Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case

fotografías, graficas, tablas

Autores:
Solarte Toro, Juan Camilo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83551
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83551
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
Sostenibilidad
Análisis tecno-económico
Análisis de ciclo de vida
Evaluación de impacto social
Aguacate
Plátano
Zonas de Postconflicto
Sustainability
Techno-economic analysis
Life cycle analysis
Social impact assessment
Avocado
Plantain
Post-conflict zones
Desarrollo sostenible
Sustainable development
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_5c1ed66f04504f77627f1a830188eaf5
oai_identifier_str oai:repositorio.unal.edu.co:unal/83551
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case
dc.title.translated.spa.fl_str_mv Análisis de sostenibilidad de diferentes esquemas de biorrefinerías para mejorar el desarrollo de zonas posconflicto en el contexto Colombiano: El caso de los Montes de María
title Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case
spellingShingle Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case
660 - Ingeniería química
Sostenibilidad
Análisis tecno-económico
Análisis de ciclo de vida
Evaluación de impacto social
Aguacate
Plátano
Zonas de Postconflicto
Sustainability
Techno-economic analysis
Life cycle analysis
Social impact assessment
Avocado
Plantain
Post-conflict zones
Desarrollo sostenible
Sustainable development
title_short Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case
title_full Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case
title_fullStr Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case
title_full_unstemmed Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case
title_sort Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case
dc.creator.fl_str_mv Solarte Toro, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Cardona Alzate, Carlos Ariel
dc.contributor.author.none.fl_str_mv Solarte Toro, Juan Camilo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos, Catalíticos, y Biotecnológicos.
dc.contributor.orcid.spa.fl_str_mv Solarte Toro, Juan Camilo [0000-0003-1143-8940]
dc.contributor.cvlac.spa.fl_str_mv Solarte Toro, Juan Camilo [0001636156]
dc.contributor.scopus.spa.fl_str_mv Solarte Toro, Juan Camilo [57190731179]
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Juan-Solarte-Toro?ev=hdr_xprf
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=xDnXFMcAAAAJ&hl=es
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Sostenibilidad
Análisis tecno-económico
Análisis de ciclo de vida
Evaluación de impacto social
Aguacate
Plátano
Zonas de Postconflicto
Sustainability
Techno-economic analysis
Life cycle analysis
Social impact assessment
Avocado
Plantain
Post-conflict zones
Desarrollo sostenible
Sustainable development
dc.subject.proposal.spa.fl_str_mv Sostenibilidad
Análisis tecno-económico
Análisis de ciclo de vida
Evaluación de impacto social
Aguacate
Plátano
Zonas de Postconflicto
dc.subject.proposal.eng.fl_str_mv Sustainability
Techno-economic analysis
Life cycle analysis
Social impact assessment
Avocado
Plantain
Post-conflict zones
dc.subject.unesco.none.fl_str_mv Desarrollo sostenible
Sustainable development
description fotografías, graficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-02-23T19:29:24Z
dc.date.available.none.fl_str_mv 2023-02-23T19:29:24Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Image
Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83551
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83551
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Diep NQ, Sakanishi K, Nakagoshi N, Fujimoto S, Minowa T, Tran X. Biorefinery : Concepts , Current Status , and Development Trends. Int J Biomass Renewables 2012;2:1–8.
Moncada J, Aristizábal M V, Cardona A CA. Design strategies for sustainable biorefineries. Biochem Eng J 2016;116:122–34. https://doi.org/10.1016/j.bej.2016.06.009.
Murthy G. Systems Analysis Frameworks for Biorefineries. In: Pandey A, Larroche C, Ricke S, editors. Biofuels Altern. Feed. Convers. Process. Prod. Liq. Gaseous Biofuels. Second edi, Academic Press; 2019, p. 77–92.
Cardona-Alzate CA, Moncada Botero J, Aristizábal-Marulanda V. Biorefineries - Design and Analysis. CRC Press, Taylor and Francis Group; 2019.
Palmeros Parada M, Osseweijer P, Posada Duque JA. Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind Crops Prod 2017;106:105–23. https://doi.org/10.1016/j.indcrop.2016.08.052.
Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, van Ree R, et al. Toward a common classification approach for biorefinery systems. Biofuels, Bioprod Biorefining 2009;3:534–46. https://doi.org/10.1002/bbb.172.
Jungmeier G, Van Ree R, Jorgensen H, de Jong E, Stichnote H, Wellisch M. The Biorefinery Complexity Index. 2014.
U.S. Department of Energy (DOE). Biomass Cofiring: A Renewable Alternative for Utilities. Washington D.C: 2000.
Huang HJ, Ramaswamy S, Tschirner UW, Ramarao B V. A review of separation technologies in current and future biorefineries. Sep Purif Technol 2008;62:1–21. https://doi.org/10.1016/j.seppur.2007.12.011.
Cardona Alzate CA, Solarte Toro JC, Peña ÁG. Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catal Today 2018;302:61–72. https://doi.org/10.1016/j.cattod.2017.09.034.
Jong E De, Jungmeier G. Biorefinery Concepts in Comparison to Petrochemical Refineries. Ind. Biorefineries White Biotechnol., 2015, p. 3–33. https://doi.org/10.1016/B978-0-444-63453-5.00001-X.
Golberg A, Vitkin E, Khan SA, Jillson NJ, Yakhini Z, Yarmush ML. Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion, technology, and sustainability implications for developing economies. Biofuels, Bioprod Biorefining 2013:246–56. https://doi.org/10.1002/bbb.
Bao B, Ng DKS, Tay DHS, Jim??nez-Guti??rrez A, El-Halwagi MM. A shortcut method for the preliminary synthesis of process-technology pathways: An optimization approach and application for the conceptual design of integrated biorefineries. Comput Chem Eng 2011;35:1374–83. https://doi.org/10.1016/j.compchemeng.2011.04.013.
Pham V, El-Halwagi M. Process Synthesis and Optimization of Biorefinery Configurations 2012;58. https://doi.org/10.1002/aic.
Santibañez-Aguilar JE, González-Campos JB, Ponce-Ortega JM, Serna-González M, El-Halwagi MM. Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. J Clean Prod 2014;65:270–94. https://doi.org/10.1016/j.jclepro.2013.08.004.
Aristizábal-Marulanda V, Cardona A. CA, Martín M. An integral methodological approach for biorefineries design: Study case of Colombian coffee cut-stems. Comput Chem Eng 2019;In Press.
Moncada J, Posada JA, Ramirez A. Early sustainability assessment for potential configurations of integrated biorefineries. Screening platform chemicals. Biofuels, Bioprod Biorefining 2015;9:722–48. https://doi.org/10.1002/bbb.
Patel AD, Meesters K, Uil H, Jong E, Worrell E, Patel MK. Early-Stage Comparative Sustainability Assessment of New Bio-based Processes. ChemSusChem 2013;6:1724–36.
Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Patel MK. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 2013;135:490–9. https://doi.org/10.1016/j.biortech.2012.09.058.
Kelloway A, Daoutidis P. Process Synthesis of Biorefineries: Optimization of Biomass Conversion to Fuels and Chemicals. Ind Eng Chem Res 2014;53:5261–73.
Kokossis AC, Yang A, Tsakalova M, Lin T. A systems platform for the optimal synthesis of biomass based manufacturing systems. Comput Aided Process Eng 2010;28:1105–10.
Douglas JM. Conceptual design of chemical processes. 1988.
Ortiz-Sanchez M, Solarte-Toro JC, Cardona Alzate CA. A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour Technol 2021;325:124682. https://doi.org/10.1016/j.biortech.2021.124682.
Zhang H, Cabañeros P, Claire L, Alan H, Ambye M, Claus J, et al. The multi-feedstock biorefinery – Assessing the compatibility of alternative feedstocks in a 2G wheat straw biorefinery process 2018. https://doi.org/10.1111/gcbb.12557.
Piedrahita-Rodríguez S, Solarte-Toro JC, Piñeres PP, Ortiz-Sánchez M, Pérez-Cordero A, Cardona-Alzate CA. Analysis of a biorefinery with multiple raw materials in the context of post-conflict zones in Colombia: plantain and avocado integration in the Montes de María region. Biomass Convers Biorefinery 2022. https://doi.org/10.1007/s13399-022-02560-8.
Moncada J, Tamayo JA, Cardona CA. Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery. Chem Eng Sci 2014;118:126–40. https://doi.org/10.1016/j.ces.2014.07.035.
Cerón IX, Higuita JC, Cardona CA. Design and analysis of antioxidant compounds from Andes Berry fruits (Rubus glaucus Benth) using an enhanced-fluidity liquid extraction process with CO 2 and ethanol. J Supercrit Fluids 2012;62:96–101. https://doi.org/10.1016/j.supflu.2011.12.007.
Cerón Salazar IX. Design and Evaluation of Proceses to Obtain Antioxidant-Rich Extracts from tropical fruits cultivated in Amazon, Caldas and Northern Tolima Regions. Universidad Nacional de Colombia, 2013.
Moncada J. Design and Evaluation of Sustainable Biorefineries from Feedstock in Tropical Regions. Universidad Nacional de Colombia - Sede Manizales, 2012.
Ptasinski KJ. Efficiency of biomass energy: An exergy approach to biofuels, power and biorefineries. WILEY; 2016. https://doi.org/10.1002/9781119118169.
Serna-Loaiza S, Carmona-Garcia E, Cardona CA. Potential raw materials for biorefineries to ensure food security: The Cocoyam case. Ind Crops Prod 2018;126:92–102. https://doi.org/10.1016/j.indcrop.2018.10.005.
Gutiérrez LF, Sánchez ÓJ, Cardona CA. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry. Bioresour Technol 2009;100:1227–37. https://doi.org/10.1016/j.biortech.2008.09.001.
Murillo-Alvarado PE, Ponce-Ortega JM, Serna-Gonz??lez M, Castro-Montoya AJ, El-Halwagi MM. Optimization of pathways for biorefineries involving the selection of feedstocks, products, and processing steps. Ind Eng Chem Res 2013;52:5177–90. https://doi.org/10.1021/ie303428v.
Aristizábal-Marulanda V, Cardona Alzate CA, Martín M. An integral methodological approach for biorefineries design: Study case of Colombian coffee cut-stems. Comput Chem Eng 2019;126:35–53. https://doi.org/10.1016/j.compchemeng.2019.03.038.
Martín M, Grossmann IE. Simultaneous Optimization and Heat Integration for Biodiesel Production from Cooking Oil and Algae. Ind Eng Chem Res 2012;51:7998–8014. https://doi.org/10.1021/ie2024596.
Bertran MO, Frauzem R, Sanchez-Arcilla AS, Zhang L, Woodley JM, Gani R. A generic methodology for processing route synthesis and design based on superstructure optimization. Comput Chem Eng 2017;106:892–910. https://doi.org/10.1016/j.compchemeng.2017.01.030.
Felipe L de O, Oliveira AM de, Bicas JL. Bioaromas – Perspectives for sustainable development. Trends Food Sci Technol 2017;62:141–53. https://doi.org/10.1016/j.tifs.2017.02.005.
De Carvalho CCCR, Da Fonseca MMR. Biotransformation of terpenes. Biotechnol Adv 2006;24:134–42. https://doi.org/10.1016/j.biotechadv.2005.08.004.
van der Werf MJ, de Bont JAM, Leak DJ. Opportunities in microbial biotransformation of monoterpenes, 1997, p. 147–77. https://doi.org/10.1007/bfb0102065.
Sultana N, Saify ZS. Enzymatic biotransformation of terpenes as bioactive agents. J Enzyme Inhib Med Chem 2013;28:1113–28. https://doi.org/10.3109/14756366.2012.727411.
De Carvalho CCR, Van Keulen F, Da Fonseca MMR. Production and recovery of limonene-1,2-diol and simultaneous resolution of a diastereomeric mixture of limonene-1,2-epoxide with whole cells of Rhodococcus erythropolis DCL14. Biocatal Biotransformation 2000;18:223–35. https://doi.org/10.3109/10242420009015246.
Aura AM. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev., vol. 7, 2008, p. 407–29. https://doi.org/10.1007/s11101-008-9095-3.
Karabin M, Hudcova T, Jelinek L, Dostalek P. Biotransformations and biological activities of hop flavonoids. Biotechnol Adv 2014;33:1063–90. https://doi.org/10.1016/j.biotechadv.2015.02.009.
Antonczak S, Fiorucci S, Golebiowski J, Cabrol-Bass D. Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism. Phys Chem Chem Phys 2009;11:1491–501. https://doi.org/10.1039/b814588a.
Dragone G, Kerssemakers AAJ, Driessen JLSP, Yamakawa CK, Brumano LP, Mussatto SI. Bioresource Technology Innovation and strategic orientations for the development of advanced biore fi neries. Bioresour Technol 2020;302:122847. https://doi.org/10.1016/j.biortech.2020.122847.
Carvajal JC, Gómez Á, Cardona CA. Comparison of lignin extraction processes: Economic and environmental assessment. Bioresour Technol 2016;214:468–76. https://doi.org/10.1016/j.biortech.2016.04.103.
Dubois O, Gomez M. How sustainability is addressed in official bioeconomy strategies at international, national, and regional levels: An overview. Rome, Italy: 2016.
European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe. Brussels: 2012.
House TW. National Bioeconomy Blueprint. Washington (DC): 2012.
OECD. The Bioeconomy to 2030: Designing a Policy Agenda. 2009. https://doi.org/10.1787/9789264056886-en.
Ubando AT, Felix CB, Chen WH. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour Technol 2020;299. https://doi.org/10.1016/j.biortech.2019.122585.
Bugge MM, Hansen T, Klitkou A. What Is the Bioeconomy ? A Review of the Literature. Sustainability 2016;8:691–712. https://doi.org/10.3390/su8070691.
Aristizábal-Marulanda V, García-Velásquez CA, Cardona Alzate CA. Environmental assessment of energy-driven biorefineries: the case of the coffee cut-stems (CCS) in Colombia. Int J Life Cycle Assess 2021;26:290–310. https://doi.org/10.1007/s11367-020-01855-0.
Baum C, El-Tohamy W, Gruda N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci Hortic (Amsterdam) 2015;187:131–41. https://doi.org/10.1016/j.scienta.2015.03.002.
Ferreira F, Musumeci M. Trichoderma as biological control agent: scope and prospects to improve efficacy. World J Microbiol Biotechnol 2021;37. https://doi.org/10.1007/s11274-021-03058-7.
Li H, Li Y, Xu Y, Lu X. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 2020;244:125471. https://doi.org/10.1016/j.chemosphere.2019.125471.
Alexander P, Brown C, Arneth A, Finnigan J, Moran D, Rounsevell MDA. Losses, inefficiencies and waste in the global food system. Agric Syst 2017;153:190–200. https://doi.org/10.1016/j.agsy.2017.01.014.
Johnson LK, Dunning RD, Bloom JD, Gunter CC, Boyette MD, Creamer NG. Estimating on-farm food loss at the field level: A methodology and applied case study on a North Carolina farm. Resour Conserv Recycl 2018;137:243–50. https://doi.org/10.1016/j.resconrec.2018.05.017.
Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G, Sala S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour Technol 2020;312:123575. https://doi.org/10.1016/j.biortech.2020.123575.
Alonso-Gómez LA, Solarte-Toro JC, Bello-Pérez LA, Cardona-Alzate CA. Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food Bioprod Process 2020;121. https://doi.org/10.1016/j.fbp.2020.01.005.
Beltrán-Ramírez F, Orona-Tamayo D, Cornejo-Corona I, Luz Nicacio González-Cervantes J, de Jesús Esparza-Claudio J, Quintana-Rodríguez E. Agro-Industrial Waste Revalorization: The Growing Biorefinery. Biomass Bioenergy - Recent Trends Futur. Challenges, IntechOpen; 2019. https://doi.org/10.5772/intechopen.83569
Perea-Moreno AJ, Aguilera-Ureña MJ, Manzano-Agugliaro F. Fuel properties of avocado stone. Fuel 2016;186:358–64. https://doi.org/10.1016/j.fuel.2016.08.101.
Ortiz-Sanchez M, Solarte-Toro JC, Orrego-Alzate CE, Acosta-Medina CD, Cardona-Alzate CA. Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Convers Biorefinery 2020:1–15. https://doi.org/10.1007/s13399-020-00627-y.
Permal R, Leong Chang W, Seale B, Hamid N, Kam R. Converting industrial organic waste from the cold-pressed avocado oil production line into a potential food preservative. Food Chem 2020;306:125635. https://doi.org/10.1016/j.foodchem.2019.125635.
Ortiz DL, Batuecas E, Orrego CE, Rodríguez LJ, Camelin E, Fino D. Sustainable management of peel waste in the small-scale orange juice industries: A Colombian case study. J Clean Prod 2020;265:121587. https://doi.org/10.1016/j.jclepro.2020.121587.
