Gelfand-kirillov dimension of skew pbw extensions
Gelfand-Kirillov dimension of Poincaré-Birkhoff-Witt (PBW for short) extensions was established by Matczuk ([15], Theorem A). Since PBW extensions are a particular example of skew PBWextensions (also called σ-PBW extensions), the aim of this paper is to compute this dimension for these extensions an...
- Autores:
-
Reyes, Armando
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/49337
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/49337
http://bdigital.unal.edu.co/42794/
- Palabra clave:
- Álgebras no conmutativas
anillos filtrado graduados
extensiones PBW
polinomios cuánticos torcidos
dimensión de Gelfand-Kirillov
Non-commutative algebras
Filtered and graded rings
PBW extensions
Skew quantum polynomials
Gelfand Kirillov dimension
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_5bc700bcc31584d291bdd676c7dce3e9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/49337 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes, Armando5ef6c88d-b616-4fe2-a14f-8496d7801ed53002019-06-29T08:36:17Z2019-06-29T08:36:17Z2013https://repositorio.unal.edu.co/handle/unal/49337http://bdigital.unal.edu.co/42794/Gelfand-Kirillov dimension of Poincaré-Birkhoff-Witt (PBW for short) extensions was established by Matczuk ([15], Theorem A). Since PBW extensions are a particular example of skew PBWextensions (also called σ-PBW extensions), the aim of this paper is to compute this dimension for these extensions and hence generalize Matczuk's results for several algebras which can not be classified as PBW extensions.La dimensión de Gelfand-Kirillov de las extensiones de Poincaré-Birkhoff-Witt (abreviadas PBW) fue establecida por Matczuk ([15] Theorem A). Dado que las extensiones PBW son un ejemplo particular de las extensiones PBW torcidas (también llamadas extensiones σ-PBW), el objetivo de este artículo es calcular esta dimensión para dichas extensiones y así generalizar los resultados de Matczuk para varias álgebras que no pueden ser clasificadas como extensiones PBW.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/45172Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 47, núm. 1 (2013); 95-111 2357-4100 0034-7426Reyes, Armando (2013) Gelfand-kirillov dimension of skew pbw extensions. Revista Colombiana de Matemáticas; Vol. 47, núm. 1 (2013); 95-111 2357-4100 0034-7426 .Gelfand-kirillov dimension of skew pbw extensionsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTÁlgebras no conmutativasanillos filtrado graduadosextensiones PBWpolinomios cuánticos torcidosdimensión de Gelfand-KirillovNon-commutative algebrasFiltered and graded ringsPBW extensionsSkew quantum polynomialsGelfand Kirillov dimensionORIGINAL45172-216822-1-SM.pdfapplication/pdf438262https://repositorio.unal.edu.co/bitstream/unal/49337/1/45172-216822-1-SM.pdf26824a2b00daa6f110b252bd8d26c82bMD5145172-216830-2-PB.htmltext/html6605https://repositorio.unal.edu.co/bitstream/unal/49337/2/45172-216830-2-PB.html3a682c759914e9263d9d5814cb2975bbMD52THUMBNAIL45172-216822-1-SM.pdf.jpg45172-216822-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg4802https://repositorio.unal.edu.co/bitstream/unal/49337/3/45172-216822-1-SM.pdf.jpg5af53489fb56cd69f695883f2f9c6abdMD53unal/49337oai:repositorio.unal.edu.co:unal/493372022-12-14 23:03:58.925Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Gelfand-kirillov dimension of skew pbw extensions |
title |
Gelfand-kirillov dimension of skew pbw extensions |
spellingShingle |
Gelfand-kirillov dimension of skew pbw extensions Álgebras no conmutativas anillos filtrado graduados extensiones PBW polinomios cuánticos torcidos dimensión de Gelfand-Kirillov Non-commutative algebras Filtered and graded rings PBW extensions Skew quantum polynomials Gelfand Kirillov dimension |
title_short |
Gelfand-kirillov dimension of skew pbw extensions |
title_full |
Gelfand-kirillov dimension of skew pbw extensions |
title_fullStr |
Gelfand-kirillov dimension of skew pbw extensions |
title_full_unstemmed |
Gelfand-kirillov dimension of skew pbw extensions |
title_sort |
Gelfand-kirillov dimension of skew pbw extensions |
dc.creator.fl_str_mv |
Reyes, Armando |
dc.contributor.author.spa.fl_str_mv |
Reyes, Armando |
dc.subject.proposal.spa.fl_str_mv |
Álgebras no conmutativas anillos filtrado graduados extensiones PBW polinomios cuánticos torcidos dimensión de Gelfand-Kirillov Non-commutative algebras Filtered and graded rings PBW extensions Skew quantum polynomials Gelfand Kirillov dimension |
topic |
Álgebras no conmutativas anillos filtrado graduados extensiones PBW polinomios cuánticos torcidos dimensión de Gelfand-Kirillov Non-commutative algebras Filtered and graded rings PBW extensions Skew quantum polynomials Gelfand Kirillov dimension |
description |
Gelfand-Kirillov dimension of Poincaré-Birkhoff-Witt (PBW for short) extensions was established by Matczuk ([15], Theorem A). Since PBW extensions are a particular example of skew PBWextensions (also called σ-PBW extensions), the aim of this paper is to compute this dimension for these extensions and hence generalize Matczuk's results for several algebras which can not be classified as PBW extensions. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T08:36:17Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T08:36:17Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/49337 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/42794/ |
url |
https://repositorio.unal.edu.co/handle/unal/49337 http://bdigital.unal.edu.co/42794/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/45172 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 47, núm. 1 (2013); 95-111 2357-4100 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Reyes, Armando (2013) Gelfand-kirillov dimension of skew pbw extensions. Revista Colombiana de Matemáticas; Vol. 47, núm. 1 (2013); 95-111 2357-4100 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/49337/1/45172-216822-1-SM.pdf https://repositorio.unal.edu.co/bitstream/unal/49337/2/45172-216830-2-PB.html https://repositorio.unal.edu.co/bitstream/unal/49337/3/45172-216822-1-SM.pdf.jpg |
bitstream.checksum.fl_str_mv |
26824a2b00daa6f110b252bd8d26c82b 3a682c759914e9263d9d5814cb2975bb 5af53489fb56cd69f695883f2f9c6abd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089357218283520 |