., Jensen, A. D., Glarborg, P., Jensen, P. A., and Kavaliauskas, A. (2005). Numerical modeling of straw combustion in a fixed bed. Fuel, 84:389--403.Corporación Colombiana de investigación Agropecuaria (AGROSAVIA)EstudiantesInvestigadoresPúblico generalORIGINAL1110506157.2024.pdf1110506157.2024.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf20821561https://repositorio.unal.edu.co/bitstream/unal/86054/2/1110506157.2024.pdf0204e2a5c859f4995eae9fe64189222eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86054/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1110506157.2024.pdf.jpg1110506157.2024.pdf.jpgGenerated Thumbnailimage/jpeg5172https://repositorio.unal.edu.co/bitstream/unal/86054/3/1110506157.2024.pdf.jpg1965ebc6e36efb815e65b2c645401ed0MD53unal/86054oai:repositorio.unal.edu.co:unal/860542024-05-08 23:04:49.383Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |