Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales
ilustraciones, fórmulas, tablas
- Autores:
-
Losada Rabelly, Daniel
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79773
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Análisis estocástico
Stochastic analysis
Sistemas de interconexión eléctrica - automatización
Interconnected electric utility systems -- Automation
Costo de Incertidumbre
Demanda Eléctrica
Carga Controlable
Estimador de Densidad de Probabilidad
Función de Densidad de Probabilidad
Uncertainty Cost
Kernel Density Estimation
Electricity Demand
Controllable Load
Probability Density Function
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_5c3f41158715419b403462cc195ecc3b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79773 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales |
dc.title.translated.por.fl_str_mv |
Determinação das funções de custo de incerteza em cargas controláveis dependentes do clima em ambientes comerciais |
dc.title.translated.eng.fl_str_mv |
Determination of uncertainty cost functions in climate-dependent controllable loads in commercial settings |
title |
Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales |
spellingShingle |
Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales 620 - Ingeniería y operaciones afines Análisis estocástico Stochastic analysis Sistemas de interconexión eléctrica - automatización Interconnected electric utility systems -- Automation Costo de Incertidumbre Demanda Eléctrica Carga Controlable Estimador de Densidad de Probabilidad Función de Densidad de Probabilidad Uncertainty Cost Kernel Density Estimation Electricity Demand Controllable Load Probability Density Function |
title_short |
Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales |
title_full |
Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales |
title_fullStr |
Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales |
title_full_unstemmed |
Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales |
title_sort |
Determinación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales |
dc.creator.fl_str_mv |
Losada Rabelly, Daniel |
dc.contributor.advisor.none.fl_str_mv |
Rivera Rodríguez, Sergio Raul |
dc.contributor.author.none.fl_str_mv |
Losada Rabelly, Daniel |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación EMC-UN |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Análisis estocástico Stochastic analysis Sistemas de interconexión eléctrica - automatización Interconnected electric utility systems -- Automation Costo de Incertidumbre Demanda Eléctrica Carga Controlable Estimador de Densidad de Probabilidad Función de Densidad de Probabilidad Uncertainty Cost Kernel Density Estimation Electricity Demand Controllable Load Probability Density Function |
dc.subject.lemb.none.fl_str_mv |
Análisis estocástico Stochastic analysis Sistemas de interconexión eléctrica - automatización Interconnected electric utility systems -- Automation |
dc.subject.proposal.spa.fl_str_mv |
Costo de Incertidumbre Demanda Eléctrica Carga Controlable Estimador de Densidad de Probabilidad Función de Densidad de Probabilidad |
dc.subject.proposal.eng.fl_str_mv |
Uncertainty Cost Kernel Density Estimation Electricity Demand Controllable Load Probability Density Function |
description |
ilustraciones, fórmulas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-07T22:49:33Z |
dc.date.available.none.fl_str_mv |
2021-07-07T22:49:33Z |
dc.date.issued.none.fl_str_mv |
2021-07 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79773 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79773 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] VARGAS, S. & RODRIGUEZ, D. & RIVERA, S. (2019) “Mathematical Formulation and Numerical Validation of Uncertainty Costs for Controllable Loads”. Artículo Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Volumen 35, Número 1. https://doi.org/10.23967/j.rimni.2019.01.002 [2] SURENDER, S. & BIJWE P. & ABHYANKAR A. (2015)“Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period”. IEEE Systems Journal, Volumen 9, Número 4, páginas 1440-1451. https://doi.org/10.1109/JSYST.2014.2325967 [3] SANTOS, F. & ARÉVALO, J. & RIVERA, S. (2019)“Uncertainty Cost Functions for Solar Photovoltaic Generation, Wind Energy, and Plug-In Electric Vehicles: Mathematical Expected Value and Verification by Monte Carlo Simulation,”. International Journal of Power and Energy Conversion, Volumen 10, Número 2.https://doi.org/10.1504/IJPEC.2019.098620 [4] MOLINA, F. & PÉREZ, S. & RIVERA, S. (2017)“Uncertainty Cost Function Formulation in Small Hydropower Plants Inside a Microgrid”. Ingenierías USBMed, Volumen 8,N ́umero 1, páginas 29-36.https://doi.org/10.21500/20275846.2683 [5] MEHRI, R. & KALANTAR, M. (2015)“Multi-objective Scheduling of Electric Vehicles Considering Wind and Demand Uncertainties”. 2015 Smart Grid Conference (SGC), páginas 122-129.https://doi.org/10.1109/SGC.2015.7857421 [6] BERNAL, J. A. & NEIRA, J. E. & RIVERA, S. (2019)“Mathematical Uncertainty Cost Functions for Controllable Photo-Voltaic Generators considering Uniform Distributions”. Artículo Revista WSEAS Transaction on Mathematics, Volumen 18, ISSN: 1109-2769, E-ISSN: 2224-2880.https://www.wseas.org/multimedia/journals/mathematics/2019/a345106-1096.php [7] ZHAO, J.H. & WEN, F. & DONG, Z.Y. & XUE, Y. & WONG, K.P. (2012)“Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization”. IEEE Transactions on Industrial Informatics, Volumen 8, Número 4, páginas 889–899.https://doi.org/10.1109/TII.2012.2205398 [8] CHANG, T. (2010)“Investigation on frequency distribution of global radiation using different probability density functions”. International Journal of Applied Science and Engineering, Volumen 8, Número 2, páginas 99–107.http://dx.doi.org/10.6703%2fIJASE.2010.8(2).99 [9] MONTANARI, R. (2003) “Criteria for the economic planning of a low power hydro-electric plant”. Renewable Energy, Elsevier, Volumen 28, Número 13, páginas 2129-2145.https://doi.org/10.1016/S0960-1481(03)00063-6 [10] CABUS, P. (2008)“River flow prediction through rainfall–runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium”. Agricultural Water Management, Volumen 95, Número 7, páginas 859-868.https://doi.org/10.1016/j.agwat.2008.02.013 [11] BHAGAT, N. (2017)“Flood Frequency Analysis Using Gumbel’s Distribution Method: A Case Study of Lower Mahi Basin, India”. Journal of Water Resources and Ocean Science,Volumen 6, Número 4, páginas 51-54.https://doi.org/10.11648/j.wros.20170604.11 [12] MART ́INEZ, C. A. & RIVIERA, S. (2018)“Quadratic Modelling of Uncertainty Costs for Renewable Generation and its Application on Economic Dispatch”. Revista Del Programa De Matemáticas “MATUA”, Facultad de Ciencias Básicas, Universidad del Atlántico,Volumen 3, Número 7, páginas 36-61.https://core.ac.uk/download/pdf/229959989.pdf [13] TORRES, J. & RIVERA, S. (2018)“Despacho de energía óptimo en múltiples periodos considerando la incertidumbre de la generación a partir de fuentes renovables en un modelo reducido del sistema de potencia colombiano”. Revista Avances Investigación en Ingeniería,Fundación Dialnet, Universidad Rioja, Volumen 15, Número 1, páginas 48-58 ISSN-e 1794-4953,https://dialnet.unirioja.es/descarga/articulo/6802192.pdf [14] ORTIZ, M. & LONDOÑO, N. (2017)“Análisis del mercado de contratos del MEM de Colombia durante el último fenómeno de El Niño (2015-2016)”. Trabajo de Grado de Economía, Repositorio Universidad EAFIT, Departamento de Economía, Escuela de Economía y Finanzas .http://hdl.handle.net/10784/12109 [15] ABOUABDELLAH, A. & BANNARI, R. & EL KAFAZI, I. (2017)“Modeling and fore-casting energy demand”. 2016 International Renewable and Sustainable Energy Conference (IRSEC), páginas 746-750.https://doi.org/10.1109/IRSEC.2016.7983974 [16] PARDO, A. & MENEU, V. & VALOR, E. (2002)“Temperature and seasonality influences on Spanish electricity load”, Energy Economics, Volumen 24, Número 1, páginas 55-70,Departamento de Economía Financiera y Matemática, Facultad de Economía, Universidad de Valencia. https://doi.org/10.1016/S0140-9883(01)00082-2 [17] MORAL-CARCEDO, J. & VICÉNS-OTERO, J. (2005)”Modelling the non-linear response of Spanish electricity demand to temperature variations”, Energy Economics, Vo-lumen 27, Número 3, páginas 477-494, Departamento Análisis Económico, Universidad Autónoma de Madrid. https://doi.org/10.1016/j.eneco.2005.01.003 [18] HENLEY, A. & PEIRSON, J. (1997)“Non-linearities in electricity demand and temperature: parametric versus non parametric methods”, Oxford Bulletin of Economics and Statistics, Volumen 59, Número 1, páginas 149-162.https://doi.org/10.1111/1468-0084.00054 [19] CANCELO, J.R. & ESPASA, A. (1996)“Modelling and forecasting daily series of electricity demand”, Revista Investigaciones Económicas, Volumen 20, Número 3, páginas 359-376, ISSN: 0210-1521, Departamento de Estadística, Universidad Carlos III. http://hdl.handle.net/10016/3120 [20]“Kernel Distribution - MATLAB & Simulink - MathWorks”(01-05-2021) , MathWorks -Documentation.https://la.mathworks.com/help/stats/kernel-distribution.html [21] WEGLARCZYK, S. (2018)“Kernel density estimation and its application”, ITM Web of Conferences 23, 00037, Cracow University of Technology, Institute of Water Management and Water Engineering, Warszawska 24, 31-115 Kraków, Poland. https://doi.org/10.1051/itmconf/20182300037 [22] CHEN Y.C. (2018)”Lecture 6: Density Estimation: Histogram and Kernel Density Estimator”, STAT 425: Introduction to Nonparametric Statistics, University of Washington.http://faculty.washington.edu/yenchic/18W_425/Lec6_hist_KDE.pdf [23]“Model Data Using the Distribution Fitter App - MATLAB & Simulink - MathWorks”(01-05-2021), MathWorks - Documentation.https://www.mathworks.com/help/stats/model-data-using-the-distribution-fitting-tool.html [24] MEDINA-SANTIAGO, A. & PANO, A. & GOMEZ, J. & JESUS-MAGA ̃NA, J. &VALDEZ-RAMOS, M. & SOSA-SILVA, E. & FALCON-PEREZ, F. (2020)“Adaptive Model IoT for Monitoring in Data. Centers”, IEEE Access, Volumen 8, páginas 5622-5634,https://doi.org/10.1109/ACCESS.2019.2963061 [25] ZHANG, J. (2010)“Nonparametric Density Estimation”, Notas de Clase STAT598G:Introduction to Computational Statistics, Departamento de Estadística, Universidad de Purdue.https://www.stat.purdue.edu/~jianzhan/STAT598G/NOTES/nonparametricDensityEstimation.pdf |
dc.rights.spa.fl_str_mv |
Derechos Reservados al Autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos Reservados al Autor, 2021 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
60 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79773/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79773/2/Determinaci%c3%b3n%20de%20funciones%20de%20costos%20de%20incertidumbre%20en%20cargas%20controlables%20dependientes%20del%20clima%20en%20entornos%20comerciales.pdf https://repositorio.unal.edu.co/bitstream/unal/79773/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79773/4/Determinaci%c3%b3n%20de%20funciones%20de%20costos%20de%20incertidumbre%20en%20cargas%20controlables%20dependientes%20del%20clima%20en%20entornos%20comerciales.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 c34b452f27a71951565eacee1e1009d1 0175ea4a2d4caec4bbcc37e300941108 dc5c9889e5ed8591c8416852e24a3da2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089473959395328 |
spelling |
Reconocimiento 4.0 InternacionalDerechos Reservados al Autor, 2021http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rivera Rodríguez, Sergio Raul59e74f05b4046f27000bfd817d0258bfLosada Rabelly, Daniel756a3699fe4bc9d710c2a737e637f7edGrupo de Investigación EMC-UN2021-07-07T22:49:33Z2021-07-07T22:49:33Z2021-07https://repositorio.unal.edu.co/handle/unal/79773Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fórmulas, tablasEn este trabajo final de maestría se presenta el desarrollo, simulación y validación de las funciones de costos de incertidumbre para un edificio de uso comercial con cargas controlables dependientes del clima, ubicado en el estado de California, en Estados Unidos. Para su desarrollo, se utilizó datos estadísticos de consumo de energía del edificio en el año 2016, así como el concepto de Estimador de Densidad de Núcleo con el fin de determinar el comportamiento probabilístico del mismo. Para la validación de las funciones se utilizó el método de Montecarlo, con el fin de realizar comparaciones entre los resultados analíticos y los resultados obtenidos por el método. Las funciones de costos encontradas presentan errores diferenciales menores al 1%, comparadas con el método de Montecarlo. Con esto, se cuenta con una aproximación analítica a los costos de incertidumbre del edificio que se puede utilizar en el desarrollo de despachos de energía óptimos, así como un método complementario para la caracterización probabilística del comportamiento estocástico de agentes del sector eléctrico. (Texto tomado de la fuente)This final master's work presents the development, simulation and validation of the uncertainty cost functions for a commercial building with climate-dependent controllable loads, located in the state of California, United States. For its development, statistical data on the energy consumption of the building in 2016 was used, as well as the concept of the Kernel Density Estimator in order to determine its probabilistic behavior. For validation of the functions, the Montecarlo method was used, in order to make comparisons between the analytical results and the results obtained by the method. The cost functions found show differential errors of less than 1%, compared to the Monte Carlo method. With this, there is an analytical approach to the uncertainty costs of the building that can be used in the development of optimal energy dispatches, as well as a complementary method for the probabilistic characterization of the stochastic behavior of agents in the electricity sector. (Text taken from source)MaestríaMagíster en Ingeniería - Ingeniería EléctricaInteligencia Computacional Aplicada al Sector Eléctrico60 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesAnálisis estocásticoStochastic analysisSistemas de interconexión eléctrica - automatizaciónInterconnected electric utility systems -- AutomationCosto de IncertidumbreDemanda EléctricaCarga ControlableEstimador de Densidad de ProbabilidadFunción de Densidad de ProbabilidadUncertainty CostKernel Density EstimationElectricity DemandControllable LoadProbability Density FunctionDeterminación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comercialesDeterminação das funções de custo de incerteza em cargas controláveis dependentes do clima em ambientes comerciaisDetermination of uncertainty cost functions in climate-dependent controllable loads in commercial settingsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] VARGAS, S. & RODRIGUEZ, D. & RIVERA, S. (2019) “Mathematical Formulation and Numerical Validation of Uncertainty Costs for Controllable Loads”. Artículo Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Volumen 35, Número 1. https://doi.org/10.23967/j.rimni.2019.01.002[2] SURENDER, S. & BIJWE P. & ABHYANKAR A. (2015)“Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period”. IEEE Systems