Spence A, Blanco Madrigal E, Patil R, Bajón Fernández Y. Evaluation of anaerobic digestibility of energy crops and agricultural by-products. Bioresour Technol Reports 2019;5:243–50. https://doi.org/10.1016/j.biteb.2018.11.004.
Agama-Acevedo E, Sañudo-Barajas JA, Vélez De La Rocha R, González-Aguilar GA, Bello-Peréz LA. Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CYTA - J Food 2016. https://doi.org/10.1080/19476337.2015.1055306.
Watanabe MDB, Morais ER, Cardoso TF, Chagas MF, Junqueira TL, Carvalho DJ, et al. Process simulation of renewable electricity from sugarcane straw: Techno-economic assessment of retrofit scenarios in Brazil. J Clean Prod 2020;254:120081. https://doi.org/10.1016/j.jclepro.2020.120081.
Anco S. Blazev. Energy Security for The 21st Century. CRC Press; 2015.
Global Syngas Technologies Council (GSTC). Syngas production 2019.
Solarte-Toro JC, González-Aguirre JA, Poveda Giraldo JA, Cardona Alzate CA. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renew Sustain Energy Rev 2021;136. https://doi.org/10.1016/j.rser.2020.110376.
Visser R, Van Ree R. Small-scale biorefining. 2016.
Kolfschoten R, Bruins ME, Sanders JPM. Opportunities for small-scale biorefi nery for production of sugar and ethanol in the Netherlands. Biofuels, Bioprod Biorefining 2014;8:475–86. https://doi.org/10.1002/bbb.1487.
Bruins ME, Sanders JPM. Small-scale processing of biomass for biorefinery. Biofuels, Bioprod Biorefining 2012;6:135–45. https://doi.org/10.1002/bbb.1319.
Ali AAM, Othman MR, Shirai Y, Hassan MA. Sustainable and integrated palm oil biorefinery concept with value-addition of biomass and zero emission system. J Clean Prod 2015;91:96–9. https://doi.org/10.1016/j.jclepro.2014.12.030.
Bautista S, Enjolras M, Narvaez P, Camargo M, Morel L. Biodiesel-triple bottom line (TBL): A new hierarchical sustainability assessment framework of principles criteria & indicators (PC&I) for biodiesel production. Part II-validation. Ecol Indic 2016;69:803–17. https://doi.org/10.1016/j.ecolind.2016.04.046.
Syed S, Tollamadugu NVKVP. Role of Plant Growth-Promoting Microorganisms as a Tool for Environmental Sustainability. Recent Dev. Appl. Microbiol. Biochem., Elsevier Inc.; 2019, p. 209–22. https://doi.org/10.1016/B978-0-12-816328-3.00016-7.
Matthews NE, Stamford L, Shapira P. Aligning sustainability assessment with responsible research and innovation: Towards a framework for Constructive Sustainability Assessment. Sustain Prod Consum 2019;20:58–73. https://doi.org/10.1016/j.spc.2019.05.002.
Glavi P, Lukman R. Review of sustainability terms and their definitions. J Clean Prod 2007;15:1875–85. https://doi.org/10.1016/j.jclepro.2006.12.006.
Horlings LG. The inner dimension of sustainability : personal and cultural values. Curr Opin Environ Sustain 2015;14:163–9. https://doi.org/10.1016/j.cosust.2015.06.006.
Brundtland GH. Our Common Future. In: Kamal M, Biswas A, editors. Earth US Popul. - Resour. - Environ. - Dev. First edit, Oxford: Butterworth-Heinemann; 1991, p. 29–32.
Filho W, Frankenberger F, Lange A, Azeiteiro U, Alves F, Castro P, et al. A framework for the implementation of the Sustainable Development Goals in university programmes. J Clean Prod 2021;299:1–12. https://doi.org/10.1016/j.jclepro.2021.126915.
Lucas P, Ludwig K, Kok M, Kruitwagen S. Sustainable Development Goals in the Netherlands: Building Blocks for Environmental Policy 2030. The Hague: 2016.
Dang HAH, Serajuddin U. Tracking the sustainable development goals: Emerging measurement challenges and further reflections. World Dev 2020;127:104570. https://doi.org/10.1016/j.worlddev.2019.05.024.
Calderón J. Etapas del conflicto armado en Colombia: Hacia el posconflicto. Latinoamérica Rev Estud Latinoam 2016:227–57.
Moro B, Sacasa M del C, Preti A, Reyes O, Villegas A. Los Montes de María: Análsis de la conlictividad. Colombia: Area de paz, desarrollo y reconciliación. Programa de las Naciones Unidas para el Desarrollo; 2010.
Bautista-Cespedes O V., Willemen L, Castro-Nunez A, Groen TA. The effects of armed conflict on forest cover changes across temporal and spatial scales in the Colombian Amazon. Reg Environ Chang 2021;21. https://doi.org/10.1007/s10113-021-01770-6.
Tamayo-Agudelo W, Bell V. Armed conflict and mental health in Colombia. BJPsych Int 2019;16:40–2. https://doi.org/10.1192/bji.2018.4.
Yamada T, Sakisaka K, Rodríguez LNB, Yamaoka K. Self-esteem, socioeconomic status and social participation of persons with disabilities living in areas affected by armed conflict in colombia. Int J Environ Res Public Health 2021;18. https://doi.org/10.3390/ijerph18084328.
Rios J, Morales J. Violence, post-conflict and electoral trends in Colombia: notes for reflection. Reflexión Política 2019;21:8–19.
PODEC. Análisis del paln de consolidación de Montes de María: Una mirada desde el desarrollo , la democracia , los derechos humanos y la cooperación internacional. 20011.
Aguilera M. Montes de María: Una subregión de económia campesina y empresarial. Cartagena: 2013.
Lissbrant S, Espitia PJP, Mendoza A. Challenges faced by smallholder farmers in a former conflict area in Colombia: the case of Montes de María. Investig Desarro 2019;26:6–39. https://doi.org/10.14482/indes.26.2.303.6.
Solarte-Toro JC, Ortiz-Sanchez M, Restrepo-Serna DL, Peroza Piñeres P, Pérez Cordero A, Cardona Alzate CA. Influence of products portfolio and process contextualization on the economic performance of small- and large-scale avocado biorefineries. Bioresour Technol 2021;342:126060. https://doi.org/10.1016/j.biortech.2021.126060.
MinAgricultura. Reporte: Area, Producción y Rendimiento Nacional por Cultivo. Estadísticas Agropecu 2020. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 (accessed August 17, 2020).
DANE. El cultivo del aguacate (Persea americana Miller.), fruta de extraordinarias propiedades alimenticias, curativas e industriales (Primera parte). vol. 1. 2015.
Estrada M E, Cortés R M, Gil J. Guacamole powder: Standardization of the spray drying process. Vitae 2017;24:102–12. https://doi.org/10.17533/udea.vitae.v24n2a03.
IMARC. Guacamole Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021-2026 2021. https://www.imarcgroup.com/guacamole-market#:~:text=Market Overview%3A,7.6%25 during 2021-2026. (accessed September 22, 2021).
Berasategi I, Barriuso B, Ansorena D, Astiasarán I. Stability of avocado oil during heating: Comparative study to olive oil. Food Chem 2012;132:439–46. https://doi.org/10.1016/j.foodchem.2011.11.018.
IMARC. Avocado Oil Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021-2026 2021. https://www.imarcgroup.com/avocado-oil-market.
Peroza Piñeres P, Chamorro Anaya L, Vitola Romero D, Solarte-Toro JC, Piedrahita-Rodríguez S, Barboza García A, et al. Biocontrol Potential of Native Trichoderma spp. Against Phytophthora, Fusarium, and Pythium Phytopatogens to avoid Radicular Root Rot in Avocado Crops: Colombia Case Study. In: Gorawala P, Mandhatri S, editors. Agric. Res. Updat. Volume 39, New York: Nova Science Publishers; 2022, p. 91–124.
Pérez C., Hernández G., Fuentes C. Use of endophytic bacteria as biological control on Phytophthora cinnamomi Rands causing root rot in avocado (Persea americana Mill.). Rev Colomb Cienc Anim 2014;6:213–22.
Tremocoldi MA, Rosalen PL, Franchin M, Massarioli AP, Denny C, Daiuto ÉR, et al. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS One 2018;13:1–12. https://doi.org/10.1371/journal.pone.0192577.
Kenasa G, Kena E. Optimization of Biogas Production from Avocado Fruit Peel Wastes Co- digestion with Animal Manure Collected from Juice Vending House in Gimbi Town, Ethiopia. Ferment Technol 2019;08:1–6. https://doi.org/10.4172/2167-7972.1000153.
Castillo-llamosas A Del, Rodríguez-martínez B, Pablo G, Eibes G, Garrote G, Gullón B. Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. Bioresour Technol 2021:125981. https://doi.org/10.1016/j.biortech.2021.125981.
Simmonds NW, Shepherd K. The taxonomy and origins of the cultivated bananas. Bot J Linn Soc 1955;55:302–12. https://doi.org/10.1111/j.1095-8339.1955.tb00015.x.
Ghag SB, Ganapathi TR. Genetically modified bananas: To mitigate food security concerns. Sci Hortic (Amsterdam) 2017;214:91–8. https://doi.org/10.1016/J.SCIENTA.2016.11.023.
Saladini F, Vuai SA, Langat BK, Gustavsson M, Bayitse R, Gidamis AB, et al. Sustainability assessment of selected biowastes as feedstocks for biofuel and biomaterial production by emergy evaluation in five African countries. Biomass and Bioenergy 2016;85:100–8. https://doi.org/10.1016/j.biombioe.2015.11.016.
Ulloa JB, Van Weerd JH, Huisman EA, Verreth JAJ. Tropical agricultural residues and their potential uses in fish feeds: The Costa Rican situation. Waste Manag 2004;24:87–97. https://doi.org/10.1016/j.wasman.2003.09.003.
García-Solís SE, Bello-Pérez LA, Agama-Acevedo E, Flores-Silva PC. Plantain flour: A potential nutraceutical ingredient to increase fiber and reduce starch digestibility of gluten-free cookies. Starch - Stärke 2018;70:1700107. https://doi.org/10.1002/star.201700107.
Parra-Ramírez D, Martinez A, Cardona CA. Technical and economic potential evaluation of the strain Escherichia coli MS04 in the ethanol production from glucose and xylose. Biochem Eng J 2018;140:123–9. https://doi.org/10.1016/j.bej.2018.09.015.
Robayo Medina AT. Caracterización fisicoquímica de diferentes variedades de aguacate, Persea americana Mill. (Lauraceae ) e implementación de un método de extracción del aceite de aguacate como alternativa de industrialización Caracterización fisicoquímica de diferentes. Universidad Nacional de Colombia Sede Bogotá, 2016.
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of Extractives in Biomass. 2008.
Han JS, Rowell JS. Chemical composition of fibers. Pap. Compos. from Agro-based Resour., 1997, p. 83–134.
Pandey A, Negi S, Binod P, Larroche C. Pretreatment of Biomass: Processes and Technologies. Elsevier B.V; 2015.
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. 2008.
Von Asboth A. A new method for the determination of Starch. J Am Chem Soc 1897;9:46–9.
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of Ash in Biomass. Colorado: 2008.
ASTME1756-01. Standard Test Method for Determination of Total Solids in Biomass. West Conshohocken, PA 2001.
Sluiter a, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, et al. Determination of total solids in biomass and total dissolved solids in liquid process samples. Natl Renew Energy Lab 2008:9. https://doi.org/NREL/TP-510-42621.
ASTME1690-08. Standard Test Method for Determination of Ethanol Extractives in Biomass. ASTM Int West Conshohocken, PA 2016.
Rabemanolontsoa H, Saka S. Holocellulose determination in biomass. Zero-Carbon Energy Kyoto 2011. Special Ed, 2012, p. 135–40.
ASTME1755-01. Standard Test Method for Ash in Biomass. ASTM Int West Conshohocken, PA 2015.
ASTME870-82. Standard Test Methods for Analysis of Wood Fuels. West Conshohocken, PA 2013.
ASTME872-82. Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. West Conshohocken, PA 2013.
ASTME871-82. Standard Test Method for Moisture Analysis of Particulate Wood Fuels. West Conshohocken, PA 2013.
Baird RB, Eaton AD, Rice EW, editors. Fixed and volatiles solids ignited at 550°C. 23rd Editi. 2010.
Shen J, Zhu S, Liu X, Zhang H, Tan J. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag 2010;51:983–7. https://doi.org/10.1016/j.enconman.2009.11.039.
Solarte-Toro JC, González-Aguirre JA, Poveda Giraldo JA, Cardona Alzate CA. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renew Sustain Energy Rev 2021;136. https://doi.org/10.1016/j.rser.2020.110376.
Reed TB, Das A. Handbook of biomass downdraft gasifier engine systems 1988. https://doi.org/10.2172/5206099.
Rollinson AN, Williams O. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications. vol. 3. 2016. https://doi.org/10.1098/rsos.150578.
Verein Deutscher Ingenieure (VDI). Fermentation of organic materials. Characterization of the substrate, sampling, collection of material data, fermentation test. VDI 4630. 2006.
Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci Technol 2009;59:927–34. https://doi.org/10.2166/wst.2009.040.
Ortiz-Sanchez M, Solarte-Toro JC, Orrego-Alzate CE, Acosta-Medina CD, Cardona-Alzate CA. Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Convers Biorefinery 2020. https://doi.org/10.1007/s13399-020-00627-y.
Trujillo-Mayol I, Céspedes-Acuña C, Silva F, Alarcón-Enos J. Improvement of the polyphenol extraction from avocado peel by assisted. J Food Process Eng 2019:1–11. https://doi.org/10.1111/jfpe.13197 ORIGINAL.
Figueroa JG, Borrás-Linares I, Del Pino-García R, Curiel JA, Lozano-Sánchez J, Segura-Carretero A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem 2021;352. https://doi.org/10.1016/j.foodchem.2021.129300.
Singleton V, Orthofer R, Lamuela-Raventós R. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Packer L, editor. Methods Enzymol., 1999, p. 152–78.
Marinova G, Batchvarov V. Evaluation of the methods for determination of the free radical scaveging activity by DPPH. Bulg J Agric Sci 2011;17:11–24.
Molyneux P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating anti-oxidant activity. Songklanakarin J Sci Technol 2004;26:211–9.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231–7. https://doi.org/10.1016/S0891-5849(98)00315-3.
Ozgen M, Reese RN, Tulio A, Scheerens J, Miller R. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 2006;54:1151–7. https://doi.org/10.1021/jf051960d.
Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 2019;107. https://doi.org/10.1016/j.rser.2019.02.024.
Solarte-Toro JC, Chacón-Pérez Y, Piedrahita-Rodríguez S, Poveda Giraldo JA, Teixeira JA, Moustakas K, et al. Effect of dilute sulfuric acid pretreatment on the physicochemical properties and enzymatic hydrolysis of coffee cut-stems. Energy 2020;195. https://doi.org/10.1016/j.energy.2020.116986.
Pylypiw HM, Grether MT. Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods. J Chromatogr A 2000;883:299–304. https://doi.org/10.1016/S0021-9673(00)00404-0.
Costagli G, Betti M. Avocado oil extraction processes: Method for cold-pressed high-quality edible oil production versus traditional production. J Agric Eng 2015;46:115–22. https://doi.org/10.4081/jae.2015.467.
Solarte-Toro JC, Ortiz-Sanchez M, Restrepo-Serna DL, Peroza Piñeres P, Pérez Cordero A, Cardona Alzate CA. Influence of products portfolio and process contextualization on the economic performance of small- and large-scale avocado biorefineries. Bioresour Technol 2021;342. https://doi.org/10.1016/j.biortech.2021.126060.
Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018;33. https://doi.org/10.1016/j.ejbt.2018.03.005.
Sánchez F, Araus K, Domínguez MP, Miguel GS. Thermochemical Transformation of Residual Avocado Seeds: Torrefaction and Carbonization. Waste and Biomass Valorization 2017;8:2495–510. https://doi.org/10.1007/s12649-016-9699-6.
Rueda-Duran C, Ortiz-Sánchez M, Cardona CA. Potential of residues to biotechnological conversion. Case study: Detailed Economic Assessment of polylactic acid production used glucose platform from sugarcane bagasse, coffee cut steams and plantain. 8th Int. Conf. Sustain. waste Manag., 2021, p. 1–2.
Solarte-Toro JC, Rueda-duran CA, Ortiz-sanchez M, Ariel C, Alzate C. A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion. Bioresour Technol Reports 2021;15:100776. https://doi.org/10.1016/j.biteb.2021.100776.
Fitzpatrick SW. Production of levulinic acid from carbohydrates-containing materials. US5608105, 1997.
O'Neil R, Ahmad MN, Vanoye L, Aiouache F. Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite. Ind Eng Chem Res 2009;48:4300–6. https://doi.org/10.1021/ie801599k.
Lee S, Koo Y. Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm. Simulation 2004;14:1163–9.
Min D-J, Choi KH, Chang YK, Kim J-H. Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth. Korean J Chem Eng 2011;28:1969–74. https://doi.org/10.1007/s11814-011-0082-9.
Silva CJSM, Mussatto SI, Roberto IC. Study of xylitol production by Candida guilliermondii on a bench bioreactor. J Food Eng 2006;75:115–9. https://doi.org/10.1016/j.jfoodeng.2005.04.001.
De Faveri D, Lambri M, Converti A, Perego P, Del Borghi M. Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulose hydrolyzates. Chem Eng J 2002;90:291–8. https://doi.org/10.1016/S1385-8947(02)00134-1.
Banks D. Foodservice Frying. Second Edi. AOCS Press; 2007. https://doi.org/10.1016/B978-1-893997-92-9.50019-0.
Nasrin TAA, Noomhorm A, Anal AK. Physico-Chemical Characterization of Culled Plantain Pulp Starch, Peel Starch, and Flour. Int J Food Prop 2015;18:165–77. https://doi.org/10.1080/10942912.2013.828747.
Duque SH, Cardona CA, Moncada J. Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy and Fuels 2015;29:775–83. https://doi.org/10.1021/ef5019274.
Rendón-Villalobos JR, Solorza-Feria J, Aguilar-Sandoval A. Optimisation of conditions for glucose syrup production from banana (Musa paradisiaca L.) pulp using response surface methodology. Int J Food Sci Technol 2011;46:739–45. https://doi.org/10.1111/j.1365-2621.2010.02544.x.
Chuck-Hernandez C, Perez-Carrillo E, Serna-Saldivar SO. Production of bioethanol from steam-flaked sorghum and maize. J Cereal Sci 2009;50:131–7. https://doi.org/10.1016/j.jcs.2009.04.004.
Quintero JA, Cardona CA. Process Simulation of Fuel Ethanol Production from Lignocellulosics using Aspen Plus. Ind Eng Chem Res 2011;50:6205–12. https://doi.org/10.1021/ie101767x.
Towler G, Sinnott R. Separation Columns (Distillation, Absorption, and Extraction). In: Towler G, Sinnott R, editors. Chem. Eng. Des. SI Edition, Chemical Engineering Series; 2012, p. 807–935. https://doi.org/10.1016/b978-0-08-096659-5.00017-1.
Ruiz-Mercado GJ, Smith RL, Gonzalez MA. Sustainability Indicators for Chemical Processes: II. Data Needs. Ind Eng Chem Res 2012;51:2329–53. https://doi.org/10.1021/ie200755k.
Budzinski K, Blewis M, Dahlin P, D’Aquila D, Esparza J, Gavin J, et al. Introduction of a process mass intensity metric for biologics. N Biotechnol 2019;49:37–42. https://doi.org/10.1016/j.nbt.2018.07.005.
Rogers L, Jensen KF. Continuous manufacturing-the Green Chemistry promise? Green Chem 2019;21:3481–98. https://doi.org/10.1039/c9gc00773c.
Tobiszewski M, Marć M, Gałuszka A, Namies̈nik J. Green chemistry metrics with special reference to green analytical chemistry. Molecules 2015;20:10928–46. https://doi.org/10.3390/molecules200610928.
García CA, Betancourt R, Cardona CA. Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. J Environ Manage 2017;203 part 2:695–703. https://doi.org/10.1016/j.jenvman.2016.04.001.
Serna-Loaiza S, García-Velásquez CA, Cardona CA. Strategy for the selection of the minimum processing scale for the economic feasibility of biorefineries. Biofuels, Bioprod Biorefining 2018:1–13. https://doi.org/10.1002/bbb.1941.
Rueda-Duran C, Ortiz-Sánchez M, Cardona CA. Detailed economic assessment of polylactic acid production by using glucose platform : sugarcane bagasse , coffee cut stems , and plantain peels as possible raw materials. Biomass Convers Biorefinery 2022:1–16. https://doi.org/10.1007/s13399-022-02501-5.
García-Velásquez CA, Cardona CA. Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment. Energy 2019;172:232–42. https://doi.org/10.1016/j.energy.2019.01.073.
DANE. Boletín mensual insumos y factores asociados a la produccion agropecuaria. DANE 2016:90.
Dalgaard R, Halberg N, Hermansen J. Danish pork production: An environmental assessment. vol. 82. 2007.
De Klein C, Novoa R, Ogle S, Smith K, Rochette P, Wirth T. Emisiones de N2O de los suelos gestionados y emisiones de CO2 derivadas de da aplicación de Cal y UREA. Directrices del IPCC 2006 para los Inventar. Nac. gases Ef. invernadero, vol. 4, 2006, p. 1–56.
Allen RG, Pereira LS, Raes D, Smith M. Crop Evapotranspiration. FAO Irrig Drain Pap 1998;56.
Hoekstra A, Chapagain A, Aldaya M, Mekonnen M. Water footprint manual: State of the art 2009. Enschede, The Netherlands: 2009.
Novoa V, Ahumada-Rudolph R, Rojas O, Sáez K, de la Barrera F, Arumí JL. Understanding agricultural water footprint variability to improve water management in Chile. Sci Total Environ 2019;670:188–99. https://doi.org/10.1016/j.scitotenv.2019.03.127.
SIPSA. El cultivo del plátano (Musa paradisiaca), un importante alimento para el mundo. 2014.
Cronauer SS, Krikorian AD. Multiplication of Musa from Excised Stem Tips. Ann Bot 1984;53:321–8. https://doi.org/10.1093/oxfordjournals.aob.a086696.
Cronauer SS, Krikorian AD. Multiplication of Musa from Excised Stem Tips. Ann Bot 1984;53:321–8. https://doi.org/10.1093/oxfordjournals.aob.a086696.
Shen Z, Xue C, Penton CR, Thomashow LS, Zhang N, Wang B, et al. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biol Biochem 2019;128:164–74. https://doi.org/10.1016/J.SOILBIO.2018.10.016.
Castaño Á, Aristizábal M, González H. Requerimientos Hídricos Del Plátano Dominico. Agronomia 2011;19:57–67.
UNEP. Guidelines for Social Life Cycle Assessment of Products. 2020.
Asah ST, Baral N. Technicalizing non-technical participatory social impact assessment of prospective cellulosic biorefineries: Psychometric quantification and implications. Appl Energy 2018;232:462–72. https://doi.org/10.1016/j.apenergy.2018.09.199.
Eisfeldt F, Ciroth A. PSILCA - A Product Social Impact Life Cycle Assessment database. 2018.
Sectorial. Analfabetismo, una Aspecto que aún Prevalece en la Sociedad y Acumula 773 Millones de Personas n.d. https://www.sectorial.co/articulos-especiales/item/421964-analfabetismo,-una-aspecto-que-aún-prevalece-en-la-sociedad-y-acumula-773-millones-de-personas (accessed May 1, 2022).
UN, DANE. Mujeres y Hombres: Brechas de género en Colombia. 2020.
DANE. Boletín técnico Mercado laboral por departamentos. Merc Labor Por Dep 2021:1–36.
WageIndicator-Foundation. Living Wages, Minimum and Actual Wages, National Poverty Line. 2019. https://wageindicator.org/salary/wages-in-context (accessed March 5, 2019).
Shen J, Zhu S, Liu X, Zhang H, Tan J. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag 2010;51:983–7. https://doi.org/10.1016/j.enconman.2009.11.039.
García-Vargas MC, Contreras MDM, Castro E. Avocado-derived biomass as a source of bioenergy and bioproducts. Appl Sci 2020;10:1–29. https://doi.org/10.3390/app10228195.
Jimenez P, Garcia P, Quitral V, Vasquez K, Parra-Ruiz C, Reyes-Farias M, et al. Pulp , Leaf , Peel and Seed of Avocado Fruit : A Review of Bioactive Compounds and Healthy Benefits Pulp , Leaf , Peel and Seed of Avocado Fruit : A Review of. Food Rev Int 2020:1–37. https://doi.org/10.1080/87559129.2020.1717520.
Dávila JA, Rosenberg M, Cardona CA. A biorefinery for efficient processing and utilization of spent pulp of Colombian Andes Berry (Rubus glaucus Benth.): Experimental, techno-economic and environmental assessment. Bioresour Technol 2017;223:227–36. https://doi.org/10.1016/j.biortech.2016.10.050.
Rivera–González G, Amaya–Guerra CA, de la Rosa–Millán J. Physicochemical characterisation and in vitro Starch digestion of Avocado Seed Flour (Persea americana V. Hass) and its starch and fibrous fractions. Int J Food Sci Technol 2019;54:2447–57. https://doi.org/10.1111/ijfs.14160.
Builders PF, Nnurum A, Mbah CC, Attama AA, Manek R. The physicochemical and binder properties of starch from Persea americana Miller (Lauraceae). Starch/Staerke 2010;62:309–20. https://doi.org/10.1002/star.200900222.
Macena JFF, de Souza JCA, Camilloto GP, Cruz RS. Physico-chemical, morphological and technological properties of the avocado (Persea americana mill. cv. hass) seed starch. Cienc e Agrotecnologia 2020;44. https://doi.org/10.1590/1413-7054202044001420.
Maryam, Anwar Kasim, Santosa. Utilization Starch of Avocado Seed (Persea Americana Mill.) as a Raw Material for Dextrin. J Food Sci Eng 2016;6:32–7. https://doi.org/10.17265/2159-5828/2016.01.005.
Brown RC. Thermochemical Processing of Biomass: Conversion into Fuels,Chemicals and Power. 2011. https://doi.org/10.1002/9781119990840
Nwaokobia K, Oguntokun MO, Okolie PL, Ogboru RO, Idugboe OD. Evaluation of the chemical composition of Persea americana (Mill) pulp and seed. J Biosci Biotechnol Discov 2018;3:83–9. https://doi.org/10.31248/jbbd2018.071.
Soponpongpipat N, Sittikul D, Comsawang P. Prediction model of higher heating value of torrefied biomass based on the kinetics of biomass decomposition. J Energy Inst 2016;89:425–35. https://doi.org/10.1016/j.joei.2015.02.011.
Yin CY. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011;90:1128–32. https://doi.org/10.1016/j.fuel.2010.11.031.
García-Velásquez CA, Cardona CA. Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment. Energy 2019:232–42. https://doi.org/10.1016/j.energy.2019.01.073.
Poveda-Giraldo JA, Cardona CA. Biorefinery potential of Eucalyptus grandis to produce phenolic compounds and biogas. Can J For Res 2020:1–49. https://doi.org/10.1139/cjfr-2020-0201.
Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018;33:52–62. https://doi.org/10.1016/j.ejbt.2018.03.005.
Li J, Kumar Jha A, He J, Ban Q, Chang S, Wang P. Assessment of the effects of dry anaerobic co-digestion of cow dung with waste water sludge on biogas yield and biodegradability. Int J Phys Sci 2011;6:3723–32. https://doi.org/10.5897/IJPS11.753.
Solarte-Toro JC, Mariscal Moreno JP, Aristizábal Zuluaga BH. Evaluación de la digestión y co-digestión anaerobia de residuos de comida y de poda en bioreactores a escala laboratorio. Rev ION 2017;30:105–16. https://doi.org/10.18273/revion.v30n1-2017008.
Rashama C, Ijoma GN, Matambo TS. Appraising different models for predicting biomethane potential: the case of avocado oil processing by-products. J Mater Cycles Waste Manag 2021;23:409–15. https://doi.org/10.1007/s10163-020-01116-0.
Dieter Deublein, Angelika Steinhauser. Biogas from Waste and Renewable Resources: An Introduction, 2nd, Revised and Expanded Edition | Wiley. WILEY; 2010.
Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 2019;107:587–601. https://doi.org/10.1016/j.rser.2019.02.024.
Parra-Ramírez D, Solarte-Toro JC, Cardona-Alzate CA. Techno-Economic and Environmental Analysis of Biogas Production from Plantain Pseudostem Waste in Colombia. Waste and Biomass Valorization 2020;11. https://doi.org/10.1007/s12649-019-00643-8.
Agama-Acevedo E, Sañudo-Barajas JA, Vélez De La Rocha R, González-Aguilar GA, Bello-Peréz LA. Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CYTA - J Food 2016;14:117–23. https://doi.org/10.1080/19476337.2015.1055306.
Te WZ, Muhanin KNM, Chu YM, Selvarajoo A, Singh A, Ahmed SF, et al. Optimization of Pyrolysis Parameters for Production of Biochar From Banana Peels: Evaluation of Biochar Application on the Growth of Ipomoea aquatica. Front Energy Res 2021;8:1–16. https://doi.org/10.3389/fenrg.2020.637846.
Ogbodo NO, Asadu CO, Ezema CA, Onoh MI, Elijah OC, Ike IS, et al. Preparation and Characterization of activated carbon from agricultural waste (Musa-paradisiaca peels) for the remediation of crude oil contaminated water. J Hazard Mater Adv 2021;2:100010. https://doi.org/10.1016/j.hazadv.2021.100010.
Solarte-Toro JC, González-Aguirre JA, Poveda Giraldo JA, Cardona CA. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renew Sustain Energy Rev 2021;136:110376. https://doi.org/10.1016/j.rser.2020.110376.
Kayiwa R, Kasedde H, Lubwama M, Kirabira JB. Characterization and pre-leaching effect on the peels of predominant cassava varieties in Uganda for production of activated carbon. Curr Res Green Sustain Chem 2021;4:100083. https://doi.org/10.1016/j.crgsc.2021.100083.
Brachi P, Miccio F, Miccio M, Ruoppolo G. Torrefaction of Tomato Peel Residues in a Fluidized Bed of Inert Particles and a Fixed-Bed Reactor. Energy and Fuels 2016;30:4858–68. https://doi.org/10.1021/acs.energyfuels.6b00328.
Achinas S, Krooneman J, Euverink GJW. Enhanced Biogas Production from the Anaerobic Batch Treatment of Banana Peels. Engineering 2019;5:970–8. https://doi.org/10.1016/j.eng.2018.11.036.
Flores M, Saravia C, Vergara C, Avila F, Valdés H, Ortiz-Viedma J. Avocado oil: Characteristics, Properties, and Applications. Molecules 2019;24:1–21.
Santos V da S, Fernandes GD. Cold pressed avocado (Persea americana Mill.) oil. Cold Press. Oils, Elsevier Inc.; 2020, p. 405–28. https://doi.org/10.1016/b978-0-12-818188-1.00037-2.
De Oliveira AP, Franco EDS, Rodrigues Barreto R, Cordeiro DP, De Melo RG, De Aquino CMF, et al. Effect of semisolid formulation of persea americana mill (Avocado) oil on wound healing in rats. Evidence-Based Complement Altern Med 2013;2013. https://doi.org/10.1155/2013/472382.
Ozdemir F, Topuz A. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem 2004;86:79–83. https://doi.org/10.1016/j.foodchem.2003.08.012.
Galvão M de S, Narain N, Nigam N. Influence of different cultivars on oil quality and chemical characteristics of avocado fruit. Food Sci Technol 2014;34:539–46. https://doi.org/10.1590/1678-457x.6388.
Qin X, Zhong J. A review of extraction techniques for avocado oil. J Oleo Sci 2016;65:881–8. https://doi.org/10.5650/jos.ess16063.
Paul AAL, Adewale FJ. Data on optimization of production parameters on Persea Americana (Avocado) plant oil biodiesel yield and quality. Data Br 2018;20:855–63. https://doi.org/10.1016/j.dib.2018.08.064.
Koizumi T. Biofuels and food security. Renew Sustain Energy Rev 2015;52:829–41. https://doi.org/10.1016/j.rser.2015.06.041.
Furlan CPB, Valle SC, Östman E, Roberto M, Maróstica Jr MR, Tovar J. Inclusion of Hass avocado-oil improves postprandial metabolic responses to a hypercaloric-hyperlipidic meal in overweight subjects. J Funct Foods 2017;38:349–54. https://doi.org/10.1016/j.jff.2017.09.019.
Zhu S, Jiao W, Xu Y, Hou L, Li H, Shao J, et al. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci 2021;286:120046. https://doi.org/10.1016/j.lfs.2021.120046.
Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 2012;16:143–69. https://doi.org/10.1016/j.rser.2011.07.143.
Ferreira EM, Pires A V., Susin I, Gentil RS, Parente MOM, Nolli CP, et al. Growth, feed intake, carcass characteristics, and meat fatty acid profile of lambs fed soybean oil partially replaced by fish oil blend. Anim Feed Sci Technol 2014;187:9–18. https://doi.org/10.1016/j.anifeedsci.2013.09.016.
Malins K, Kampars V, Kampare R, Prilucka J, Brinks J, Murnieks R, et al. Properties of rapeseed oil fatty acid alkyl esters derived from different alcohols. Fuel 2014;137:28–35. https://doi.org/10.1016/j.fuel.2014.07.091.
Oliveira M dos S, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E, De Souza-Soares LA. Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol 2011;102:8335–8. https://doi.org/10.1016/j.biortech.2011.06.025.
Hellier P, Ladommatos N, Yusaf T. The influence of straight vegetable oil fatty acid composition on compression ignition combustion and emissions. Fuel 2015;143:131–43. https://doi.org/10.1016/j.fuel.2014.11.021.
Mehmood S, Orhan I, Ahsan Z, Aslan S, Gulfraz M. Fatty acid composition of seed oil of different Sorghum bicolor varieties. Food Chem 2008;109:855–9. https://doi.org/10.1016/j.foodchem.2008.01.014.
Yucel O, Hastaoglu MA. Kinetic modeling and simulation of throated downdraft gasifier. Fuel Process Technol 2016;144:145–54. https://doi.org/10.1016/j.fuproc.2015.12.023.
Solarte-Toro J-C. Oil palm rachis gasification for synthesis gas production. Universidad Nacional de Colombia - Sede Manizales, 2018.
Dudyński M, van Dyk JC, Kwiatkowski K, Sosnowska M. Biomass gasification: Influence of torrefaction on syngas production and tar formation. Fuel Process Technol 2015;131:203–12. https://doi.org/10.1016/j.fuproc.2014.11.018.
Aristizábal-Marulanda V, Solarte-Toro JC, Cardona Alzate CA. Study of biorefineries based on experimental data: production of bioethanol, biogas, syngas, and electricity using coffee-cut stems as raw material. Environ Sci Pollut Res 2020. https://doi.org/10.1007/s11356-020-09804-y.
Bezerra FWF, De Oliveira MS, Bezerra PN, Cunha VMB, Silva MP, Da Costa WA, et al. Extraction of bioactive compounds. Elsevier Inc.; 2019. https://doi.org/10.1016/B978-0-12-817388-6.00008-8.
Araújo RG, Rodriguez-Jasso RM, Ruiz HA, Govea-Salas M, Pintado ME, Aguilar CN. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind Crops Prod 2020;154:112623. https://doi.org/10.1016/j.indcrop.2020.112623.
Monzón L, Becerra G, Aguirre E, Rodríguez G, Villanueva E. Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks. Sci Agropecu 2021;12:33–40. https://doi.org/10.17268/SCI.AGROPECU.2021.004.
Barba FJ, Zhu Z, Koubaa M, Sant’Ana AS, Orlien V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci Technol 2016;49:96–109. https://doi.org/10.1016/j.tifs.2016.01.006.
Ramić M, Vidović S, Zeković Z, Vladić J, Cvejin A, Pavlić B. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason Sonochem 2015;23:360–8. https://doi.org/10.1016/j.ultsonch.2014.10.002.
Akhtar I, Javad S, Ansari M, Ghaffar N, Tariq A. Process optimization for microwave assisted extraction of Foeniculum vulgare Mill using response surface methodology. J King Saud Univ - Sci 2020;32:1451–8. https://doi.org/10.1016/j.jksus.2019.11.041.
Weremfo A, Adulley F, Adarkwah-Yiadom M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. J Anal Methods Chem 2020;2020. https://doi.org/10.1155/2020/7541927.
Skenderidis P, Leontopoulos S, Petrotos K, Giavasis I. Vacuum microwave-assisted aqueous extraction of polyphenolic compounds from avocado (Persea americana) solid waste. Sustain 2021;13:1–18. https://doi.org/10.3390/su13042166.
Rosero JC, Cruz S, Osorio C, Hurtado N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019;24. https://doi.org/10.3390/molecules24173209.
Gómez FS, Peirósánchez S, Iradi MGG, Azman NAM, Almajano MP. Avocado seeds: Extraction optimization and possible use as antioxidant in food. Antioxidants 2014;3:439–54. https://doi.org/10.3390/antiox3020439.
Segovia FJ, Corral-Pérez JJ, Almajano MP. Avocado seed: Modeling extraction of bioactive compounds. Ind Crops Prod 2016;85:213–20. https://doi.org/10.1016/j.indcrop.2016.03.005.
Moure A, Cruz JM, Franco D, Manuel Domínguez J, Sineiro J, Domínguez H, et al. Natural antioxidants from residual sources. Food Chem 2001;72:145–71. https://doi.org/10.1016/S0308-8146(00)00223-5.
Najjar YS. Gas turbine cogeneration systems: a review of some novel cycles. Appl Therm Eng 2000;20:179–97. https://doi.org/10.1016/S1359-4311(99)00019-8.
Rashama C, Ijoma GN, Matambo TS. Elucidating Biodegradation Kinetics and Biomethane Potential Trends in Substrates Containing High Levels of Phytochemicals: The Case of Avocado Oil Processing By-products. Waste and Biomass Valorization 2022;13:2071–81. https://doi.org/10.1007/s12649-021-01663-z.
Tagne RFT, Anagho SG, Ionel I, Matiuti AC, Ungureanu CI. Experimental biogas production from Cameroon lignocellulosic waste biomass. J Environ Prot Ecol 2019;20:1335–44.
Jayaraj S, Deepanraj B, Velmurugan S. Study on the effect of pH on biogas production from food waste by anaerobic digestion. Int Green Energy Confrence 2014;5:799–803.
Palacios S, Ruiz HA, Ramos-Gonzalez R, Martínez J, Segura E, Aguilar M, et al. Comparison of physicochemical pretreatments of banana peels for bioethanol production. Food Sci Biotechnol 2017;26:993–1001. https://doi.org/10.1007/s10068-017-0128-9.
Ya’aini N, Amin NAS, Asmadi M. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst. Bioresour Technol 2012;116:58–65. https://doi.org/10.1016/j.biortech.2012.03.097.
Victor A, Pulidindi IN, Gedanken A. Levulinic acid production from Cicer arietinum, cotton, Pinus radiata and sugarcane bagasse. RSC Adv 2014;4:44706–11. https://doi.org/10.1039/c4ra06246a.
Turner M, Saville B. Technoeconomic evaluation of protein‐rich animal feed and ethanol production from.pdf. Biofuels, Bioprod Biorefining 2022;16:105–21. https://doi.org/10.1002/bbb.2259.
Abdullah N, Sulaiman F, Gerhauser H. Characterisation of oil palm empty fruit bunches for fuel application. J Phys Sci 2011;22:1–24.
Mohamed Noor N. Slow Pyrolysis of Cassava Wastes for Biochar Production and Characterization. Iran J Energy Environ 2012. https://doi.org/10.5829/idosi.ijee.2012.03.05.10.
Sangaré D, Moscosa-Santillan M, Aragón Piña A, Bostyn S, Belandria V, Gökalp I. Hydrothermal carbonization of biomass: experimental study, energy balance, process simulation, design, and techno-economic analysis. Biomass Convers Biorefinery 2022. https://doi.org/10.1007/s13399-022-02484-3.
Ahmad T, Danish M. A review of avocado waste-derived adsorbents: Characterizations, adsorption characteristics, and surface mechanism. Chemosphere 2022;296:134036. https://doi.org/10.1016/j.chemosphere.2022.134036.
Moncada J, Tamayo JA, Cardona CA. Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. J Clean Prod 2016;112:172–81. https://doi.org/10.1016/j.jclepro.2015.09.067.
Tesfaye T, Ayele M, Ferede E, Gibril M, Kong F, Sithole B. A techno-economic feasibility of a process for extraction of starch from waste avocado seeds. Clean Technol Environ Policy 2021;23:581–95. https://doi.org/10.1007/s10098-020-01981-1.
Allen RG, Pereira LS. Estimating crop coefficients from fraction of ground cover and height. Irrig Sci 2009;28:17–34. https://doi.org/10.1007/s00271-009-0182-z.
Mekonnen MM, Hoekstra AY. The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci 2011;15:1577–600. https://doi.org/10.5194/hess-15-1577-2011.
Esteve-Llorens X, Ita-Nagy D, Parodi E, González-García S, Moreira MT, Feijoo G, et al. Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: A case study for green asparagus and avocado. Sci Total Environ 2022;818. https://doi.org/10.1016/j.scitotenv.2021.151686.
Caro D, Alessandrini A, Sporchia F, Borghesi S. Global virtual water trade of avocado. J Clean Prod 2021;285:124917. https://doi.org/10.1016/j.jclepro.2020.124917.
Astier M, Merlín-Uribe Y, Villamil-Echeverri L, Garciarreal A, Gavito ME, Masera OR. Energy balance and greenhouse gas emissions in organic and conventional avocado orchards in Mexico. Ecol Indic 2014;43:281–7. https://doi.org/10.1016/j.ecolind.2014.03.002.
Reyes Pineda H, Naranjo JF. Huella hídrica del cultivo de aguacate cv. Hass (Persea americana Mill.), en el Distrito de Conservación de Suelos Barbas - Bremen, Quindío, Colombia. Entre Cienc e Ing 2021;15:63–70. https://doi.org/10.31908/19098367.1813.
Hadjian P, Bahmer T, Egle J. Life Cycle Assessment of Three Tropical Fruits (Avocado, Banana, Pineapple). Trop Subtrop Agroecosystems 2019;22:127–41.
Ortiz-Sanchez M, Cardona CA. Comparative environmental life cycle assessment of orange peel waste in present productive chains. J Clean Prod 2021;322:128814. https://doi.org/10.1016/j.jclepro.2021.128814.
Solarte-Toro JC, Cardona CA. Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspect , challenges and perspectives. Bioresour Technol 2021;340:125626. https://doi.org/10.1016/j.biortech.2021.125626.
Rosen MA. Environmental sustainability tools in the biofuel industry. Biofuel Res J 2018;5:751–2. https://doi.org/10.18331/BRJ2018.5.1.2.
Dávila JA, Rosenberg M, Castro E, Cardona CA. A model biorefinery for avocado (Persea americana mill.) processing. Bioresour Technol 2017;243:17–29. https://doi.org/10.1016/j.biortech.2017.06.063.
Bataille C, Åhman M, Neuhoff K, Nilsson LJ, Fischedick M, Lechtenb S. A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J Clean 2018;187:960–73. https://doi.org/10.1016/j.jclepro.2018.03.107.
IChemE. The Sustainability Metrics: Sustainable development progress metrics recommended for use in process industries 2002.
Prasara-A J, Gheewala SH. Sustainable utilization of rice husk ash from power plants: A review. J Clean Prod 2016;167:1020–8. https://doi.org/10.1016/j.jclepro.2016.11.042.
Ciroth A, Finkbeiner M, Hildenbrand J, Klöpffer W, Mazijn B, Prakash S, et al. Towards a life cycle sustainability assessment: Making products informed choices on products. UNEP/SETAC Life Cycle Initiative; 2011.
Solarte-Toro JC, Cardona Alzate CA. Perspectives of the Sustainability Assessment of Biorefineries. Chem Eng Trans 2021;83:307–12. https://doi.org/10.3303/CET2183052.
Aristizábal-Marulanda V, Solarte-Toro JC, Cardona Alzate CA. Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS ) in Colombia. Bioresour Technol Reports 2020;9. https://doi.org/10.1016/j.biteb.2020.100397.
Robinson JA, Torvik R. White elephants. J Public Econ 2005;89:197–210. https://doi.org/10.1016/j.jpubeco.2004.05.004.
Martí L, Martín JC, Puertas R. A DEA-logistics performance index. J Appl Econ 2017;20:169–92. https://doi.org/10.1016/S1514-0326(17)30008-9.
Martí L, Puertas R, García L. The importance of the Logistics Performance Index in international trade. Appl Econ 2014;46:2982–92. https://doi.org/10.1080/00036846.2014.916394.
González-Aguirre JA, Solarte-Toro JC, Cardona Alzate CA. Supply chain and environmental assessment of the essential oil production using Calendula (Calendula Officinalis) as raw material. Heliyon 2020;6. https://doi.org/10.1016/j.heliyon.2020.e05606.
United Nations Industrial Development Organization. Competitive Industrial Performance Report 2020. Vienna, Austria: 2020. https://doi.org/10.18356/0b9f829f-en.
Hernández H, Grassano N, Tübke A, Amoroso S, Csefalvay Z, Gkotsis P. The 2019 EU Industrial R&D Investment Scoreboard. Luxembourg: Publications Office of the European Union; 2020. https://doi.org/10.2760/04570.
Lescuyer G, Helmes R, Syndicus I, Kerua W. Cocoa value chain analysis in Papua New Guinea. 2018.
Towler G, Sinnott R. Capital Cost Estimating. Chem. Eng. Des. Princ. Pract. Econ. Plant Process Des. Second, 2013, p. 307–54. https://doi.org/10.1016/B978-0-08-096659-5.00007-9.
Sinnott RK, Towler G. Chemical Engineering Design. Elsevier Ltd; 2013. https://doi.org/10.1016/C2009-0-61216-2.
Albrecht FG, König DH, Baucks N, Dietrich RU. A standardized methodology for the techno-economic evaluation of alternative fuels – A case study. Fuel 2017;194:511–26. https://doi.org/10.1016/j.fuel.2016.12.003.
Biegler LT, Grossman IE, Westerberg AW. Systematic Methods of Chemical Process Design. 1997.
Goedkoop MJ, Heijungs R, Huijbregts MAJ, Schryver A De, Struijs J, van Zelm R. Category indicators at the midpoint and the endpoint level ReCiPe 2008. ResearchGate 2013:126.
Costa D, Quinteiro P, Dias AC. A systematic review of life cycle sustainability assessment: Current state, methodological challenges, and implementation issues. Sci Total Environ 2019;686:774–87. https://doi.org/10.1016/j.scitotenv.2019.05.435.
Bressanin JM, Geraldo VC, Gomes F de AM, Klein BC, Chagas MF, Watanabe MDB, et al. Multiobjective optimization of economic and environmental performance of Fischer-Tropsch biofuels production integrated to sugarcane biorefineries. Ind Crops Prod 2021;170. https://doi.org/10.1016/j.indcrop.2021.113810.
Valente A, Iribarren D, Dufour J. Life cycle sustainability assessment of hydrogen from biomass gasification: A comparison with conventional hydrogen. Int J Hydrogen Energy 2019;44:21193–203. https://doi.org/10.1016/j.ijhydene.2019.01.105.
Raccary B, Loubet P, Peres C, Sonnemann G. Evaluating the environmental impacts of analytical chemistry methods: From a critical review towards a proposal using a life cycle approach. TrAC - Trends Anal Chem 2022;147:116525. https://doi.org/10.1016/j.trac.2022.116525.
Ruiz-Mercado GJ, Smith RL, Gonzalez MA. Sustainability Indicator for Chemical Processes: I. Taxonomy. Ind Eng Chem Res 2012;51:2309–28.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 328 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.place.spa.fl_str_mv Manizales, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83551/5/1053824434_2022.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/83551/4/1053824434_2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83551/3/license.txt
bitstream.checksum.fl_str_mv 23119c16f00b0cf25fe229255bf4c8c3
8001888207cd79222d2bda30ffad1a21
eb34b1cf90b7e1103fc9dfd26be24b4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886654578786304
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Alzate, Carlos Ariel7ba5eaa612910e30e5cc7620a5c0ff5fSolarte Toro, Juan Camilof7349a63e30467933b090c2713d9a3a7600Grupo de Investigación en Procesos Químicos, Catalíticos, y Biotecnológicos.Solarte Toro, Juan Camilo [0000-0003-1143-8940]Solarte Toro, Juan Camilo [0001636156]Solarte Toro, Juan Camilo [57190731179]https://www.researchgate.net/profile/Juan-Solarte-Toro?ev=hdr_xprfhttps://scholar.google.es/citations?user=xDnXFMcAAAAJ&hl=es2023-02-23T19:29:24Z2023-02-23T19:29:24Z2022https://repositorio.unal.edu.co/handle/unal/83551Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografías, graficas, tablasThe sustainable development goals (SDGs) and the sustainability concept have been focused on specific issues such as poverty, quality of life, environment, and society. Today, biomass has been used to implement an economic model based on renewable sources. Therefore, processes design integrating agricultural products, crop residues, and agro-industrial waste are needed to establish a bioeconomy model at the local, regional, and national levels. Nevertheless, upgrading strategies should involve technical, socioeconomic, and environmental aspects. In this way, the objective of this thesis work was to evaluate the sustainability of different small- and large-scale biorefineries to elucidate a product portfolio to promote technical, economic, environmental, and social progress in the Montes de María region. The knowledge of the region and the agricultural products offered by farmers were essential to defining the raw materials of the present work (i.e., plantain and avocado). Entrepreneurship alternatives and industrial processes were proposed considering marketable products at different levels. Products such as avocado oil, levulinic acid, plantain flour, bioactive compounds, and biogas were generated at a lab scale. Then, mass and energy indicators were estimated through simulation. The economic, environmental, and social evaluation was carried out by estimating pre-feasibility metrics, environmental impact categories, and social indicators. Avocado oil and plantain flour were the most sustainable ways to upgrade the raw materials in the Montes de María region. Moreover, a strategy for estimating the process sustainability index was proposed based on an integral analysis of the economic, environmental and social dimensions. This strategy was proposed considering the experience in biorefineries of the Chemical, Catalytic, and Biotechnological Processes Research Group (PQCB) and the author's participation in research projects focused on sustainability issues. The strategy establishes a criterion for selecting the most sustainable process to upgrade biomass that decision-makers can appreciate. In conclusion, contributions related to the inclusion of the social analysis of biorefineries, the comprehensive analysis of the three dimensions of sustainability, the development of a methodology for evaluating sustainability, and a portfolio of products that can be implemented as possible valorization alternatives. in rural areas are given in this thesis. (Texto tomado de la fuente)Los objetivos de desarrollo sostenible (ODS) y el concepto de sostenibilidad se han centrado en temas específicos como la pobreza, la calidad de vida, el medio ambiente y la sociedad. Hoy en día, la biomasa se ha utilizado para implementar un modelo económico basado en fuentes renovables. Por lo tanto, se necesita un diseño de procesos que integre productos agrícolas, residuos de cultivos y desechos agroindustriales para establecer un modelo de bioeconomía a nivel local, regional y nacional. No obstante, las estrategias de mejoramiento deben involucrar aspectos técnicos, socioeconómicos y ambientales. De esta forma, el objetivo de este trabajo de tesis fue evaluar la sostenibilidad de diferentes biorrefinerías de pequeña y gran escala para dilucidar un portafolio de productos que promuevan el progreso técnico, económico, ambiental y social en la región de los Montes de María, Sucre, Colombia. El conocimiento de la región y los productos agrícolas que ofrecen los agricultores fueron fundamentales para definir las materias primas del presente trabajo (i.e., plátano y aguacate). Se propusieron alternativas de emprendimiento y procesos industriales considerando productos comercializables en diferentes niveles. Se generaron productos como aceite de aguacate, ácido levulínico, harina de plátano, compuestos bioactivos y biogás a escala de laboratorio. Luego, se estimaron indicadores de masa y energía a través de simulación. La evaluación económica, ambiental y social se realizó mediante la estimación de métricas de prefactibilidad, categorías de impacto ambiental e indicadores sociales. El aceite de aguacate y la harina de plátano fueron las formas más sostenibles de mejorar las materias primas en la región de Montes de María. Además, se propuso una estrategia para estimar el índice de sostenibilidad de procesos a partir de un análisis integral de las dimensiones económica, ambiental y social. Esta estrategia se planteó considerando la experiencia en biorrefinerías del Grupo de Investigación de Procesos Químicos, Catalíticos y Biotecnológicos (PQCB) y la participación del autor en proyectos de investigación enfocados en temas de sostenibilidad. La estrategia establece un criterio para seleccionar el proceso más sostenible para transformar la biomasa que los tomadores de decisiones puedan apreciar. En conclusión, los aportes se relacionaron con la inclusión del análisis social de las biorrefinerías, el análisis integral de las tres dimensiones de la sostenibilidad, el desarrollo de una metodología para evaluar la sostenibilidad y un portafolio de productos que pueden implementarse como posibles alternativas de valorización en las zonas rurales.DoctoradoDoctor en IngenieríaEnergías Renovables, Biorrefinerías y SostenbilidadQuímica Y Procesos.Sede Manizales328 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales660 - Ingeniería químicaSostenibilidadAnálisis tecno-económicoAnálisis de ciclo de vidaEvaluación de impacto socialAguacatePlátanoZonas de PostconflictoSustainabilityTechno-economic analysisLife cycle analysisSocial impact assessmentAvocadoPlantainPost-conflict zonesDesarrollo sostenibleSustainable developmentSustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria caseAnálisis de sostenibilidad de diferentes esquemas de biorrefinerías para mejorar el desarrollo de zonas posconflicto en el contexto Colombiano: El caso de los Montes de MaríaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextDiep NQ, Sakanishi K, Nakagoshi N, Fujimoto S, Minowa T, Tran X. Biorefinery : Concepts , Current Status , and Development Trends. Int J Biomass Renewables 2012;2:1–8.Moncada J, Aristizábal M V, Cardona A CA. Design strategies for sustainable biorefineries. Biochem Eng J 2016;116:122–34. https://doi.org/10.1016/j.bej.2016.06.009.Murthy G. Systems Analysis Frameworks for Biorefineries. In: Pandey A, Larroche C, Ricke S, editors. Biofuels Altern. Feed. Convers. Process. Prod. Liq. Gaseous Biofuels. Second edi, Academic Press; 2019, p. 77–92.Cardona-Alzate CA, Moncada Botero J, Aristizábal-Marulanda V. Biorefineries - Design and Analysis. CRC Press, Taylor and Francis Group; 2019.Palmeros Parada M, Osseweijer P, Posada Duque JA. Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind Crops Prod 2017;106:105–23. https://doi.org/10.1016/j.indcrop.2016.08.052.Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, van Ree R, et al. Toward a common classification approach for biorefinery systems. Biofuels, Bioprod Biorefining 2009;3:534–46. https://doi.org/10.1002/bbb.172.Jungmeier G, Van Ree R, Jorgensen H, de Jong E, Stichnote H, Wellisch M. The Biorefinery Complexity Index. 2014.U.S. Department of Energy (DOE). Biomass Cofiring: A Renewable Alternative for Utilities. Washington D.C: 2000.Huang HJ, Ramaswamy S, Tschirner UW, Ramarao B V. A review of separation technologies in current and future biorefineries. Sep Purif Technol 2008;62:1–21. https://doi.org/10.1016/j.seppur.2007.12.011.Cardona Alzate CA, Solarte Toro JC, Peña ÁG. Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catal Today 2018;302:61–72. https://doi.org/10.1016/j.cattod.2017.09.034.Jong E De, Jungmeier G. Biorefinery Concepts in Comparison to Petrochemical Refineries. Ind. Biorefineries White Biotechnol., 2015, p. 3–33. https://doi.org/10.1016/B978-0-444-63453-5.00001-X.Golberg A, Vitkin E, Khan SA, Jillson NJ, Yakhini Z, Yarmush ML. Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion, technology, and sustainability implications for developing economies. Biofuels, Bioprod Biorefining 2013:246–56. https://doi.org/10.1002/bbb.Bao B, Ng DKS, Tay DHS, Jim??nez-Guti??rrez A, El-Halwagi MM. A shortcut method for the preliminary synthesis of process-technology pathways: An optimization approach and application for the conceptual design of integrated biorefineries. Comput Chem Eng 2011;35:1374–83. https://doi.org/10.1016/j.compchemeng.2011.04.013.Pham V, El-Halwagi M. Process Synthesis and Optimization of Biorefinery Configurations 2012;58. https://doi.org/10.1002/aic.Santibañez-Aguilar JE, González-Campos JB, Ponce-Ortega JM, Serna-González M, El-Halwagi MM. Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. J Clean Prod 2014;65:270–94. https://doi.org/10.1016/j.jclepro.2013.08.004.Aristizábal-Marulanda V, Cardona A. CA, Martín M. An integral methodological approach for biorefineries design: Study case of Colombian coffee cut-stems. Comput Chem Eng 2019;In Press.Moncada J, Posada JA, Ramirez A. Early sustainability assessment for potential configurations of integrated biorefineries. Screening platform chemicals. Biofuels, Bioprod Biorefining 2015;9:722–48. https://doi.org/10.1002/bbb.Patel AD, Meesters K, Uil H, Jong E, Worrell E, Patel MK. Early-Stage Comparative Sustainability Assessment of New Bio-based Processes. ChemSusChem 2013;6:1724–36.Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Patel MK. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 2013;135:490–9. https://doi.org/10.1016/j.biortech.2012.09.058.Kelloway A, Daoutidis P. Process Synthesis of Biorefineries: Optimization of Biomass Conversion to Fuels and Chemicals. Ind Eng Chem Res 2014;53:5261–73.Kokossis AC, Yang A, Tsakalova M, Lin T. A systems platform for the optimal synthesis of biomass based manufacturing systems. Comput Aided Process Eng 2010;28:1105–10.Douglas JM. Conceptual design of chemical processes. 1988.Ortiz-Sanchez M, Solarte-Toro JC, Cardona Alzate CA. A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour Technol 2021;325:124682. https://doi.org/10.1016/j.biortech.2021.124682.Zhang H, Cabañeros P, Claire L, Alan H, Ambye M, Claus J, et al. The multi-feedstock biorefinery – Assessing the compatibility of alternative feedstocks in a 2G wheat straw biorefinery process 2018. https://doi.org/10.1111/gcbb.12557.Piedrahita-Rodríguez S, Solarte-Toro JC, Piñeres PP, Ortiz-Sánchez M, Pérez-Cordero A, Cardona-Alzate CA. Analysis of a biorefinery with multiple raw materials in the context of post-conflict zones in Colombia: plantain and avocado integration in the Montes de María region. Biomass Convers Biorefinery 2022. https://doi.org/10.1007/s13399-022-02560-8.Moncada J, Tamayo JA, Cardona CA. Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery. Chem Eng Sci 2014;118:126–40. https://doi.org/10.1016/j.ces.2014.07.035.Cerón IX, Higuita JC, Cardona CA. Design and analysis of antioxidant compounds from Andes Berry fruits (Rubus glaucus Benth) using an enhanced-fluidity liquid extraction process with CO 2 and ethanol. J Supercrit Fluids 2012;62:96–101. https://doi.org/10.1016/j.supflu.2011.12.007.Cerón Salazar IX. Design and Evaluation of Proceses to Obtain Antioxidant-Rich Extracts from tropical fruits cultivated in Amazon, Caldas and Northern Tolima Regions. Universidad Nacional de Colombia, 2013.Moncada J. Design and Evaluation of Sustainable Biorefineries from Feedstock in Tropical Regions. Universidad Nacional de Colombia - Sede Manizales, 2012.Ptasinski KJ. Efficiency of biomass energy: An exergy approach to biofuels, power and biorefineries. WILEY; 2016. https://doi.org/10.1002/9781119118169.Serna-Loaiza S, Carmona-Garcia E, Cardona CA. Potential raw materials for biorefineries to ensure food security: The Cocoyam case. Ind Crops Prod 2018;126:92–102. https://doi.org/10.1016/j.indcrop.2018.10.005.Gutiérrez LF, Sánchez ÓJ, Cardona CA. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry. Bioresour Technol 2009;100:1227–37. https://doi.org/10.1016/j.biortech.2008.09.001.Murillo-Alvarado PE, Ponce-Ortega JM, Serna-Gonz??lez M, Castro-Montoya AJ, El-Halwagi MM. Optimization of pathways for biorefineries involving the selection of feedstocks, products, and processing steps. Ind Eng Chem Res 2013;52:5177–90. https://doi.org/10.1021/ie303428v.Aristizábal-Marulanda V, Cardona Alzate CA, Martín M. An integral methodological approach for biorefineries design: Study case of Colombian coffee cut-stems. Comput Chem Eng 2019;126:35–53. https://doi.org/10.1016/j.compchemeng.2019.03.038.Martín M, Grossmann IE. Simultaneous Optimization and Heat Integration for Biodiesel Production from Cooking Oil and Algae. Ind Eng Chem Res 2012;51:7998–8014. https://doi.org/10.1021/ie2024596.Bertran MO, Frauzem R, Sanchez-Arcilla AS, Zhang L, Woodley JM, Gani R. A generic methodology for processing route synthesis and design based on superstructure optimization. Comput Chem Eng 2017;106:892–910. https://doi.org/10.1016/j.compchemeng.2017.01.030.Felipe L de O, Oliveira AM de, Bicas JL. Bioaromas – Perspectives for sustainable development. Trends Food Sci Technol 2017;62:141–53. https://doi.org/10.1016/j.tifs.2017.02.005.De Carvalho CCCR, Da Fonseca MMR. Biotransformation of terpenes. Biotechnol Adv 2006;24:134–42. https://doi.org/10.1016/j.biotechadv.2005.08.004.van der Werf MJ, de Bont JAM, Leak DJ. Opportunities in microbial biotransformation of monoterpenes, 1997, p. 147–77. https://doi.org/10.1007/bfb0102065.Sultana N, Saify ZS. Enzymatic biotransformation of terpenes as bioactive agents. J Enzyme Inhib Med Chem 2013;28:1113–28. https://doi.org/10.3109/14756366.2012.727411.De Carvalho CCR, Van Keulen F, Da Fonseca MMR. Production and recovery of limonene-1,2-diol and simultaneous resolution of a diastereomeric mixture of limonene-1,2-epoxide with whole cells of Rhodococcus erythropolis DCL14. Biocatal Biotransformation 2000;18:223–35. https://doi.org/10.3109/10242420009015246.Aura AM. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev., vol. 7, 2008, p. 407–29. https://doi.org/10.1007/s11101-008-9095-3.Karabin M, Hudcova T, Jelinek L, Dostalek P. Biotransformations and biological activities of hop flavonoids. Biotechnol Adv 2014;33:1063–90. https://doi.org/10.1016/j.biotechadv.2015.02.009.Antonczak S, Fiorucci S, Golebiowski J, Cabrol-Bass D. Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism. Phys Chem Chem Phys 2009;11:1491–501. https://doi.org/10.1039/b814588a.Dragone G, Kerssemakers AAJ, Driessen JLSP, Yamakawa CK, Brumano LP, Mussatto SI. Bioresource Technology Innovation and strategic orientations for the development of advanced biore fi neries. Bioresour Technol 2020;302:122847. https://doi.org/10.1016/j.biortech.2020.122847.Carvajal JC, Gómez Á, Cardona CA. Comparison of lignin extraction processes: Economic and environmental assessment. Bioresour Technol 2016;214:468–76. https://doi.org/10.1016/j.biortech.2016.04.103.Dubois O, Gomez M. How sustainability is addressed in official bioeconomy strategies at international, national, and regional levels: An overview. Rome, Italy: 2016.European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe. Brussels: 2012.House TW. National Bioeconomy Blueprint. Washington (DC): 2012.OECD. The Bioeconomy to 2030: Designing a Policy Agenda. 2009. https://doi.org/10.1787/9789264056886-en.Ubando AT, Felix CB, Chen WH. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour Technol 2020;299. https://doi.org/10.1016/j.biortech.2019.122585.Bugge MM, Hansen T, Klitkou A. What Is the Bioeconomy ? A Review of the Literature. Sustainability 2016;8:691–712. https://doi.org/10.3390/su8070691.Aristizábal-Marulanda V, García-Velásquez CA, Cardona Alzate CA. Environmental assessment of energy-driven biorefineries: the case of the coffee cut-stems (CCS) in Colombia. Int J Life Cycle Assess 2021;26:290–310. https://doi.org/10.1007/s11367-020-01855-0.Baum C, El-Tohamy W, Gruda N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci Hortic (Amsterdam) 2015;187:131–41. https://doi.org/10.1016/j.scienta.2015.03.002.Ferreira F, Musumeci M. Trichoderma as biological control agent: scope and prospects to improve efficacy. World J Microbiol Biotechnol 2021;37. https://doi.org/10.1007/s11274-021-03058-7.Li H, Li Y, Xu Y, Lu X. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 2020;244:125471. https://doi.org/10.1016/j.chemosphere.2019.125471.Alexander P, Brown C, Arneth A, Finnigan J, Moran D, Rounsevell MDA. Losses, inefficiencies and waste in the global food system. Agric Syst 2017;153:190–200. https://doi.org/10.1016/j.agsy.2017.01.014.Johnson LK, Dunning RD, Bloom JD, Gunter CC, Boyette MD, Creamer NG. Estimating on-farm food loss at the field level: A methodology and applied case study on a North Carolina farm. Resour Conserv Recycl 2018;137:243–50. https://doi.org/10.1016/j.resconrec.2018.05.017.Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G, Sala S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour Technol 2020;312:123575. https://doi.org/10.1016/j.biortech.2020.123575.Alonso-Gómez LA, Solarte-Toro JC, Bello-Pérez LA, Cardona-Alzate CA. Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food Bioprod Process 2020;121. https://doi.org/10.1016/j.fbp.2020.01.005.Beltrán-Ramírez F, Orona-Tamayo D, Cornejo-Corona I, Luz Nicacio González-Cervantes J, de Jesús Esparza-Claudio J, Quintana-Rodríguez E. Agro-Industrial Waste Revalorization: The Growing Biorefinery. Biomass Bioenergy - Recent Trends Futur. Challenges, IntechOpen; 2019. https://doi.org/10.5772/intechopen.83569Perea-Moreno AJ, Aguilera-Ureña MJ, Manzano-Agugliaro F. Fuel properties of avocado stone. Fuel 2016;186:358–64. https://doi.org/10.1016/j.fuel.2016.08.101.Ortiz-Sanchez M, Solarte-Toro JC, Orrego-Alzate CE, Acosta-Medina CD, Cardona-Alzate CA. Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Convers Biorefinery 2020:1–15. https://doi.org/10.1007/s13399-020-00627-y.Permal R, Leong Chang W, Seale B, Hamid N, Kam R. Converting industrial organic waste from the cold-pressed avocado oil production line into a potential food preservative. Food Chem 2020;306:125635. https://doi.org/10.1016/j.foodchem.2019.125635.Ortiz DL, Batuecas E, Orrego CE, Rodríguez LJ, Camelin E, Fino D. Sustainable management of peel waste in the small-scale orange juice industries: A Colombian case study. J Clean Prod 2020;265:121587. https://doi.org/10.1016/j.jclepro.2020.121587.Spence A, Blanco Madrigal E, Patil R, Bajón Fernández Y. Evaluation of anaerobic digestibility of energy crops and agricultural by-products. Bioresour Technol Reports 2019;5:243–50. https://doi.org/10.1016/j.biteb.2018.11.004.Agama-Acevedo E, Sañudo-Barajas JA, Vélez De La Rocha R, González-Aguilar GA, Bello-Peréz LA. Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CYTA - J Food 2016. https://doi.org/10.1080/19476337.2015.1055306.Watanabe MDB, Morais ER, Cardoso TF, Chagas MF, Junqueira TL, Carvalho DJ, et al. Process simulation of renewable electricity from sugarcane straw: Techno-economic assessment of retrofit scenarios in Brazil. J Clean Prod 2020;254:120081. https://doi.org/10.1016/j.jclepro.2020.120081.Anco S. Blazev. Energy Security for The 21st Century. CRC Press; 2015.Global Syngas Technologies Council (GSTC). Syngas production 2019.Solarte-Toro JC, González-Aguirre JA, Poveda Giraldo JA, Cardona Alzate CA. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renew Sustain Energy Rev 2021;136. https://doi.org/10.1016/j.rser.2020.110376.Visser R, Van Ree R. Small-scale biorefining. 2016.Kolfschoten R, Bruins ME, Sanders JPM. Opportunities for small-scale biorefi nery for production of sugar and ethanol in the Netherlands. Biofuels, Bioprod Biorefining 2014;8:475–86. https://doi.org/10.1002/bbb.1487.Bruins ME, Sanders JPM. Small-scale processing of biomass for biorefinery. Biofuels, Bioprod Biorefining 2012;6:135–45. https://doi.org/10.1002/bbb.1319.Ali AAM, Othman MR, Shirai Y, Hassan MA. Sustainable and integrated palm oil biorefinery concept with value-addition of biomass and zero emission system. J Clean Prod 2015;91:96–9. https://doi.org/10.1016/j.jclepro.2014.12.030.Bautista S, Enjolras M, Narvaez P, Camargo M, Morel L. Biodiesel-triple bottom line (TBL): A new hierarchical sustainability assessment framework of principles criteria & indicators (PC&I) for biodiesel production. Part II-validation. Ecol Indic 2016;69:803–17. https://doi.org/10.1016/j.ecolind.2016.04.046.Syed S, Tollamadugu NVKVP. Role of Plant Growth-Promoting Microorganisms as a Tool for Environmental Sustainability. Recent Dev. Appl. Microbiol. Biochem., Elsevier Inc.; 2019, p. 209–22. https://doi.org/10.1016/B978-0-12-816328-3.00016-7.Matthews NE, Stamford L, Shapira P. Aligning sustainability assessment with responsible research and innovation: Towards a framework for Constructive Sustainability Assessment. Sustain Prod Consum 2019;20:58–73. https://doi.org/10.1016/j.spc.2019.05.002.Glavi P, Lukman R. Review of sustainability terms and their definitions. J Clean Prod 2007;15:1875–85. https://doi.org/10.1016/j.jclepro.2006.12.006.Horlings LG. The inner dimension of sustainability : personal and cultural values. Curr Opin Environ Sustain 2015;14:163–9. https://doi.org/10.1016/j.cosust.2015.06.006.Brundtland GH. Our Common Future. In: Kamal M, Biswas A, editors. Earth US Popul. - Resour. - Environ. - Dev. First edit, Oxford: Butterworth-Heinemann; 1991, p. 29–32.Filho W, Frankenberger F, Lange A, Azeiteiro U, Alves F, Castro P, et al. A framework for the implementation of the Sustainable Development Goals in university programmes. J Clean Prod 2021;299:1–12. https://doi.org/10.1016/j.jclepro.2021.126915.Lucas P, Ludwig K, Kok M, Kruitwagen S. Sustainable Development Goals in the Netherlands: Building Blocks for Environmental Policy 2030. The Hague: 2016.Dang HAH, Serajuddin U. Tracking the sustainable development goals: Emerging measurement challenges and further reflections. World Dev 2020;127:104570. https://doi.org/10.1016/j.worlddev.2019.05.024.Calderón J. Etapas del conflicto armado en Colombia: Hacia el posconflicto. Latinoamérica Rev Estud Latinoam 2016:227–57.Moro B, Sacasa M del C, Preti A, Reyes O, Villegas A. Los Montes de María: Análsis de la conlictividad. Colombia: Area de paz, desarrollo y reconciliación. Programa de las Naciones Unidas para el Desarrollo; 2010.Bautista-Cespedes O V., Willemen L, Castro-Nunez A, Groen TA. The effects of armed conflict on forest cover changes across temporal and spatial scales in the Colombian Amazon. Reg Environ Chang 2021;21. https://doi.org/10.1007/s10113-021-01770-6.Tamayo-Agudelo W, Bell V. Armed conflict and mental health in Colombia. BJPsych Int 2019;16:40–2. https://doi.org/10.1192/bji.2018.4.Yamada T, Sakisaka K, Rodríguez LNB, Yamaoka K. Self-esteem, socioeconomic status and social participation of persons with disabilities living in areas affected by armed conflict in colombia. Int J Environ Res Public Health 2021;18. https://doi.org/10.3390/ijerph18084328.Rios J, Morales J. Violence, post-conflict and electoral trends in Colombia: notes for reflection. Reflexión Política 2019;21:8–19.PODEC. Análisis del paln de consolidación de Montes de María: Una mirada desde el desarrollo , la democracia , los derechos humanos y la cooperación internacional. 20011.Aguilera M. Montes de María: Una subregión de económia campesina y empresarial. Cartagena: 2013.Lissbrant S, Espitia PJP, Mendoza A. Challenges faced by smallholder farmers in a former conflict area in Colombia: the case of Montes de María. Investig Desarro 2019;26:6–39. https://doi.org/10.14482/indes.26.2.303.6.Solarte-Toro JC, Ortiz-Sanchez M, Restrepo-Serna DL, Peroza Piñeres P, Pérez Cordero A, Cardona Alzate CA. Influence of products portfolio and process contextualization on the economic performance of small- and large-scale avocado biorefineries. Bioresour Technol 2021;342:126060. https://doi.org/10.1016/j.biortech.2021.126060.MinAgricultura. Reporte: Area, Producción y Rendimiento Nacional por Cultivo. Estadísticas Agropecu 2020. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 (accessed August 17, 2020).DANE. El cultivo del aguacate (Persea americana Miller.), fruta de extraordinarias propiedades alimenticias, curativas e industriales (Primera parte). vol. 1. 2015.Estrada M E, Cortés R M, Gil J. Guacamole powder: Standardization of the spray drying process. Vitae 2017;24:102–12. https://doi.org/10.17533/udea.vitae.v24n2a03.IMARC. Guacamole Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021-2026 2021. https://www.imarcgroup.com/guacamole-market#:~:text=Market Overview%3A,7.6%25 during 2021-2026. (accessed September 22, 2021).Berasategi I, Barriuso B, Ansorena D, Astiasarán I. Stability of avocado oil during heating: Comparative study to olive oil. Food Chem 2012;132:439–46. https://doi.org/10.1016/j.foodchem.2011.11.018.IMARC. Avocado Oil Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021-2026 2021. https://www.imarcgroup.com/avocado-oil-market.Peroza Piñeres P, Chamorro Anaya L, Vitola Romero D, Solarte-Toro JC, Piedrahita-Rodríguez S, Barboza García A, et al. Biocontrol Potential of Native Trichoderma spp. Against Phytophthora, Fusarium, and Pythium Phytopatogens to avoid Radicular Root Rot in Avocado Crops: Colombia Case Study. In: Gorawala P, Mandhatri S, editors. Agric. Res. Updat. Volume 39, New York: Nova Science Publishers; 2022, p. 91–124.Pérez C., Hernández G., Fuentes C. Use of endophytic bacteria as biological control on Phytophthora cinnamomi Rands causing root rot in avocado (Persea americana Mill.). Rev Colomb Cienc Anim 2014;6:213–22.Tremocoldi MA, Rosalen PL, Franchin M, Massarioli AP, Denny C, Daiuto ÉR, et al. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS One 2018;13:1–12. https://doi.org/10.1371/journal.pone.0192577.Kenasa G, Kena E. Optimization of Biogas Production from Avocado Fruit Peel Wastes Co- digestion with Animal Manure Collected from Juice Vending House in Gimbi Town, Ethiopia. Ferment Technol 2019;08:1–6. https://doi.org/10.4172/2167-7972.1000153.Castillo-llamosas A Del, Rodríguez-martínez B, Pablo G, Eibes G, Garrote G, Gullón B. Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. Bioresour Technol 2021:125981. https://doi.org/10.1016/j.biortech.2021.125981.Simmonds NW, Shepherd K. The taxonomy and origins of the cultivated bananas. Bot J Linn Soc 1955;55:302–12. https://doi.org/10.1111/j.1095-8339.1955.tb00015.x.Ghag SB, Ganapathi TR. Genetically modified bananas: To mitigate food security concerns. Sci Hortic (Amsterdam) 2017;214:91–8. https://doi.org/10.1016/J.SCIENTA.2016.11.023.Saladini F, Vuai SA, Langat BK, Gustavsson M, Bayitse R, Gidamis AB, et al. Sustainability assessment of selected biowastes as feedstocks for biofuel and biomaterial production by emergy evaluation in five African countries. Biomass and Bioenergy 2016;85:100–8. https://doi.org/10.1016/j.biombioe.2015.11.016.Ulloa JB, Van Weerd JH, Huisman EA, Verreth JAJ. Tropical agricultural residues and their potential uses in fish feeds: The Costa Rican situation. Waste Manag 2004;24:87–97. https://doi.org/10.1016/j.wasman.2003.09.003.García-Solís SE, Bello-Pérez LA, Agama-Acevedo E, Flores-Silva PC. Plantain flour: A potential nutraceutical ingredient to increase fiber and reduce starch digestibility of gluten-free cookies. Starch - Stärke 2018;70:1700107. https://doi.org/10.1002/star.201700107.Parra-Ramírez D, Martinez A, Cardona CA. Technical and economic potential evaluation of the strain Escherichia coli MS04 in the ethanol production from glucose and xylose. Biochem Eng J 2018;140:123–9. https://doi.org/10.1016/j.bej.2018.09.015.Robayo Medina AT. Caracterización fisicoquímica de diferentes variedades de aguacate, Persea americana Mill. (Lauraceae ) e implementación de un método de extracción del aceite de aguacate como alternativa de industrialización Caracterización fisicoquímica de diferentes. Universidad Nacional de Colombia Sede Bogotá, 2016.Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of Extractives in Biomass. 2008.Han JS, Rowell JS. Chemical composition of fibers. Pap. Compos. from Agro-based Resour., 1997, p. 83–134.Pandey A, Negi S, Binod P, Larroche C. Pretreatment of Biomass: Processes and Technologies. Elsevier B.V; 2015.Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. 2008.Von Asboth A. A new method for the determination of Starch. J Am Chem Soc 1897;9:46–9.Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of Ash in Biomass. Colorado: 2008.ASTME1756-01. Standard Test Method for Determination of Total Solids in Biomass. West Conshohocken, PA 2001.Sluiter a, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, et al. Determination of total solids in biomass and total dissolved solids in liquid process samples. Natl Renew Energy Lab 2008:9. https://doi.org/NREL/TP-510-42621.ASTME1690-08. Standard Test Method for Determination of Ethanol Extractives in Biomass. ASTM Int West Conshohocken, PA 2016.Rabemanolontsoa H, Saka S. Holocellulose determination in biomass. Zero-Carbon Energy Kyoto 2011. Special Ed, 2012, p. 135–40.ASTME1755-01. Standard Test Method for Ash in Biomass. ASTM Int West Conshohocken, PA 2015.ASTME870-82. Standard Test Methods for Analysis of Wood Fuels. West Conshohocken, PA 2013.ASTME872-82. Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. West Conshohocken, PA 2013.ASTME871-82. Standard Test Method for Moisture Analysis of Particulate Wood Fuels. West Conshohocken, PA 2013.Baird RB, Eaton AD, Rice EW, editors. Fixed and volatiles solids ignited at 550°C. 23rd Editi. 2010.Shen J, Zhu S, Liu X, Zhang H, Tan J. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag 2010;51:983–7. https://doi.org/10.1016/j.enconman.2009.11.039.Solarte-Toro JC, González-Aguirre JA, Poveda Giraldo JA, Cardona Alzate CA. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renew Sustain Energy Rev 2021;136. https://doi.org/10.1016/j.rser.2020.110376.Reed TB, Das A. Handbook of biomass downdraft gasifier engine systems 1988. https://doi.org/10.2172/5206099.Rollinson AN, Williams O. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications. vol. 3. 2016. https://doi.org/10.1098/rsos.150578.Verein Deutscher Ingenieure (VDI). Fermentation of organic materials. Characterization of the substrate, sampling, collection of material data, fermentation test. VDI 4630. 2006.Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci Technol 2009;59:927–34. https://doi.org/10.2166/wst.2009.040.Ortiz-Sanchez M, Solarte-Toro JC, Orrego-Alzate CE, Acosta-Medina CD, Cardona-Alzate CA. Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Convers Biorefinery 2020. https://doi.org/10.1007/s13399-020-00627-y.Trujillo-Mayol I, Céspedes-Acuña C, Silva F, Alarcón-Enos J. Improvement of the polyphenol extraction from avocado peel by assisted. J Food Process Eng 2019:1–11. https://doi.org/10.1111/jfpe.13197 ORIGINAL.Figueroa JG, Borrás-Linares I, Del Pino-García R, Curiel JA, Lozano-Sánchez J, Segura-Carretero A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem 2021;352. https://doi.org/10.1016/j.foodchem.2021.129300.Singleton V, Orthofer R, Lamuela-Raventós R. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Packer L, editor. Methods Enzymol., 1999, p. 152–78.Marinova G, Batchvarov V. Evaluation of the methods for determination of the free radical scaveging activity by DPPH. Bulg J Agric Sci 2011;17:11–24.Molyneux P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating anti-oxidant activity. Songklanakarin J Sci Technol 2004;26:211–9.Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231–7. https://doi.org/10.1016/S0891-5849(98)00315-3.Ozgen M, Reese RN, Tulio A, Scheerens J, Miller R. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 2006;54:1151–7. https://doi.org/10.1021/jf051960d.Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 2019;107. https://doi.org/10.1016/j.rser.2019.02.024.Solarte-Toro JC, Chacón-Pérez Y, Piedrahita-Rodríguez S, Poveda Giraldo JA, Teixeira JA, Moustakas K, et al. Effect of dilute sulfuric acid pretreatment on the physicochemical properties and enzymatic hydrolysis of coffee cut-stems. Energy 2020;195. https://doi.org/10.1016/j.energy.2020.116986.Pylypiw HM, Grether MT. Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods. J Chromatogr A 2000;883:299–304. https://doi.org/10.1016/S0021-9673(00)00404-0.Costagli G, Betti M. Avocado oil extraction processes: Method for cold-pressed high-quality edible oil production versus traditional production. J Agric Eng 2015;46:115–22. https://doi.org/10.4081/jae.2015.467.Solarte-Toro JC, Ortiz-Sanchez M, Restrepo-Serna DL, Peroza Piñeres P, Pérez Cordero A, Cardona Alzate CA. Influence of products portfolio and process contextualization on the economic performance of small- and large-scale avocado biorefineries. Bioresour Technol 2021;342. https://doi.org/10.1016/j.biortech.2021.126060.Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018;33. https://doi.org/10.1016/j.ejbt.2018.03.005.Sánchez F, Araus K, Domínguez MP, Miguel GS. Thermochemical Transformation of Residual Avocado Seeds: Torrefaction and Carbonization. Waste and Biomass Valorization 2017;8:2495–510. https://doi.org/10.1007/s12649-016-9699-6.Rueda-Duran C, Ortiz-Sánchez M, Cardona CA. Potential of residues to biotechnological conversion. Case study: Detailed Economic Assessment of polylactic acid production used glucose platform from sugarcane bagasse, coffee cut steams and plantain. 8th Int. Conf. Sustain. waste Manag., 2021, p. 1–2.Solarte-Toro JC, Rueda-duran CA, Ortiz-sanchez M, Ariel C, Alzate C. A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion. Bioresour Technol Reports 2021;15:100776. https://doi.org/10.1016/j.biteb.2021.100776.Fitzpatrick SW. Production of levulinic acid from carbohydrates-containing materials. US5608105, 1997.O'Neil R, Ahmad MN, Vanoye L, Aiouache F. Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite. Ind Eng Chem Res 2009;48:4300–6. https://doi.org/10.1021/ie801599k.Lee S, Koo Y. Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm. Simulation 2004;14:1163–9.Min D-J, Choi KH, Chang YK, Kim J-H. Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth. Korean J Chem Eng 2011;28:1969–74. https://doi.org/10.1007/s11814-011-0082-9.Silva CJSM, Mussatto SI, Roberto IC. Study of xylitol production by Candida guilliermondii on a bench bioreactor. J Food Eng 2006;75:115–9. https://doi.org/10.1016/j.jfoodeng.2005.04.001.De Faveri D, Lambri M, Converti A, Perego P, Del Borghi M. Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulose hydrolyzates. Chem Eng J 2002;90:291–8. https://doi.org/10.1016/S1385-8947(02)00134-1.Banks D. Foodservice Frying. Second Edi. AOCS Press; 2007. https://doi.org/10.1016/B978-1-893997-92-9.50019-0.Nasrin TAA, Noomhorm A, Anal AK. Physico-Chemical Characterization of Culled Plantain Pulp Starch, Peel Starch, and Flour. Int J Food Prop 2015;18:165–77. https://doi.org/10.1080/10942912.2013.828747.Duque SH, Cardona CA, Moncada J. Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy and Fuels 2015;29:775–83. https://doi.org/10.1021/ef5019274.Rendón-Villalobos JR, Solorza-Feria J, Aguilar-Sandoval A. Optimisation of conditions for glucose syrup production from banana (Musa paradisiaca L.) pulp using response surface methodology. Int J Food Sci Technol 2011;46:739–45. https://doi.org/10.1111/j.1365-2621.2010.02544.x.Chuck-Hernandez C, Perez-Carrillo E, Serna-Saldivar SO. Production of bioethanol from steam-flaked sorghum and maize. J Cereal Sci 2009;50:131–7. https://doi.org/10.1016/j.jcs.2009.04.004.Quintero JA, Cardona CA. Process Simulation of Fuel Ethanol Production from Lignocellulosics using Aspen Plus. Ind Eng Chem Res 2011;50:6205–12. https://doi.org/10.1021/ie101767x.Towler G, Sinnott R. Separation Columns (Distillation, Absorption, and Extraction). In: Towler G, Sinnott R, editors. Chem. Eng. Des. SI Edition, Chemical Engineering Series; 2012, p. 807–935. https://doi.org/10.1016/b978-0-08-096659-5.00017-1.Ruiz-Mercado GJ, Smith RL, Gonzalez MA. Sustainability Indicators for Chemical Processes: II. Data Needs. Ind Eng Chem Res 2012;51:2329–53. https://doi.org/10.1021/ie200755k.Budzinski K, Blewis M, Dahlin P, D’Aquila D, Esparza J, Gavin J, et al. Introduction of a process mass intensity metric for biologics. N Biotechnol 2019;49:37–42. https://doi.org/10.1016/j.nbt.2018.07.005.Rogers L, Jensen KF. Continuous manufacturing-the Green Chemistry promise? Green Chem 2019;21:3481–98. https://doi.org/10.1039/c9gc00773c.Tobiszewski M, Marć M, Gałuszka A, Namies̈nik J. Green chemistry metrics with special reference to green analytical chemistry. Molecules 2015;20:10928–46. https://doi.org/10.3390/molecules200610928.García CA, Betancourt R, Cardona CA. Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. J Environ Manage 2017;203 part 2:695–703. https://doi.org/10.1016/j.jenvman.2016.04.001.Serna-Loaiza S, García-Velásquez CA, Cardona CA. Strategy for the selection of the minimum processing scale for the economic feasibility of biorefineries. Biofuels, Bioprod Biorefining 2018:1–13. https://doi.org/10.1002/bbb.1941.Rueda-Duran C, Ortiz-Sánchez M, Cardona CA. Detailed economic assessment of polylactic acid production by using glucose platform : sugarcane bagasse , coffee cut stems , and plantain peels as possible raw materials. Biomass Convers Biorefinery 2022:1–16. https://doi.org/10.1007/s13399-022-02501-5.García-Velásquez CA, Cardona CA. Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment. Energy 2019;172:232–42. https://doi.org/10.1016/j.energy.2019.01.073.DANE. Boletín mensual insumos y factores asociados a la produccion agropecuaria. DANE 2016:90.Dalgaard R, Halberg N, Hermansen J. Danish pork production: An environmental assessment. vol. 82. 2007.De Klein C, Novoa R, Ogle S, Smith K, Rochette P, Wirth T. Emisiones de N2O de los suelos gestionados y emisiones de CO2 derivadas de da aplicación de Cal y UREA. Directrices del IPCC 2006 para los Inventar. Nac. gases Ef. invernadero, vol. 4, 2006, p. 1–56.Allen RG, Pereira LS, Raes D, Smith M. Crop Evapotranspiration. FAO Irrig Drain Pap 1998;56.Hoekstra A, Chapagain A, Aldaya M, Mekonnen M. Water footprint manual: State of the art 2009. Enschede, The Netherlands: 2009.Novoa V, Ahumada-Rudolph R, Rojas O, Sáez K, de la Barrera F, Arumí JL. Understanding agricultural water footprint variability to improve water management in Chile. Sci Total Environ 2019;670:188–99. https://doi.org/10.1016/j.scitotenv.2019.03.127.SIPSA. El cultivo del plátano (Musa paradisiaca), un importante alimento para el mundo. 2014.Cronauer SS, Krikorian AD. Multiplication of Musa from Excised Stem Tips. Ann Bot 1984;53:321–8. https://doi.org/10.1093/oxfordjournals.aob.a086696.Cronauer SS, Krikorian AD. Multiplication of Musa from Excised Stem Tips. Ann Bot 1984;53:321–8. https://doi.org/10.1093/oxfordjournals.aob.a086696.Shen Z, Xue C, Penton CR, Thomashow LS, Zhang N, Wang B, et al. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biol Biochem 2019;128:164–74. https://doi.org/10.1016/J.SOILBIO.2018.10.016.Castaño Á, Aristizábal M, González H. Requerimientos Hídricos Del Plátano Dominico. Agronomia 2011;19:57–67.UNEP. Guidelines for Social Life Cycle Assessment of Products. 2020.Asah ST, Baral N. Technicalizing non-technical participatory social impact assessment of prospective cellulosic biorefineries: Psychometric quantification and implications. Appl Energy 2018;232:462–72. https://doi.org/10.1016/j.apenergy.2018.09.199.Eisfeldt F, Ciroth A. PSILCA - A Product Social Impact Life Cycle Assessment database. 2018.Sectorial. Analfabetismo, una Aspecto que aún Prevalece en la Sociedad y Acumula 773 Millones de Personas n.d. https://www.sectorial.co/articulos-especiales/item/421964-analfabetismo,-una-aspecto-que-aún-prevalece-en-la-sociedad-y-acumula-773-millones-de-personas (accessed May 1, 2022).UN, DANE. Mujeres y Hombres: Brechas de género en Colombia. 2020.DANE. Boletín técnico Mercado laboral por departamentos. Merc Labor Por Dep 2021:1–36.WageIndicator-Foundation. Living Wages, Minimum and Actual Wages, National Poverty Line. 2019. https://wageindicator.org/salary/wages-in-context (accessed March 5, 2019).Shen J, Zhu S, Liu X, Zhang H, Tan J. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag 2010;51:983–7. https://doi.org/10.1016/j.enconman.2009.11.039.García-Vargas MC, Contreras MDM, Castro E. Avocado-derived biomass as a source of bioenergy and bioproducts. Appl Sci 2020;10:1–29. https://doi.org/10.3390/app10228195.Jimenez P, Garcia P, Quitral V, Vasquez K, Parra-Ruiz C, Reyes-Farias M, et al. Pulp , Leaf , Peel and Seed of Avocado Fruit : A Review of Bioactive Compounds and Healthy Benefits Pulp , Leaf , Peel and Seed of Avocado Fruit : A Review of. Food Rev Int 2020:1–37. https://doi.org/10.1080/87559129.2020.1717520.Dávila JA, Rosenberg M, Cardona CA. A biorefinery for efficient processing and utilization of spent pulp of Colombian Andes Berry (Rubus glaucus Benth.): Experimental, techno-economic and environmental assessment. Bioresour Technol 2017;223:227–36. https://doi.org/10.1016/j.biortech.2016.10.050.Rivera–González G, Amaya–Guerra CA, de la Rosa–Millán J. Physicochemical characterisation and in vitro Starch digestion of Avocado Seed Flour (Persea americana V. Hass) and its starch and fibrous fractions. Int J Food Sci Technol 2019;54:2447–57. https://doi.org/10.1111/ijfs.14160.Builders PF, Nnurum A, Mbah CC, Attama AA, Manek R. The physicochemical and binder properties of starch from Persea americana Miller (Lauraceae). Starch/Staerke 2010;62:309–20. https://doi.org/10.1002/star.200900222.Macena JFF, de Souza JCA, Camilloto GP, Cruz RS. Physico-chemical, morphological and technological properties of the avocado (Persea americana mill. cv. hass) seed starch. Cienc e Agrotecnologia 2020;44. https://doi.org/10.1590/1413-7054202044001420.Maryam, Anwar Kasim, Santosa. Utilization Starch of Avocado Seed (Persea Americana Mill.) as a Raw Material for Dextrin. J Food Sci Eng 2016;6:32–7. https://doi.org/10.17265/2159-5828/2016.01.005.Brown RC. Thermochemical Processing of Biomass: Conversion into Fuels,Chemicals and Power. 2011. https://doi.org/10.1002/9781119990840Nwaokobia K, Oguntokun MO, Okolie PL, Ogboru RO, Idugboe OD. Evaluation of the chemical composition of Persea americana (Mill) pulp and seed. J Biosci Biotechnol Discov 2018;3:83–9. https://doi.org/10.31248/jbbd2018.071.Soponpongpipat N, Sittikul D, Comsawang P. Prediction model of higher heating value of torrefied biomass based on the kinetics of biomass decomposition. J Energy Inst 2016;89:425–35. https://doi.org/10.1016/j.joei.2015.02.011.Yin CY. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011;90:1128–32. https://doi.org/10.1016/j.fuel.2010.11.031.García-Velásquez CA, Cardona CA. Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment. Energy 2019:232–42. https://doi.org/10.1016/j.energy.2019.01.073.Poveda-Giraldo JA, Cardona CA. Biorefinery potential of Eucalyptus grandis to produce phenolic compounds and biogas. Can J For Res 2020:1–49. https://doi.org/10.1139/cjfr-2020-0201.Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018;33:52–62. https://doi.org/10.1016/j.ejbt.2018.03.005.Li J, Kumar Jha A, He J, Ban Q, Chang S, Wang P. Assessment of the effects of dry anaerobic co-digestion of cow dung with waste water sludge on biogas yield and biodegradability. Int J Phys Sci 2011;6:3723–32. https://doi.org/10.5897/IJPS11.753.Solarte-Toro JC, Mariscal Moreno JP, Aristizábal Zuluaga BH. Evaluación de la digestión y co-digestión anaerobia de residuos de comida y de poda en bioreactores a escala laboratorio. Rev ION 2017;30:105–16. https://doi.org/10.18273/revion.v30n1-2017008.Rashama C, Ijoma GN, Matambo TS. Appraising different models for predicting biomethane potential: the case of avocado oil processing by-products. J Mater Cycles Waste Manag 2021;23:409–15. https://doi.org/10.1007/s10163-020-01116-0.Dieter Deublein, Angelika Steinhauser. Biogas from Waste and Renewable Resources: An Introduction, 2nd, Revised and Expanded Edition | Wiley. WILEY; 2010.Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 2019;107:587–601. https://doi.org/10.1016/j.rser.2019.02.024.Parra-Ramírez D, Solarte-Toro JC, Cardona-Alzate CA. Techno-Economic and Environmental Analysis of Biogas Production from Plantain Pseudostem Waste in Colombia. Waste and Biomass Valorization 2020;11. https://doi.org/10.1007/s12649-019-00643-8.Agama-Acevedo E, Sañudo-Barajas JA, Vélez De La Rocha R, González-Aguilar GA, Bello-Peréz LA. Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CYTA - J Food 2016;14:117–23. https://doi.org/10.1080/19476337.2015.1055306.Te WZ, Muhanin KNM, Chu YM, Selvarajoo A, Singh A, Ahmed SF, et al. Optimization of Pyrolysis Parameters for Production of Biochar From Banana Peels: Evaluation of Biochar Application on the Growth of Ipomoea aquatica. Front Energy Res 2021;8:1–16. https://doi.org/10.3389/fenrg.2020.637846.Ogbodo NO, Asadu CO, Ezema CA, Onoh MI, Elijah OC, Ike IS, et al. Preparation and Characterization of activated carbon from agricultural waste (Musa-paradisiaca peels) for the remediation of crude oil contaminated water. J Hazard Mater Adv 2021;2:100010. https://doi.org/10.1016/j.hazadv.2021.100010.Solarte-Toro JC, González-Aguirre JA, Poveda Giraldo JA, Cardona CA. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renew Sustain Energy Rev 2021;136:110376. https://doi.org/10.1016/j.rser.2020.110376.Kayiwa R, Kasedde H, Lubwama M, Kirabira JB. Characterization and pre-leaching effect on the peels of predominant cassava varieties in Uganda for production of activated carbon. Curr Res Green Sustain Chem 2021;4:100083. https://doi.org/10.1016/j.crgsc.2021.100083.Brachi P, Miccio F, Miccio M, Ruoppolo G. Torrefaction of Tomato Peel Residues in a Fluidized Bed of Inert Particles and a Fixed-Bed Reactor. Energy and Fuels 2016;30:4858–68. https://doi.org/10.1021/acs.energyfuels.6b00328.Achinas S, Krooneman J, Euverink GJW. Enhanced Biogas Production from the Anaerobic Batch Treatment of Banana Peels. Engineering 2019;5:970–8. https://doi.org/10.1016/j.eng.2018.11.036.Flores M, Saravia C, Vergara C, Avila F, Valdés H, Ortiz-Viedma J. Avocado oil: Characteristics, Properties, and Applications. Molecules 2019;24:1–21.Santos V da S, Fernandes GD. Cold pressed avocado (Persea americana Mill.) oil. Cold Press. Oils, Elsevier Inc.; 2020, p. 405–28. https://doi.org/10.1016/b978-0-12-818188-1.00037-2.De Oliveira AP, Franco EDS, Rodrigues Barreto R, Cordeiro DP, De Melo RG, De Aquino CMF, et al. Effect of semisolid formulation of persea americana mill (Avocado) oil on wound healing in rats. Evidence-Based Complement Altern Med 2013;2013. https://doi.org/10.1155/2013/472382.Ozdemir F, Topuz A. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem 2004;86:79–83. https://doi.org/10.1016/j.foodchem.2003.08.012.Galvão M de S, Narain N, Nigam N. Influence of different cultivars on oil quality and chemical characteristics of avocado fruit. Food Sci Technol 2014;34:539–46. https://doi.org/10.1590/1678-457x.6388.Qin X, Zhong J. A review of extraction techniques for avocado oil. J Oleo Sci 2016;65:881–8. https://doi.org/10.5650/jos.ess16063.Paul AAL, Adewale FJ. Data on optimization of production parameters on Persea Americana (Avocado) plant oil biodiesel yield and quality. Data Br 2018;20:855–63. https://doi.org/10.1016/j.dib.2018.08.064.Koizumi T. Biofuels and food security. Renew Sustain Energy Rev 2015;52:829–41. https://doi.org/10.1016/j.rser.2015.06.041.Furlan CPB, Valle SC, Östman E, Roberto M, Maróstica Jr MR, Tovar J. Inclusion of Hass avocado-oil improves postprandial metabolic responses to a hypercaloric-hyperlipidic meal in overweight subjects. J Funct Foods 2017;38:349–54. https://doi.org/10.1016/j.jff.2017.09.019.Zhu S, Jiao W, Xu Y, Hou L, Li H, Shao J, et al. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci 2021;286:120046. https://doi.org/10.1016/j.lfs.2021.120046.Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 2012;16:143–69. https://doi.org/10.1016/j.rser.2011.07.143.Ferreira EM, Pires A V., Susin I, Gentil RS, Parente MOM, Nolli CP, et al. Growth, feed intake, carcass characteristics, and meat fatty acid profile of lambs fed soybean oil partially replaced by fish oil blend. Anim Feed Sci Technol 2014;187:9–18. https://doi.org/10.1016/j.anifeedsci.2013.09.016.Malins K, Kampars V, Kampare R, Prilucka J, Brinks J, Murnieks R, et al. Properties of rapeseed oil fatty acid alkyl esters derived from different alcohols. Fuel 2014;137:28–35. https://doi.org/10.1016/j.fuel.2014.07.091.Oliveira M dos S, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E, De Souza-Soares LA. Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol 2011;102:8335–8. https://doi.org/10.1016/j.biortech.2011.06.025.Hellier P, Ladommatos N, Yusaf T. The influence of straight vegetable oil fatty acid composition on compression ignition combustion and emissions. Fuel 2015;143:131–43. https://doi.org/10.1016/j.fuel.2014.11.021.Mehmood S, Orhan I, Ahsan Z, Aslan S, Gulfraz M. Fatty acid composition of seed oil of different Sorghum bicolor varieties. Food Chem 2008;109:855–9. https://doi.org/10.1016/j.foodchem.2008.01.014.Yucel O, Hastaoglu MA. Kinetic modeling and simulation of throated downdraft gasifier. Fuel Process Technol 2016;144:145–54. https://doi.org/10.1016/j.fuproc.2015.12.023.Solarte-Toro J-C. Oil palm rachis gasification for synthesis gas production. Universidad Nacional de Colombia - Sede Manizales, 2018.Dudyński M, van Dyk JC, Kwiatkowski K, Sosnowska M. Biomass gasification: Influence of torrefaction on syngas production and tar formation. Fuel Process Technol 2015;131:203–12. https://doi.org/10.1016/j.fuproc.2014.11.018.Aristizábal-Marulanda V, Solarte-Toro JC, Cardona Alzate CA. Study of biorefineries based on experimental data: production of bioethanol, biogas, syngas, and electricity using coffee-cut stems as raw material. Environ Sci Pollut Res 2020. https://doi.org/10.1007/s11356-020-09804-y.Bezerra FWF, De Oliveira MS, Bezerra PN, Cunha VMB, Silva MP, Da Costa WA, et al. Extraction of bioactive compounds. Elsevier Inc.; 2019. https://doi.org/10.1016/B978-0-12-817388-6.00008-8.Araújo RG, Rodriguez-Jasso RM, Ruiz HA, Govea-Salas M, Pintado ME, Aguilar CN. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind Crops Prod 2020;154:112623. https://doi.org/10.1016/j.indcrop.2020.112623.Monzón L, Becerra G, Aguirre E, Rodríguez G, Villanueva E. Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks. Sci Agropecu 2021;12:33–40. https://doi.org/10.17268/SCI.AGROPECU.2021.004.Barba FJ, Zhu Z, Koubaa M, Sant’Ana AS, Orlien V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci Technol 2016;49:96–109. https://doi.org/10.1016/j.tifs.2016.01.006.Ramić M, Vidović S, Zeković Z, Vladić J, Cvejin A, Pavlić B. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason Sonochem 2015;23:360–8. https://doi.org/10.1016/j.ultsonch.2014.10.002.Akhtar I, Javad S, Ansari M, Ghaffar N, Tariq A. Process optimization for microwave assisted extraction of Foeniculum vulgare Mill using response surface methodology. J King Saud Univ - Sci 2020;32:1451–8. https://doi.org/10.1016/j.jksus.2019.11.041.Weremfo A, Adulley F, Adarkwah-Yiadom M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. J Anal Methods Chem 2020;2020. https://doi.org/10.1155/2020/7541927.Skenderidis P, Leontopoulos S, Petrotos K, Giavasis I. Vacuum microwave-assisted aqueous extraction of polyphenolic compounds from avocado (Persea americana) solid waste. Sustain 2021;13:1–18. https://doi.org/10.3390/su13042166.Rosero JC, Cruz S, Osorio C, Hurtado N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019;24. https://doi.org/10.3390/molecules24173209.Gómez FS, Peirósánchez S, Iradi MGG, Azman NAM, Almajano MP. Avocado seeds: Extraction optimization and possible use as antioxidant in food. Antioxidants 2014;3:439–54. https://doi.org/10.3390/antiox3020439.Segovia FJ, Corral-Pérez JJ, Almajano MP. Avocado seed: Modeling extraction of bioactive compounds. Ind Crops Prod 2016;85:213–20. https://doi.org/10.1016/j.indcrop.2016.03.005.Moure A, Cruz JM, Franco D, Manuel Domínguez J, Sineiro J, Domínguez H, et al. Natural antioxidants from residual sources. Food Chem 2001;72:145–71. https://doi.org/10.1016/S0308-8146(00)00223-5.Najjar YS. Gas turbine cogeneration systems: a review of some novel cycles. Appl Therm Eng 2000;20:179–97. https://doi.org/10.1016/S1359-4311(99)00019-8.Rashama C, Ijoma GN, Matambo TS. Elucidating Biodegradation Kinetics and Biomethane Potential Trends in Substrates Containing High Levels of Phytochemicals: The Case of Avocado Oil Processing By-products. Waste and Biomass Valorization 2022;13:2071–81. https://doi.org/10.1007/s12649-021-01663-z.Tagne RFT, Anagho SG, Ionel I, Matiuti AC, Ungureanu CI. Experimental biogas production from Cameroon lignocellulosic waste biomass. J Environ Prot Ecol 2019;20:1335–44.Jayaraj S, Deepanraj B, Velmurugan S. Study on the effect of pH on biogas production from food waste by anaerobic digestion. Int Green Energy Confrence 2014;5:799–803.Palacios S, Ruiz HA, Ramos-Gonzalez R, Martínez J, Segura E, Aguilar M, et al. Comparison of physicochemical pretreatments of banana peels for bioethanol production. Food Sci Biotechnol 2017;26:993–1001. https://doi.org/10.1007/s10068-017-0128-9.Ya’aini N, Amin NAS, Asmadi M. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst. Bioresour Technol 2012;116:58–65. https://doi.org/10.1016/j.biortech.2012.03.097.Victor A, Pulidindi IN, Gedanken A. Levulinic acid production from Cicer arietinum, cotton, Pinus radiata and sugarcane bagasse. RSC Adv 2014;4:44706–11. https://doi.org/10.1039/c4ra06246a.Turner M, Saville B. Technoeconomic evaluation of protein‐rich animal feed and ethanol production from.pdf. Biofuels, Bioprod Biorefining 2022;16:105–21. https://doi.org/10.1002/bbb.2259.Abdullah N, Sulaiman F, Gerhauser H. Characterisation of oil palm empty fruit bunches for fuel application. J Phys Sci 2011;22:1–24.Mohamed Noor N. Slow Pyrolysis of Cassava Wastes for Biochar Production and Characterization. Iran J Energy Environ 2012. https://doi.org/10.5829/idosi.ijee.2012.03.05.10.Sangaré D, Moscosa-Santillan M, Aragón Piña A, Bostyn S, Belandria V, Gökalp I. Hydrothermal carbonization of biomass: experimental study, energy balance, process simulation, design, and techno-economic analysis. Biomass Convers Biorefinery 2022. https://doi.org/10.1007/s13399-022-02484-3.Ahmad T, Danish M. A review of avocado waste-derived adsorbents: Characterizations, adsorption characteristics, and surface mechanism. Chemosphere 2022;296:134036. https://doi.org/10.1016/j.chemosphere.2022.134036.Moncada J, Tamayo JA, Cardona CA. Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. J Clean Prod 2016;112:172–81. https://doi.org/10.1016/j.jclepro.2015.09.067.Tesfaye T, Ayele M, Ferede E, Gibril M, Kong F, Sithole B. A techno-economic feasibility of a process for extraction of starch from waste avocado seeds. Clean Technol Environ Policy 2021;23:581–95. https://doi.org/10.1007/s10098-020-01981-1.Allen RG, Pereira LS. Estimating crop coefficients from fraction of ground cover and height. Irrig Sci 2009;28:17–34. https://doi.org/10.1007/s00271-009-0182-z.Mekonnen MM, Hoekstra AY. The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci 2011;15:1577–600. https://doi.org/10.5194/hess-15-1577-2011.Esteve-Llorens X, Ita-Nagy D, Parodi E, González-García S, Moreira MT, Feijoo G, et al. Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: A case study for green asparagus and avocado. Sci Total Environ 2022;818. https://doi.org/10.1016/j.scitotenv.2021.151686.Caro D, Alessandrini A, Sporchia F, Borghesi S. Global virtual water trade of avocado. J Clean Prod 2021;285:124917. https://doi.org/10.1016/j.jclepro.2020.124917.Astier M, Merlín-Uribe Y, Villamil-Echeverri L, Garciarreal A, Gavito ME, Masera OR. Energy balance and greenhouse gas emissions in organic and conventional avocado orchards in Mexico. Ecol Indic 2014;43:281–7. https://doi.org/10.1016/j.ecolind.2014.03.002.Reyes Pineda H, Naranjo JF. Huella hídrica del cultivo de aguacate cv. Hass (Persea americana Mill.), en el Distrito de Conservación de Suelos Barbas - Bremen, Quindío, Colombia. Entre Cienc e Ing 2021;15:63–70. https://doi.org/10.31908/19098367.1813.Hadjian P, Bahmer T, Egle J. Life Cycle Assessment of Three Tropical Fruits (Avocado, Banana, Pineapple). Trop Subtrop Agroecosystems 2019;22:127–41.Ortiz-Sanchez M, Cardona CA. Comparative environmental life cycle assessment of orange peel waste in present productive chains. J Clean Prod 2021;322:128814. https://doi.org/10.1016/j.jclepro.2021.128814.Solarte-Toro JC, Cardona CA. Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspect , challenges and perspectives. Bioresour Technol 2021;340:125626. https://doi.org/10.1016/j.biortech.2021.125626.Rosen MA. Environmental sustainability tools in the biofuel industry. Biofuel Res J 2018;5:751–2. https://doi.org/10.18331/BRJ2018.5.1.2.Dávila JA, Rosenberg M, Castro E, Cardona CA. A model biorefinery for avocado (Persea americana mill.) processing. Bioresour Technol 2017;243:17–29. https://doi.org/10.1016/j.biortech.2017.06.063.Bataille C, Åhman M, Neuhoff K, Nilsson LJ, Fischedick M, Lechtenb S. A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J Clean 2018;187:960–73. https://doi.org/10.1016/j.jclepro.2018.03.107.IChemE. The Sustainability Metrics: Sustainable development progress metrics recommended for use in process industries 2002.Prasara-A J, Gheewala SH. Sustainable utilization of rice husk ash from power plants: A review. J Clean Prod 2016;167:1020–8. https://doi.org/10.1016/j.jclepro.2016.11.042.Ciroth A, Finkbeiner M, Hildenbrand J, Klöpffer W, Mazijn B, Prakash S, et al. Towards a life cycle sustainability assessment: Making products informed choices on products. UNEP/SETAC Life Cycle Initiative; 2011.Solarte-Toro JC, Cardona Alzate CA. Perspectives of the Sustainability Assessment of Biorefineries. Chem Eng Trans 2021;83:307–12. https://doi.org/10.3303/CET2183052.Aristizábal-Marulanda V, Solarte-Toro JC, Cardona Alzate CA. Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS ) in Colombia. Bioresour Technol Reports 2020;9. https://doi.org/10.1016/j.biteb.2020.100397.Robinson JA, Torvik R. White elephants. J Public Econ 2005;89:197–210. https://doi.org/10.1016/j.jpubeco.2004.05.004.Martí L, Martín JC, Puertas R. A DEA-logistics performance index. J Appl Econ 2017;20:169–92. https://doi.org/10.1016/S1514-0326(17)30008-9.Martí L, Puertas R, García L. The importance of the Logistics Performance Index in international trade. Appl Econ 2014;46:2982–92. https://doi.org/10.1080/00036846.2014.916394.González-Aguirre JA, Solarte-Toro JC, Cardona Alzate CA. Supply chain and environmental assessment of the essential oil production using Calendula (Calendula Officinalis) as raw material. Heliyon 2020;6. https://doi.org/10.1016/j.heliyon.2020.e05606.United Nations Industrial Development Organization. Competitive Industrial Performance Report 2020. Vienna, Austria: 2020. https://doi.org/10.18356/0b9f829f-en.Hernández H, Grassano N, Tübke A, Amoroso S, Csefalvay Z, Gkotsis P. The 2019 EU Industrial R&D Investment Scoreboard. Luxembourg: Publications Office of the European Union; 2020. https://doi.org/10.2760/04570.Lescuyer G, Helmes R, Syndicus I, Kerua W. Cocoa value chain analysis in Papua New Guinea. 2018.Towler G, Sinnott R. Capital Cost Estimating. Chem. Eng. Des. Princ. Pract. Econ. Plant Process Des. Second, 2013, p. 307–54. https://doi.org/10.1016/B978-0-08-096659-5.00007-9.Sinnott RK, Towler G. Chemical Engineering Design. Elsevier Ltd; 2013. https://doi.org/10.1016/C2009-0-61216-2.Albrecht FG, König DH, Baucks N, Dietrich RU. A standardized methodology for the techno-economic evaluation of alternative fuels – A case study. Fuel 2017;194:511–26. https://doi.org/10.1016/j.fuel.2016.12.003.Biegler LT, Grossman IE, Westerberg AW. Systematic Methods of Chemical Process Design. 1997.Goedkoop MJ, Heijungs R, Huijbregts MAJ, Schryver A De, Struijs J, van Zelm R. Category indicators at the midpoint and the endpoint level ReCiPe 2008. ResearchGate 2013:126.Costa D, Quinteiro P, Dias AC. A systematic review of life cycle sustainability assessment: Current state, methodological challenges, and implementation issues. Sci Total Environ 2019;686:774–87. https://doi.org/10.1016/j.scitotenv.2019.05.435.Bressanin JM, Geraldo VC, Gomes F de AM, Klein BC, Chagas MF, Watanabe MDB, et al. Multiobjective optimization of economic and environmental performance of Fischer-Tropsch biofuels production integrated to sugarcane biorefineries. Ind Crops Prod 2021;170. https://doi.org/10.1016/j.indcrop.2021.113810.Valente A, Iribarren D, Dufour J. Life cycle sustainability assessment of hydrogen from biomass gasification: A comparison with conventional hydrogen. Int J Hydrogen Energy 2019;44:21193–203. https://doi.org/10.1016/j.ijhydene.2019.01.105.Raccary B, Loubet P, Peres C, Sonnemann G. Evaluating the environmental impacts of analytical chemistry methods: From a critical review towards a proposal using a life cycle approach. TrAC - Trends Anal Chem 2022;147:116525. https://doi.org/10.1016/j.trac.2022.116525.Ruiz-Mercado GJ, Smith RL, Gonzalez MA. Sustainability Indicator for Chemical Processes: I. Taxonomy. Ind Eng Chem Res 2012;51:2309–28.MincienciasPrograma Colo0mbia Científica: Reconstrucción del Tejido Social en Zonas de Postconflicto.Impulsando el desarrollo de biosurfactantes a través de su análisis de ciclo de vida sistemático - Proyecto de InvestigaciónBibliotecariosEstudiantesInvestigadoresPúblico generalTHUMBNAIL1053824434_2022.pdf.jpg1053824434_2022.pdf.jpgGenerated Thumbnailimage/jpeg5960https://repositorio.unal.edu.co/bitstream/unal/83551/5/1053824434_2022.pdf.jpg23119c16f00b0cf25fe229255bf4c8c3MD55ORIGINAL1053824434_2022.pdf1053824434_2022.pdfTesis de Doctorado en Ingeniería - Ingeniería Químicaapplication/pdf8614447https://repositorio.unal.edu.co/bitstream/unal/83551/4/1053824434_2022.pdf8001888207cd79222d2bda30ffad1a21MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83551/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53unal/83551oai:repositorio.unal.edu.co:unal/835512023-07-19 23:03:44.5Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=