TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution
This paper considers the modeling of the threshold autoregressive (TAR) process, which is driven by a noise process that follows a Student’s t-distribution. The analysis is done in the presence of missing data in both the threshold process {Zt} and the interest process {Xt}. We develop a three-stage...
- Autores:
-
Zhang, Hanwen
Nieto, Fabio H.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66551
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66551
http://bdigital.unal.edu.co/67579/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Bayesian Statistics
Gibbs Sampler
Missing Data
Forecasting
Time Series
Threshold Autoregressive Model
Datos faltantes
Estadística Bayesiana
Modelo autoregresivo de umbrales
Muestreador de Gibbs
Pronóstico
Series de tiempo
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_5c15c5dcf1c4b7fd20903aa711451c9f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66551 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zhang, Hanwenb4ea95f0-8c15-4fd3-bc81-040e58b6d4e8300Nieto, Fabio H.ded47b7c-a2b1-414b-9f06-1743735a83543002019-07-03T02:21:20Z2019-07-03T02:21:20Z2015-01-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66551http://bdigital.unal.edu.co/67579/This paper considers the modeling of the threshold autoregressive (TAR) process, which is driven by a noise process that follows a Student’s t-distribution. The analysis is done in the presence of missing data in both the threshold process {Zt} and the interest process {Xt}. We develop a three-stage procedure based on the Gibbs sampler in order to identify and estimate the model. Additionally, the estimation of the missing data and the forecasting procedure are provided. The proposed methodology is illustrated with simulated and real-life data.En este trabajo consideramos el modelamiento de los modelos autoregresivos de umbrales (TAR) con datos faltantes tanto en la serie de umbrales como la serie de interés cuando el proceso del ruido blanco sigue una distribución t de student. Desarrollamos un procedimiento de tres etapas basado en el muestreador de Gibbs para identificar y estimar el modelo, además de la estimación de los datos faltantes y el procedimiento para el pronóstico. La metodología propuesta fue aplicada a datos simulados y datos reales.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/48813Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaZhang, Hanwen and Nieto, Fabio H. (2015) TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution. Revista Colombiana de Estadística, 38 (1). pp. 239-265. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsBayesian StatisticsGibbs SamplerMissing DataForecastingTime SeriesThreshold Autoregressive ModelDatos faltantesEstadística BayesianaModelo autoregresivo de umbralesMuestreador de GibbsPronósticoSeries de tiempoTAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-DistributionArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL48813-239291-1-PB.pdfapplication/pdf2667696https://repositorio.unal.edu.co/bitstream/unal/66551/1/48813-239291-1-PB.pdf885a62f8a4155e88cfda184bfada484eMD51THUMBNAIL48813-239291-1-PB.pdf.jpg48813-239291-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5465https://repositorio.unal.edu.co/bitstream/unal/66551/2/48813-239291-1-PB.pdf.jpge299418879492b43ff778352b4a649c1MD52unal/66551oai:repositorio.unal.edu.co:unal/665512024-05-16 23:09:45.19Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution |
title |
TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution |
spellingShingle |
TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution 51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Bayesian Statistics Gibbs Sampler Missing Data Forecasting Time Series Threshold Autoregressive Model Datos faltantes Estadística Bayesiana Modelo autoregresivo de umbrales Muestreador de Gibbs Pronóstico Series de tiempo |
title_short |
TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution |
title_full |
TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution |
title_fullStr |
TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution |
title_full_unstemmed |
TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution |
title_sort |
TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution |
dc.creator.fl_str_mv |
Zhang, Hanwen Nieto, Fabio H. |
dc.contributor.author.spa.fl_str_mv |
Zhang, Hanwen Nieto, Fabio H. |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics |
topic |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Bayesian Statistics Gibbs Sampler Missing Data Forecasting Time Series Threshold Autoregressive Model Datos faltantes Estadística Bayesiana Modelo autoregresivo de umbrales Muestreador de Gibbs Pronóstico Series de tiempo |
dc.subject.proposal.spa.fl_str_mv |
Bayesian Statistics Gibbs Sampler Missing Data Forecasting Time Series Threshold Autoregressive Model Datos faltantes Estadística Bayesiana Modelo autoregresivo de umbrales Muestreador de Gibbs Pronóstico Series de tiempo |
description |
This paper considers the modeling of the threshold autoregressive (TAR) process, which is driven by a noise process that follows a Student’s t-distribution. The analysis is done in the presence of missing data in both the threshold process {Zt} and the interest process {Xt}. We develop a three-stage procedure based on the Gibbs sampler in order to identify and estimate the model. Additionally, the estimation of the missing data and the forecasting procedure are provided. The proposed methodology is illustrated with simulated and real-life data. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:21:20Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:21:20Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2389-8976 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66551 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67579/ |
identifier_str_mv |
ISSN: 2389-8976 |
url |
https://repositorio.unal.edu.co/handle/unal/66551 http://bdigital.unal.edu.co/67579/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/estad/article/view/48813 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística Revista Colombiana de Estadística |
dc.relation.references.spa.fl_str_mv |
Zhang, Hanwen and Nieto, Fabio H. (2015) TAR Modeling with Missing Data when the White Noise Process Follows a Student’s t-Distribution. Revista Colombiana de Estadística, 38 (1). pp. 239-265. ISSN 2389-8976 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66551/1/48813-239291-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/66551/2/48813-239291-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
885a62f8a4155e88cfda184bfada484e e299418879492b43ff778352b4a649c1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090220076793856 |