Journal, Volumen 9, Número 4, páginas 1440-1451. https://doi.org/10.1109/JSYST.2014.2325967[3] SANTOS, F. & ARÉVALO, J. & RIVERA, S. (2019)“Uncertainty Cost Functions for Solar Photovoltaic Generation, Wind Energy, and Plug-In Electric Vehicles: Mathematical Expected Value and Verification by Monte Carlo Simulation,”. International Journal of Power and Energy Conversion, Volumen 10, Número 2.https://doi.org/10.1504/IJPEC.2019.098620[4] MOLINA, F. & PÉREZ, S. & RIVERA, S. (2017)“Uncertainty Cost Function Formulation in Small Hydropower Plants Inside a Microgrid”. Ingenierías USBMed, Volumen 8,N ́umero 1, páginas 29-36.https://doi.org/10.21500/20275846.2683[5] MEHRI, R. & KALANTAR, M. (2015)“Multi-objective Scheduling of Electric Vehicles Considering Wind and Demand Uncertainties”. 2015 Smart Grid Conference (SGC), páginas 122-129.https://doi.org/10.1109/SGC.2015.7857421[6] BERNAL, J. A. & NEIRA, J. E. & RIVERA, S. (2019)“Mathematical Uncertainty Cost Functions for Controllable Photo-Voltaic Generators considering Uniform Distributions”. Artículo Revista WSEAS Transaction on Mathematics, Volumen 18, ISSN: 1109-2769, E-ISSN: 2224-2880.https://www.wseas.org/multimedia/journals/mathematics/2019/a345106-1096.php[7] ZHAO, J.H. & WEN, F. & DONG, Z.Y. & XUE, Y. & WONG, K.P. (2012)“Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization”. IEEE Transactions on Industrial Informatics, Volumen 8, Número 4, páginas 889–899.https://doi.org/10.1109/TII.2012.2205398[8] CHANG, T. (2010)“Investigation on frequency distribution of global radiation using different probability density functions”. International Journal of Applied Science and Engineering, Volumen 8, Número 2, páginas 99–107.http://dx.doi.org/10.6703%2fIJASE.2010.8(2).99[9] MONTANARI, R. (2003) “Criteria for the economic planning of a low power hydro-electric plant”. Renewable Energy, Elsevier, Volumen 28, Número 13, páginas 2129-2145.https://doi.org/10.1016/S0960-1481(03)00063-6[10] CABUS, P. (2008)“River flow prediction through rainfall–runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium”. Agricultural Water Management, Volumen 95, Número 7, páginas 859-868.https://doi.org/10.1016/j.agwat.2008.02.013[11] BHAGAT, N. (2017)“Flood Frequency Analysis Using Gumbel’s Distribution Method: A Case Study of Lower Mahi Basin, India”. Journal of Water Resources and Ocean Science,Volumen 6, Número 4, páginas 51-54.https://doi.org/10.11648/j.wros.20170604.11[12] MART ́INEZ, C. A. & RIVIERA, S. (2018)“Quadratic Modelling of Uncertainty Costs for Renewable Generation and its Application on Economic Dispatch”. Revista Del Programa De Matemáticas “MATUA”, Facultad de Ciencias Básicas, Universidad del Atlántico,Volumen 3, Número 7, páginas 36-61.https://core.ac.uk/download/pdf/229959989.pdf[13] TORRES, J. & RIVERA, S. (2018)“Despacho de energía óptimo en múltiples periodos considerando la incertidumbre de la generación a partir de fuentes renovables en un modelo reducido del sistema de potencia colombiano”. Revista Avances Investigación en Ingeniería,Fundación Dialnet, Universidad Rioja, Volumen 15, Número 1, páginas 48-58 ISSN-e 1794-4953,https://dialnet.unirioja.es/descarga/articulo/6802192.pdf[14] ORTIZ, M. & LONDOÑO, N. (2017)“Análisis del mercado de contratos del MEM de Colombia durante el último fenómeno de El Niño (2015-2016)”. Trabajo de Grado de Economía, Repositorio Universidad EAFIT, Departamento de Economía, Escuela de Economía y Finanzas .http://hdl.handle.net/10784/12109[15] ABOUABDELLAH, A. & BANNARI, R. & EL KAFAZI, I. (2017)“Modeling and fore-casting energy demand”. 2016 International Renewable and Sustainable Energy Conference (IRSEC), páginas 746-750.https://doi.org/10.1109/IRSEC.2016.7983974[16] PARDO, A. & MENEU, V. & VALOR, E. (2002)“Temperature and seasonality influences on Spanish electricity load”, Energy Economics, Volumen 24, Número 1, páginas 55-70,Departamento de Economía Financiera y Matemática, Facultad de Economía, Universidad de Valencia. https://doi.org/10.1016/S0140-9883(01)00082-2[17] MORAL-CARCEDO, J. & VICÉNS-OTERO, J. (2005)”Modelling the non-linear response of Spanish electricity demand to temperature variations”, Energy Economics, Vo-lumen 27, Número 3, páginas 477-494, Departamento Análisis Económico, Universidad Autónoma de Madrid. https://doi.org/10.1016/j.eneco.2005.01.003[18] HENLEY, A. & PEIRSON, J. (1997)“Non-linearities in electricity demand and temperature: parametric versus non parametric methods”, Oxford Bulletin of Economics and Statistics, Volumen 59, Número 1, páginas 149-162.https://doi.org/10.1111/1468-0084.00054[19] CANCELO, J.R. & ESPASA, A. (1996)“Modelling and forecasting daily series of electricity demand”, Revista Investigaciones Económicas, Volumen 20, Número 3, páginas 359-376, ISSN: 0210-1521, Departamento de Estadística, Universidad Carlos III. http://hdl.handle.net/10016/3120[20]“Kernel Distribution - MATLAB & Simulink - MathWorks”(01-05-2021) , MathWorks -Documentation.https://la.mathworks.com/help/stats/kernel-distribution.html[21] WEGLARCZYK, S. (2018)“Kernel density estimation and its application”, ITM Web of Conferences 23, 00037, Cracow University of Technology, Institute of Water Management and Water Engineering, Warszawska 24, 31-115 Kraków, Poland. https://doi.org/10.1051/itmconf/20182300037[22] CHEN Y.C. (2018)”Lecture 6: Density Estimation: Histogram and Kernel Density Estimator”, STAT 425: Introduction to Nonparametric Statistics, University of Washington.http://faculty.washington.edu/yenchic/18W_425/Lec6_hist_KDE.pdf[23]“Model Data Using the Distribution Fitter App - MATLAB & Simulink - MathWorks”(01-05-2021), MathWorks - Documentation.https://www.mathworks.com/help/stats/model-data-using-the-distribution-fitting-tool.html[24] MEDINA-SANTIAGO, A. & PANO, A. & GOMEZ, J. & JESUS-MAGA ̃NA, J. &VALDEZ-RAMOS, M. & SOSA-SILVA, E. & FALCON-PEREZ, F. (2020)“Adaptive Model IoT for Monitoring in Data. Centers”, IEEE Access, Volumen 8, páginas 5622-5634,https://doi.org/10.1109/ACCESS.2019.2963061[25] ZHANG, J. (2010)“Nonparametric Density Estimation”, Notas de Clase STAT598G:Introduction to Computational Statistics, Departamento de Estadística, Universidad de Purdue.https://www.stat.purdue.edu/~jianzhan/STAT598G/NOTES/nonparametricDensityEstimation.pdfGeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79773/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALDeterminación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales.pdfDeterminación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales.pdfTesis de Maestría en Ingeniería - Ingeniería Eléctricaapplication/pdf1318536https://repositorio.unal.edu.co/bitstream/unal/79773/2/Determinaci%c3%b3n%20de%20funciones%20de%20costos%20de%20incertidumbre%20en%20cargas%20controlables%20dependientes%20del%20clima%20en%20entornos%20comerciales.pdfc34b452f27a71951565eacee1e1009d1MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79773/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53THUMBNAILDeterminación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales.pdf.jpgDeterminación de funciones de costos de incertidumbre en cargas controlables dependientes del clima en entornos comerciales.pdf.jpgGenerated Thumbnailimage/jpeg4427https://repositorio.unal.edu.co/bitstream/unal/79773/4/Determinaci%c3%b3n%20de%20funciones%20de%20costos%20de%20incertidumbre%20en%20cargas%20controlables%20dependientes%20del%20clima%20en%20entornos%20comerciales.pdf.jpgdc5c9889e5ed8591c8416852e24a3da2MD54unal/79773oai:repositorio.unal.edu.co:unal/797732023-07-23 23:04:11.047Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |