Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento

ilustraciones, graficas

Autores:
Campos León, Estrella Lirdeya
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81675
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81675
https://repositorio.unal.edu.co/
Palabra clave:
150 - Psicología::156 - Psicología comparada
Behavior therapy
Nicotine
TERAPIA CONDUCTUAL
NICOTINA
Nicotina crónica
Automoldeamiento
Saliencia de incentivo
FosB/DFosB
Núcleo accumbens
Corteza orbitofrontal
Chronic nicotine
Autoshaping
Incentive salience
FosB/DFosB
Nucleus accumbens
Orbitofrontal cortex
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_5b822f3bb48f2adb5637a39b28d1474d
oai_identifier_str oai:repositorio.unal.edu.co:unal/81675
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
dc.title.translated.eng.fl_str_mv Pharmacological and behavioral effects of chronic nicotine administration on an autoshaping task
title Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
spellingShingle Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
150 - Psicología::156 - Psicología comparada
Behavior therapy
Nicotine
TERAPIA CONDUCTUAL
NICOTINA
Nicotina crónica
Automoldeamiento
Saliencia de incentivo
FosB/DFosB
Núcleo accumbens
Corteza orbitofrontal
Chronic nicotine
Autoshaping
Incentive salience
FosB/DFosB
Nucleus accumbens
Orbitofrontal cortex
title_short Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
title_full Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
title_fullStr Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
title_full_unstemmed Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
title_sort Efectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
dc.creator.fl_str_mv Campos León, Estrella Lirdeya
dc.contributor.advisor.none.fl_str_mv Lamprea Rodríguez, Marisol
Ortega Murillo, Leonardo Augusto
dc.contributor.author.none.fl_str_mv Campos León, Estrella Lirdeya
dc.contributor.researchgroup.spa.fl_str_mv Neurociencia Básica y Cognoscitiva
dc.subject.ddc.spa.fl_str_mv 150 - Psicología::156 - Psicología comparada
topic 150 - Psicología::156 - Psicología comparada
Behavior therapy
Nicotine
TERAPIA CONDUCTUAL
NICOTINA
Nicotina crónica
Automoldeamiento
Saliencia de incentivo
FosB/DFosB
Núcleo accumbens
Corteza orbitofrontal
Chronic nicotine
Autoshaping
Incentive salience
FosB/DFosB
Nucleus accumbens
Orbitofrontal cortex
dc.subject.lemb.eng.fl_str_mv Behavior therapy
Nicotine
dc.subject.lemb.spa.fl_str_mv TERAPIA CONDUCTUAL
NICOTINA
dc.subject.proposal.spa.fl_str_mv Nicotina crónica
Automoldeamiento
Saliencia de incentivo
FosB/DFosB
Núcleo accumbens
Corteza orbitofrontal
dc.subject.proposal.eng.fl_str_mv Chronic nicotine
Autoshaping
Incentive salience
FosB/DFosB
Nucleus accumbens
Orbitofrontal cortex
description ilustraciones, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-05T13:05:40Z
dc.date.available.none.fl_str_mv 2022-07-05T13:05:40Z
dc.date.issued.none.fl_str_mv 2022-06-20
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81675
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81675
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alajaji, M., Lazenka, M. F., Kota, D., Wise, L. E., Younis, R. M., Carroll, F. I., Levine, A., Selley, D. E., Sim-Selley, L. J., & Damaj, M. I. (2016). Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology, 105, 308–317. https://doi.org/10.1016/j.neuropharm.2016.01.032
Alkondon, M., Pereira, E. F., Eisenberg, H. M., & Albuquerque, E. X. (1999). Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. The Journal of neuroscience : the official journal of the Society for Neuroscience, 19(7), 2693–2705. https://doi.org/10.1523/JNEUROSCI.19-07-02693.1999
Angelyn, H., Loney, G. C., & Meyer, P. J. (2021). Nicotine Enhances Goal-Tracking in Ethanol and Food Pavlovian Conditioned Approach Paradigms. Frontiers in neuroscience, 15, 561766. https://doi.org/10.3389/fnins.2021.561766
Baeg, E., Jedema, H. P., & Bradberry, C. W. (2020). Orbitofrontal cortex is selectively activated in a primate model of attentional bias to cocaine cues. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 45(4), 675–682. https://doi.org/10.1038/s41386-019-0499-0
Balfour D.J.K. (2015) The Role of Mesoaccumbens Dopamine in Nicotine Dependence. en: Balfour D., Munafò M. (eds) The Neuropharmacology of Nicotine Dependence. Current Topics in Behavioral Neurosciences, vol 24 (pp. 55-98). Springer, Cham. https://doi.org/10.1007/978-3-319-13482-6_3
Benavides, D. R., Quinn, J. J., Zhong, P., Hawasli, A. H., DiLeone, R. J., Kansy, J. W., Olausson, P., Yan, Z., Taylor, J. R., & Bibb, J. A. (2007). Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(47), 12967–12976. https://doi.org/10.1523/JNEUROSCI.4061-07.2007
Besheer, J., & Bevins, R. A. (2003). Impact of nicotine withdrawal on novelty reward and related behaviors. Behavioral Neuroscience, 117(2), 327–340. https://doi.org/10.1037/0735-7044.117.2.327
Berridge, K. C. (2000). Reward learning: Reinforcement, incentives, and expectations. Psychology of Learning and Motivation, 40, 223–278. https://doi.org/10.1016/S0079-7421(00)80022-5
Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain research. Brain research reviews, 28(3), 309–369. https://doi.org/10.1016/s0165-0173(98)00019-8
Bevins, R. A., & Palmatier, M. I. (2004). Extending the role of associative learning processes in nicotine addiction. Behavioral and cognitive neuroscience reviews, 3(3), 143–158. https://doi.org/10.1177/1534582304272005
Bibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., & Greengard, P. (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 410(6826), 376–380. https://doi.org/10.1038/35066591
Bibb J. A. (2003). Role of Cdk5 in neuronal signaling, plasticity, and drug abuse. Neuro-Signals, 12(4-5), 191–199. https://doi.org/10.1159/000074620
Bindra D. (1974). A motivational view of learning, performance, and behavior modification. Psychological review, 81(3), 199–213. https://doi.org/10.1037/h0036330
Bindra, D. (1978). How adaptive behavior is produced: A perceptual-motivational alternative to response reinforcements. Behavioral and Brain Sciences, 1(1), 41-52. doi:10.1017/S0140525X00059380
Blundell, P., Hall, G., & Killcross, S. (2003). Preserved sensitivity to outcome value after lesions of the basolateral amygdala. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(20), 7702–7709. https://doi.org/10.1523/JNEUROSCI.23-20-07702.2003
Boakes, R. A. (1977). Performance on learning to associate a stimulus with positive reinforcement. Operant-pavlovian interactions. In H. David & H. M. B. Hurwitz (Eds.), Operant-Pavlovian interactions (pp. 67-101). Hillsdale, NJ: Erlbaum
Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79(5), 394–409. https://doi.org/10.1037/h0033120
Brody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. G., Ho, M. L., Saxena, S., Baxter, L. R., Jr, Madsen, D., & Jarvik, M. E. (2002). Brain metabolic changes during cigarette craving. Archives of general psychiatry, 59(12), 1162–1172. https://doi.org/10.1001/archpsyc.59.12.1162
Brown, P. L., & Jenkins, H. M. (1968). AUTO‐SHAPING OF THE PIGEON'S KEY‐PECK 1. Journal of the experimental analysis of behavior, 11(1), 1-8.
Brown, R.W., & Kolb, B. (2001). Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex. Brain Research, 899, 94-100. https://doi.org/10.1016/S0006-8993(01)02201-6
Brynildsen, J. K., Najar, J., Hsu, L. M., Vaupel, D. B., Lu, H., Ross, T. J., Yang, Y., & Stein, E. A. (2016). A novel method to induce nicotine dependence by intermittent drug delivery using osmotic minipumps. Pharmacology, biochemistry, and behavior, 142, 79–84. https://doi.org/10.1016/j.pbb.2015.12.010
Caggiula, A. R., Donny, E. C., Palmatier, M. I., Liu, X., Chaudhri, N., & Sved, A. F. (2009). The role of nicotine in smoking: a dual-reinforcement model. Nebraska Symposium on Motivation., 55, 91–109. https://doi.org/10.1007/978-0-387-78748-0_6
Cagniard, B., Balsam, P. D., Brunner, D., & Zhuang, X. (2006). Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 31(7), 1362–1370. https://doi.org/10.1038/sj.npp.1300966
Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002a). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and biobehavioral reviews, 26(3), 321–352. https://doi.org/10.1016/s0149-7634(02)00007-6
Cardinal, R. N., Parkinson, J. A., Lachenal, G., Halkerston, K. M., Rudarakanchana, N., Hall, J., Morrison, C. H., Howes, S. R., Robbins, T. W., & Everitt, B. J. (2002b). Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behavioral neuroscience, 116(4), 553–567. https://doi.org/10.1037//0735-7044.116.4.553
Chang, S. E., Wheeler, D. S., & Holland, P. C. (2012a). Effects of lesions of the amygdala central nucleus on autoshaped lever pressing. Brain research, 1450, 49–56. https://doi.org/10.1016/j.brainres.2012.02.029
Chang, S. E., Wheeler, D. S., & Holland, P. C. (2012b). Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing. Neurobiology of learning and memory, 97(4), 441–451. https://doi.org/10.1016/j.nlm.2012.03.008
Chang S. E. (2014). Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning. Behavioural brain research, 273, 52–56. https://doi.org/10.1016/j.bbr.2014.07.029
Chen, J., Kelz, M. B., Hope, B. T., Nakabeppu, Y., & Nestler, E. J. (1997). Chronic Fos-related antigens: stable variants of deltaFosB induced in brain by chronic treatments. The Journal of neuroscience: the official journal of the Society for Neuroscience, 17(13), 4933–4941. https://doi.org/10.1523/JNEUROSCI.17-13-04933.1997
Chudasama, Y., & Robbins, T. W. (2003). Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. Journal of Neuroscience, 23(25), 8771-878. https://doi.org/10.1523/JNEUROSCI.23-25-08771.2003
Clark, J. J., Collins, A. L., Sanford, C. A., & Phillips, P. E. (2013). Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training. The Journal of neuroscience: the official journal of the Society for Neuroscience, 33(8), 3526–3532. https://doi.org/10.1523/JNEUROSCI.5119-12.2013
Claus, E. D., Blaine, S. K., Filbey, F. M., Mayer, A. R., & Hutchison, K. E. (2013). Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 38(12), 2363–2372. https://doi.org/10.1038/npp.2013.134
Corbit, L. H., & Balleine, B. W. (2005). Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. The Journal of neuroscience: the official journal of the Society for Neuroscience, 25(4), 962–970. https://doi.org/10.1523/JNEUROSCI.4507-04.2005
Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology, 99, 473-478. https://doi.org/10.1007/BF00589894
Costa, D. S., & Boakes, R. A. (2009). Context blocking in rat autoshaping: Sign-tracking versus goal-tracking. Learning and Motivation, 40(2), 178-185. https://doi.org/10.1016/j.lmot.2008.11.001
Dandekar, M. P., Nakhate, K. T., Kokare, D. M., & Subhedar, N. K. (2011). Effect of nicotine on feeding and body weight in rats: involvement of cocaine- and amphetamine-regulated transcript peptide. Behavioural brain research, 219(1), 31–38. https://doi.org/10.1016/j.bbr.2010.12.007
Dani, J. A., & De Biasi, M. (2001). Cellular mechanisms of nicotine addiction. Pharmacology, biochemistry, and behavior, 70(4), 439–446. https://doi.org/10.1016/s0091-3057(01)00652-9
Dao, J. M., McQuown, S. C., Loughlin, S. E., Belluzzi, J. D., & Leslie, F. M. (2011). Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism. Neuropsychopharmacology, 36(7), 1319–1331. https://doi.org/10.1038/npp.2011.8
Day, J. J., Roitman, M. F., Wightman, R. M., & Carelli, R. M. (2007). Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nature neuroscience, 10(8), 1020–1028. https://doi.org/10.1038/nn1923
Di Chiara, G., Acquas, E., & Carboni, E. (1992). Drug motivation and abuse: a neurobiological perspective. Annals of the New York Academy of Sciences, 654, 207–219. https://doi.org/10.1111/j.1749-6632.1992.tb25969.x
Donny, E.C., Caggiula, A.R., Knopf, S. et al. Nicotine self-administration in rats. Psychopharmacology, 122, 390–394 (1995). https://doi.org/10.1007/BF02246272
Ehlinger, D. G., Bergstrom, H. C., Burke, J. C., Fernandez, G. M., McDonald, C. G., & Smith, R. F. (2016). Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent. Brain structure & function, 221(1), 133–145. https://doi.org/10.1007/s00429-014-0897-3
Ehlinger, D. G., Burke, J. C., McDonald, C. G., Smith, R. F., & Bergstrom, H. C. (2017). Nicotine-induced and D1-receptor-dependent dendritic remodeling in a subset of dorsolateral striatum medium spiny neurons. Neuroscience, 356, 242–254. https://doi.org/10.1016/j.neuroscience.2017.05.036
Ehrlich, M. E., Sommer, J., Canas, E., & Unterwald, E. M. (2002). Periadolescent mice show enhanced DeltaFosB upregulation in response to cocaine and amphetamine. The Journal of neuroscience: the official journal of the Society for Neuroscience, 22(21), 9155–9159. https://doi.org/10.1523/JNEUROSCI.22-21-09155.2002
Faure, P., Tolu, S., Valverde, S., & Naudé, J. (2014). Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience, 282, 86–100. https://doi.org/10.1016/j.neuroscience.2014.05.040
Flagel, S. B., Watson, S. J., Robinson, T. E., & Akil, H. (2007). Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology, 191(3), 599-607. https://doi.org/10.1007/s00213-006-0535-8
Flagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56, 139–148. https://doi.org/10.1016/j.neuropharm.2008.06.027
Flagel, S. B., Robinson, T. E., Clark, J. J., Clinton, S. M., Watson, S. J., Seeman, P., Phillips, P. E., & Akil, H. (2010). An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 35(2), 388–400. https://doi.org/10.1038/npp.2009.142
Flagel, S. B., Cameron, C. M., Pickup, K. N., Watson, S. J., Akil, H., & Robinson, T. E. (2011a). A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience, 196, 80–96. https://doi.org/10.1016/j.neuroscience.2011.09.004
Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., Akers, C. A., Clinton, S. M., Phillips, P. E., & Akil, H. (2011b). A selective role for dopamine in stimulus-reward learning. Nature, 469(7328), 53–57. https://doi.org/10.1038/nature09588
Fraser, K. M., & Janak, P. H. (2017). Long-lasting contribution of dopamine in the nucleus accumbens core, but not dorsal lateral striatum, to sign-tracking. The European journal of neuroscience, 46(4), 2047–2055. https://doi.org/10.1111/ejn.13642
Fuchs, R. A., Evans, K. A., Parker, M. P., & See, R. E. (2004). Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. The Journal of neuroscience: the official journal of the Society for Neuroscience, 24(29), 6600–6610. https://doi.org/10.1523/JNEUROSCI.1924-04.2004
Fudala, P. J., & Iwamoto, E. T. (1986). Further studies on nicotine-induced conditioned place preference in the rat. Pharmacology Biochemistry & Behavior, 25, 1041-1049. https://doi.org/10.1016/0091-3057(86)90083-3
Fujii, S., Ji, Z., Morita, N., & Sumikawa, K. (1999). Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research, 846(1), 137–143. https://doi.org/10.1016/S0006-8993(99)01982-4
Gallagher, M., Graham, P. W., & Holland, P. C. (1990). The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. Journal of Neuroscience, 10(6), 1906-1911.
Gallagher, M., McMahan, R. W., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. Journal of Neuroscience, 19(15), 6610-6614. https://doi.org/10.1523/JNEUROSCI.19-15-06610.1999
Gotti, C., Clementi, F., Fornari, A., Gaimarri, A., Guiducci, S., Manfredi, I., Moretti, M., Pedrazzi, P., Pucci, L., & Zoli, M. (2009). Structural and functional diversity of native brain neuronal nicotinic receptors. Biochemical Pharmacology, 78(7), 703–711. https://doi.org/10.1016/j.bcp.2009.05.024
Groshek, F., Kerfoot, E., McKenna, V., Polackwich, A. S., Gallagher, M., & Holland, P. C. (2005). Amygdala Central Nucleus Function Is Necessary for Learning, but Not Expression, of Conditioned Auditory Orienting. Behavioral Neuroscience, 119(1), 202–212. https://doi.org/10.1037/0735-7044.119.1.202
Guillem, K., & Ahmed, S. H. (2016). Proportion of cocaine-coding neurons in the orbitofrontal cortex determines individual drug preferences. bioRxiv, 050872. https://doi.org/10.1101/050872
Hall, J., Parkinson, J. A., Connor, T. M., Dickinson, A., & Everitt, B. J. (2001). Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. The European journal of neuroscience, 13(10), 1984–1992. https://doi.org/10.1046/j.0953-816x.2001.01577.x
Hart G., Balleine B. (2017) Medial Striatum. In: Vonk J., Shackelford T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1288-1
Hatfield, T., Han, J. S., Conley, M., Gallagher, M., & Holland, P. (1996). Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. Journal of Neuroscience, 16(16), 5256-5265
Hearst, E., & Jenkins, H. M. (1974). Sign-tracking: The stimulus-reinforcer relation and directed action. Austin: Psychonomic Society
Holland P. C. (2016). Enhancing second-order conditioning with lesions of the basolateral amygdala. Behavioral neuroscience, 130(2), 176–181. https://doi.org/10.1037/bne0000129
Hutcheson, D. M., & Everitt, B. J. (2003). The effects of selective orbitofrontal cortex lesions on the acquisition and performance of cue-controlled cocaine seeking in rats. Annals of the New York Academy of Sciences, 1003, 410–411. https://doi.org/10.1196/annals.1300.038
Kandel, E. R., & Kandel, D. B. (2014). Shattuck Lecture. A molecular basis for nicotine as a gateway drug. The New England journal of medicine, 371(10), 932–943. https://doi.org/10.1056/NEJMsa1405092
Keefer, S. E., Gyawali, U., & Calu, D. J. (2021). Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behavioural Brain Research, 409, 113306. https://doi.org/10.1016/j.bbr.2021.113306
Kelz, M. B., Chen, J., Carlezon, W. A., Jr, Whisler, K., Gilden, L., Beckmann, A. M., Steffen, C., Zhang, Y. J., Marotti, L., Self, D. W., Tkatch, T., Baranauskas, G., Surmeier, D. J., Neve, R. L., Duman, R. S., Picciotto, M. R., & Nestler, E. J. (1999). Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature, 401(6750), 272–276. https://doi.org/10.1038/45790
Kelz, M. B., & Nestler, E. J. (2000). deltaFosB: a molecular switch underlying long-term neural plasticity. Current opinion in neurology, 13(6), 715–720. https://doi.org/10.1097/00019052-200012000-00017
Kolokotroni, K. Z., Rodgers, R. J., & Harrison, A. A. (2012). Effects of chronic nicotine, nicotine withdrawal and subsequent nicotine challenges on behavioural inhibition in rats. Psychopharmacology, 219, 453-468. https://doi.org/10.1007/s00213-011-2558-z
Levin, E. D., Morgan, M. M., Galvez, C., & Ellison, G. D. (1987). Chronic nicotine and withdrawal effects on body weight and food and water consumption in female rats. Physiology & behavior, 39(4), 441–444. https://doi.org/10.1016/0031-9384(87)90370-2
Levine, A., Huang, Y., Drisaldi, B., Griffin, E. A., Jr, Pollak, D. D., Xu, S., Yin, D., Schaffran, C., Kandel, D. B., & Kandel, E. R. (2011). Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Science translational medicine, 3(107), 107ra109. https://doi.org/10.1126/scitranslmed.3003062
Loney, G. C., Angelyn, H., Cleary, L. M., & Meyer, P. J. (2019). Nicotine Produces a High-Approach, Low-Avoidance Phenotype in Response to Alcohol-Associated Cues in Male Rats. Alcoholism, clinical and experimental research, 43(6), 1284–1295. https://doi.org/10.1111/acer.14043
Macpherson, T., & Hikida, T. (2018). Nucleus Accumbens Dopamine D1-Receptor-Expressing Neurons Control the Acquisition of Sign-Tracking to Conditioned Cues in Mice. Frontiers in neuroscience, 12, 418. https://doi.org/10.3389/fnins.2018.00418
Malin, D. H., Lake, J. R., Newlin-Maultsby, P., Roberts, L. K., Lanier, J. G., Carter, V. A., Cunningham, J. S., & Wilson, O. B. (1992). Rodent model of nicotine abstinence syndrome. Pharmacology, Biochemistry Behavior, 43(3), 779–784. https://doi.org/10.1016/0091-3057(92)90408-8
Marttila, K., Raattamaa, H., & Ahtee, L. (2006). Effects of chronic nicotine administration and its withdrawal on striatal FosB/DeltaFosB and c-Fos expression in rats and mice. Neuropharmacology, 51(1), 44–51. https://doi.org/10.1016/j.neuropharm.2006.02.014
Matta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., Craig, C. R., Collins, A. C., Damaj, M. I., Donny, E. C., Gardiner, P. S., Grady, S. R., Heberlein, U., Leonard, S. S., Levin, E. D., Lukas, R. J., Markou, A., Marks, M. J., McCallum, S. E., Parameswaran, N., … Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190(3), 269–319. https://doi.org/10.1007/s00213-006-0441-0
McDonald, C. G., Dailey, V. K., Bergstrom, H. C., Wheeler, T. L., Eppolito, A. K., Smith, L. N., & Smith, R. F. (2005). Periadolescent nicotine administration produces enduring changes in dendritic morphology of medium spiny neurons from nucleus accumbens. Neuroscience letters, 385(2), 163–167. https://doi.org/10.1016/j.neulet.2005.05.041
McDonald, C. G., Eppolito, A. K., Brielmaier, J. M., Smith, L. N., Bergstrom, H. C., Lawhead, M. R., & Smith, R. F. (2007). Evidence for elevated nicotine-induced structural plasticity in nucleus accumbens of adolescent rats. Brain research, 1151, 211–218. https://doi.org/10.1016/j.brainres.2007.03.019
McGehee, D. S., Heath, M. J., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269(5231), 1692–1696. https://doi.org/10.1126/science.7569895
Meyer, P. J., Lovic, V., Saunders, B. T., Yager, L. M., Flagel, S. B., Morrow, J. D., & Robinson, T. E. (2012). Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PloS one, 7(6), e38987. https://doi.org/10.1371/journal.pone.0038987
Michalak, A., & Budzyńska, B. (2019). Nicotine and Dopamine DA1 Receptor Pharmacology. In: Preedy, V. R. (Ed.). Neuroscience of Nicotine: Mechanisms and Treatment. Academic Press
Morgan, J. I., & Curran, T. (1995). Immediate-early genes: ten years on. Trends in Neurosciences, 18(2), 66–67
Muller, D. L., & Unterwald, E. M. (2005). D1 dopamine receptors modulate deltaFosB induction in rat striatum after intermittent morphine administration. The Journal of pharmacology and experimental therapeutics, 314(1), 148–154. https://doi.org/10.1124/jpet.105.083410
Murrin, L. C., Ferrer, J. R., Wanyun, Z., & Haley, N. J. (1987). Nicotine administration to rats: methodological considerations. Life Sciences, 40, 1699-1708. https://doi.org/10.1016/0024-3205(87)90020-8
Naeem, M., & White, N. M. (2016). Parallel learning in an autoshaping paradigm. Behavioral neuroscience, 130(4), 376–392. https://doi.org/10.1037/bne0000154
Naeem, M. (2016). Learning processes in autoshaping and conditioned cue preference. [PhD Thesis, McGill University] (Canada). Recuperado de: https://www.bac-lac.gc.ca/eng/services/theses/Pages/item.aspx?idNumber=973735010
Nakhate, K. T., Dandekar, M. P., Kokare, D. M., & Subhedar, N. K. (2009). Involvement of neuropeptide Y Y(1) receptors in the acute, chronic and withdrawal effects of nicotine on feeding and body weight in rats. European journal of pharmacology, 609(1-3), 78–87. https://doi.org/10.1016/j.ejphar.2009.03.008
Nestler, E. J., Barrot, M., & Self, D. W. (2001). DeltaFosB: a sustained molecular switch for addiction. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11042–11046. https://doi.org/10.1073/pnas.191352698
Nestler E. J. (2008). Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1507), 3245–3255. https://doi.org/10.1098/rstb.2008.0067
Norrholm, S. D., Bibb, J. A., Nestler, E. J., Ouimet, C. C., Taylor, J. R., & Greengard, P. (2003). Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience, 116(1), 19–22. https://doi.org/10.1016/s0306-4522(02)00560-2
Olausson, P., Jentsch, J. D., & Taylor, J. R. (2003). Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology, 28, 1264-1271. https://doi.org/10.1038/sj.npp.1300173
Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004a). Nicotine enhances responding with conditioned reinforcement. Psychopharmacology, 171, 173-178. https://doi.org/10.1007/s00213-003-1575-y
Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004b). Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology, 173, 98-104. https://doi.org/10.1007/s00213-003-1702-9
Olausson, P., Jentsch, J. D., Tronson, N., Neve, R. L., Nestler, E. J., & Taylor, J. R. (2006). ΔFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation. Journal of Neuroscience, 26(36), 9196-9204. https://doi.org/10.1523/JNEUROSCI.1124-06.2006
Ostlund, S. B., & Balleine, B. W. (2007). Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(18), 4819–4825. https://doi.org/10.1523/JNEUROSCI.5443-06.2007
Overby, P. F., Daniels, C. W., Del Franco, A., Goenaga, J., Powell, G. L., Gipson, C. D., & Sanabria, F. (2018). Effects of nicotine self-administration on incentive salience in male Sprague Dawley rats. Psychopharmacology, 235(4), 1121–1130. https://doi.org/10.1007/s00213-018-4829-4
Palmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., Liu, X., Booth, S., Gharib, M., Craven, L., & Sved, A. F. (2006). Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology, 184, 391-400. https://doi.org/10.1007/s00213-005-0183-4
Palmatier, M. I., Liu, X., Matteson, G. L., Donny, E. C., Caggiula, A. R., & Sved, A. F. (2007). Conditioned reinforcement in rats established with self-administered nicotine and enhanced by noncontingent nicotine. Psychopharmacology, 195(2), 235-243. https://doi.org/10.1007/s00213-007-0897-6
Palmatier, M. I., Marks, K. R., Jones, S. A., Freeman, K. S., Wissman, K. M., & Sheppard, A. B. (2013). The effect of nicotine on sign-tracking and goal-tracking in a Pavlovian conditioned approach paradigm in rats. Psychopharmacology, 226, 247-259. https://doi.org/10.1007/s00213-012-2892-9
Panayi, M. C., & Killcross, S. (2018). Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits. eLife, 7, e37357. https://doi.org/10.7554/eLife.37357
Panayi, M. C., & Killcross, S. (2021). The role of the rodent lateral orbitofrontal cortex in simple Pavlovian cue-outcome learning depends on training experience. Cerebral Cortex Communications, 2(1), tgab010. https://doi.org/10.1093/texcom/tgab010
Parkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W., & Everitt, B. J. (1999). Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. Neuroscience, 19(6), 2401–2411. https://doi.org/10.1523/JNEUROSCI.19-06-02401.1999
Parkinson, J. A., Robbins, T. W., & Everitt, B. J. (2000). Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. The European journal of neuroscience, 12(1), 405–413. https://doi.org/10.1046/j.1460-9568.2000.00960.x
Paxinos, G. and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates. 6th Edition, Academic Press, San Diego
Peterson, G. B., Ackil, J. E., Frommer, G. P., & Hearst, E. S. (1972). Conditioned approach and contact behavior toward signals for food or brain-stimulation reinforcement. Science, 177(4053), 1009–1011. https://doi.org/10.1126/science.177.4053.1009
Phillips, G. D., Setzu, E., Vugler, A., & Hitchcott, P. K. (2003). Immunohistochemical assessment of mesotelencephalic dopamine activity during the acquisition and expression of Pavlovian versus instrumental behaviours. Neuroscience, 117(3), 755-767. https://doi.org/10.1016/s0306-4522(02)00799-6
Picciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport, 13(9), 1097–1106. https://doi.org/10.1097/00001756-200207020-00006
Pich, E. M., Pagliusi, S. R., Tessari, M., Talabot-Ayer, D., van Huijsduijnen, R. H., & Chiamulera, C. (1997). Common neural substrates for the addictive properties of nicotine and cocaine. Science, 275(5296), 83-86. https://doi.org/10.1126/science.275.5296.83
Pitchers, K. K., Vialou, V., Nestler, E. J., Laviolette, S. R., Lehman, M. N., & Coolen, L. M. (2013). Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. The Journal of neuroscience: the official journal of the Society for Neuroscience, 33(8), 3434–3442. https://doi.org/10.1523/JNEUROSCI.4881-12.2013
Pichon-Riviere, A., Alcaraz, A., Palacios, A., Rodríguez, B., Reynales-Shigematsu, L. M., Pinto, M., Castillo-Riquelme, M., Peña, E., Osorio, D. I., Huayanay, L., Loza, C., de Miera-Juárez, B. S., Gallegos-Rivero, V., De La Puente, C., Navia-Bueno, M. P., Caporale, J., Roberti, J., Virgilio, A., Augustovski, F., & Bardach, A. (2020). The health and economic burden of smoking in 12 Latin American countries and the potential effect of increasing tobacco taxes: an economic modelling study. The Lancet Global Health, 8(10), e1282-e1294. https://doi.org/10.1016/S2214-109X(20)30311-9
Rescorla, R. A., & Solomon, R. L. (1967). Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychological Review, 74(3), 151–182. https://doi.org/10.1037/h0024475
Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain research. Brain research reviews, 18(3), 247–291. https://doi.org/10.1016/0165-0173(93)90013-p
Robinson, T. E., & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1507), 3137–3146. https://doi.org/10.1098/rstb.2008.0093
Robinson, T. E., Yager, L. M., Cogan, E. S., & Saunders, B. T. (2014). On the motivational properties of reward cues: Individual differences. Neuropharmacology, 76, 450–459. https://doi.org/10.1016/j.neuropharm.2013.05.040
Rowell, P. P., & Li, M. (1997). Dose-response relationship for nicotine-induced up-regulation of rat brain nicotinic receptors. Journal of Neurochemistry, 68(5), 1982–1989. https://doi.org/10.1046/j.1471-4159.1997.68051982.x
Ruffle J. K. (2014). Molecular neurobiology of addiction: what's all the (Δ)FosB about?. The American journal of drug and alcohol abuse, 40(6), 428–437. https://doi.org/10.3109/00952990.2014.933840
Schaefer, G. J., & Michael, R. P. (1986). Task-specific effects of nicotine in rats. Intracranial self-stimulation and locomotor activity. Neuropharmacology, 25(2), 125–131. https://doi.org/10.1016/0028-3908(86)90033-x
Schiltz, C. A., Kelley, A. E., & Landry, C. F. (2005). Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. The European journal of neuroscience, 21(6), 1703–1711. https://doi.org/10.1111/j.1460-9568.2005.04001.x
Schoenbaum, G., & Shaham, Y. (2008). The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biological psychiatry, 63(3), 256–262. https://doi.org/10.1016/j.biopsych.2007.06.003
Schoenbaum, G., Roesch, M. R., Stalnaker, T. A., & Takahashi, Y. K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature reviews. Neuroscience, 10(12), 885–892. https://doi.org/10.1038/nrn2753
Schoenbaum, G., Takahashi, Y., Liu, T. L., & McDannald, M. A. (2011). Does the orbitofrontal cortex signal value?. Annals of the New York Academy of Sciences, 1239, 87–99. https://doi.org/10.1111/j.1749-6632.2011.06210.x
Serrano-Barroso, A., Vargas, J. P., Diaz, E., O'Donnell, P., & López, J. C. (2019). Sign and goal tracker rats process differently the incentive salience of a conditioned stimulus. PloS one, 14(9), e0223109. https://doi.org/10.1371/journal.pone.0223109
Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288. https://doi.org/10.1146/annurev.neuro.28.061604.135722
Soderstrom, K., Qin, W., Williams, H., Taylor, D. A., & McMillen, B. A. (2007). Nicotine increases FosB expression within a subset of reward- and memory-related brain regions during both peri- and post-adolescence. Psychopharmacology, 191(4), 891–897. https://doi.org/10.1007/s00213-007-0744-9
Sparber, S. B., Bollweg, G. L., & Messing, R. B. (1991). Food deprivation enhances both autoshaping and autoshaping impairment by a latent inhibition procedure. Behavioural Processes, 23(1), 59–74. https://doi.org/10.1016/0376-6357(91)90106-A
Stringfield, S. J., Palmatier, M. I., Boettiger, C. A., & Robinson, D. L. (2017). Orbitofrontal participation in sign- and goal-tracking conditioned responses: Effects of nicotine. Neuropharmacology, 116, 208–223. https://doi.org/10.1016/j.neuropharm.2016.12.020
Stringfield, S. J., Madayag, A. C., Boettiger, C. A., & Robinson, D. L. (2019). Sex differences in nicotine-enhanced Pavlovian conditioned approach in rats. Biology of sex differences, 10(1), 37. https://doi.org/10.1186/s13293-019-0244-8
Theeuwes, F., & Yum, S. I. (1976). Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Annals of biomedical engineering, 4(4), 343-353.
Timberlake, W. (1986). Unpredicted food produces a mode of behavior that affects rats’ subsequent reactions to a conditioned stimulus: A behavior-system approach to “context blocking”. Animal Learning & Behavior, 14(3), 276-286. https://doi.org/10.3758/BF03200068
Toates, F. (1986). Motivational systems. Cambridge, UK: Cambridge University Press
Tomie, A. (2018). Chapter 1: Introduction: The Role of Sign-Tracking in Drug Addiction. En Tomie, A. & Morrow, J. (Eds). Sign-Tracking and Drug Addiction. Maize Books. http://dx.doi.org/10.3998/mpub.10215070
Versaggi, C. L., King, C. P., & Meyer, P. J. (2016). The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol. Psychopharmacology, 233(15-16), 2985–2997. https://doi.org/10.1007/s00213-016-4341-7
Wallace, D. L., Vialou, V., Rios, L., Carle-Florence, T. L., Chakravarty, S., Kumar, A., Graham, D. L., Green, T. A., Kirk, A., Iñiguez, S. D., Perrotti, L. I., Barrot, M., DiLeone, R. J., Nestler, E. J., & Bolaños-Guzmán, C. A. (2008). The influence of DeltaFosB in the nucleus accumbens on natural reward-related behavior. The Journal of neuroscience: the official journal of the Society for Neuroscience, 28(41), 10272–10277. https://doi.org/10.1523/JNEUROSCI.1531-08.2008
Werme, M., Messer, C., Olson, L., Gilden, L., Thorén, P., Nestler, E. J., & Brené, S. (2002). ΔFosB regulates wheel running. Journal of Neuroscience, 22(18), 8133-8138. https://doi.org/10.1523/JNEUROSCI.22-18-08133.2002
Winstanley, C. A., LaPlant, Q., Theobald, D. E., Green, T. A., Bachtell, R. K., Perrotti, L. I., DiLeone, R. J., Russo, S. J., Garth, W. J., Self, D. W., & Nestler, E. J. (2007). DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(39), 10497–10507. https://doi.org/10.1523/JNEUROSCI.2566-07.2007
Wills, L., & Kenny, P. J. (2021). Addiction-related neuroadaptations following chronic nicotine exposure. Journal of neurochemistry, 157(5), 1652–1673. https://doi.org/10.1111/jnc.15356
Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20(2), 92–98. https://doi.org/10.1016/S0166-2236(96)10073-4
Xiong, M., Li, J., Ye, J. H., & Zhang, C. (2011). Upregulation of DeltaFosB by propofol in rat nucleus accumbens. Anesthesia and analgesia, 113(2), 259–264. https://doi.org/10.1213/ANE.0b013e318222af17
Yager, L. M., & Robinson, T. E. (2013). A classically conditioned cocaine cue acquires greater control over motivated behavior in rats prone to attribute incentive salience to a food cue. Psychopharmacology, 226(2), 217–228. https://doi.org/10.1007/s00213-012-2890-y
Yager, L. M., & Robinson, T. E. (2015). Individual variation in the motivational properties of a nicotine cue: Sign-trackers vs. Goal-trackers. Psychopharmacology, 232(17), 3149–3160. https://doi.org/10.1007/s00213-015-3962-6
Yager, L. M., Pitchers, K. K., Flagel, S. B., & Robinson, T. E. (2015). Individual variation in the motivational and neurobiological effects of an opioid cue. Neuropsychopharmacology, 40(5), 1269-1277. https://doi.org/10.1038/npp.2014.314
Zhang, D., Zhang, L., Lou, D. W., Nakabeppu, Y., Zhang, J., & Xu, M. (2002). The dopamine D1 receptor is a critical mediator for cocaine-induced gene expression. Journal of neurochemistry, 82(6), 1453–1464. https://doi.org/10.1046/j.1471-4159.2002.01089.x
Zhang, T., Zhang, L., Liang, Y., Siapas, A. G., Zhou, F. M., & Dani, J. A. (2009). Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(13), 4035–4043. https://doi.org/10.1523/JNEUROSCI.0261-09.2009
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv vii, 101 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Humanas - Maestría en Psicología
dc.publisher.department.spa.fl_str_mv Departamento de Psicología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Humanas
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81675/3/1018493799.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81675/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81675/5/1018493799.2022.pdf.jpg
bitstream.checksum.fl_str_mv 31b3b503ee951ed640a625e2bbcf35c8
8153f7789df02f0a4c9e079953658ab2
ba606d634f37334dafdface061548ee3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089320867299328
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lamprea Rodríguez, Marisola14f7906338f9d662885067f2e6abfe0Ortega Murillo, Leonardo Augustoedad10c2608ad11bf70f552923efbbd0Campos León, Estrella Lirdeyaa113a3a6eed56da08cff90f40628d66cNeurociencia Básica y Cognoscitiva2022-07-05T13:05:40Z2022-07-05T13:05:40Z2022-06-20https://repositorio.unal.edu.co/handle/unal/81675Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLa investigación actual ha destacado la importancia del aprendizaje asociativo en la adicción. Se ha mostrado que por medio de procedimientos pavlovianos las claves asociadas a un estímulo apetitivo como una droga pueden adquirir saliencia de incentivo, volviéndose más atractivas y facilitando comportamientos de búsqueda de droga y recaída. La asignación de saliencia de incentivo puede variar según el fenotipo de los sujetos (goal trackers o sign trackers). Aunque en ambos fenotipos el estímulo condicionado (EC) adquiere valor predictivo sobre el estímulo incondicionado (EI), solo en los sign trackers el EC adquiere saliencia de incentivo. Al respecto, se ha reportado que la nicotina tiene la capacidad de amplificar el valor de incentivo de claves asociadas a estímulos apetitivos como la comida o el agua. El presente estudio tuvo como objetivo evaluar los efectos de la administración crónica de nicotina en la adquisición de una tarea de automoldeamiento y la expresión de FosB/DFosB en áreas relacionadas con la saliencia de incentivo. 61 ratas macho Wistar clasificadas como sign trackers fueron entrenadas en una tarea de automoldeamiento donde se emparejó la presentación de una palanca con la entrega de comida. Los resultados mostraron que la administración crónica tuvo un efecto de mejora temporal en el palanqueo (sign tracking) y el sesgo de respuesta. La nicotina crónica también aumentó la expresión de FosB/DFosB en el núcleo accumbens y la corteza orbitofrontal específicamente en ratas que se sometieron a entrenamiento conductual. Estos hallazgos sugieren que la nicotina puede potenciar los cambios plásticos mediados por el factor de transcripción FosB/DFosB en estructuras cerebrales claves para la saliencia de incentivo. (Texto tomado de la fuente)Current research has highlighted the role of associative learning in addiction. Environmental cues associated through pavlovian processes with appetitive stimuli such as a drug can acquire an incentive salience value, becoming more attractive and facilitating drug-seeking behavior and relapse. The assignment of incentive salience can vary according to the phenotype of the subjects (goal trackers or sign trackers). Although for both phenotypes the conditioned stimulus (CS) can acquire predictive value over the unconditioned stimulus, only for the sign trackers the CS acquires incentive salience. Consistently, it has been reported that incentive value of cues associated with natural reinforcers such as food or water can be amplified by nicotine administration. Using 61 male Wistar rats, the present study aimed to evaluate the effects of chronic nicotine administration on the acquisition of an autoshaping task and FosB/DFosB expression in brain areas related to incentive salience. Results showed that chronic administration had a temporary enhancing effect on sign tracking and response bias. Chronic nicotine also increased FosB/DFosB expression in the nucleus accumbens and orbitofrontal cortex specifically for rats undergoing behavioral training. These findings suggest that nicotine may potentiate plastic changes mediated by the FosB/DFosB transcription factor in brain structures important for incentive salience processes.MaestríaMagíster en PsicologíaPsicología Básica y Experimental: efectos del estrés sobre el aprendizaje con modelos experimentalesvii, 101 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Humanas - Maestría en PsicologíaDepartamento de PsicologíaFacultad de Ciencias HumanasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá150 - Psicología::156 - Psicología comparadaBehavior therapyNicotineTERAPIA CONDUCTUALNICOTINANicotina crónicaAutomoldeamientoSaliencia de incentivoFosB/DFosBNúcleo accumbensCorteza orbitofrontalChronic nicotineAutoshapingIncentive salienceFosB/DFosBNucleus accumbensOrbitofrontal cortexEfectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamientoPharmacological and behavioral effects of chronic nicotine administration on an autoshaping taskTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlajaji, M., Lazenka, M. F., Kota, D., Wise, L. E., Younis, R. M., Carroll, F. I., Levine, A., Selley, D. E., Sim-Selley, L. J., & Damaj, M. I. (2016). Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology, 105, 308–317. https://doi.org/10.1016/j.neuropharm.2016.01.032Alkondon, M., Pereira, E. F., Eisenberg, H. M., & Albuquerque, E. X. (1999). Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. The Journal of neuroscience : the official journal of the Society for Neuroscience, 19(7), 2693–2705. https://doi.org/10.1523/JNEUROSCI.19-07-02693.1999Angelyn, H., Loney, G. C., & Meyer, P. J. (2021). Nicotine Enhances Goal-Tracking in Ethanol and Food Pavlovian Conditioned Approach Paradigms. Frontiers in neuroscience, 15, 561766. https://doi.org/10.3389/fnins.2021.561766Baeg, E., Jedema, H. P., & Bradberry, C. W. (2020). Orbitofrontal cortex is selectively activated in a primate model of attentional bias to cocaine cues. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 45(4), 675–682. https://doi.org/10.1038/s41386-019-0499-0Balfour D.J.K. (2015) The Role of Mesoaccumbens Dopamine in Nicotine Dependence. en: Balfour D., Munafò M. (eds) The Neuropharmacology of Nicotine Dependence. Current Topics in Behavioral Neurosciences, vol 24 (pp. 55-98). Springer, Cham. https://doi.org/10.1007/978-3-319-13482-6_3Benavides, D. R., Quinn, J. J., Zhong, P., Hawasli, A. H., DiLeone, R. J., Kansy, J. W., Olausson, P., Yan, Z., Taylor, J. R., & Bibb, J. A. (2007). Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(47), 12967–12976. https://doi.org/10.1523/JNEUROSCI.4061-07.2007Besheer, J., & Bevins, R. A. (2003). Impact of nicotine withdrawal on novelty reward and related behaviors. Behavioral Neuroscience, 117(2), 327–340. https://doi.org/10.1037/0735-7044.117.2.327Berridge, K. C. (2000). Reward learning: Reinforcement, incentives, and expectations. Psychology of Learning and Motivation, 40, 223–278. https://doi.org/10.1016/S0079-7421(00)80022-5Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain research. Brain research reviews, 28(3), 309–369. https://doi.org/10.1016/s0165-0173(98)00019-8Bevins, R. A., & Palmatier, M. I. (2004). Extending the role of associative learning processes in nicotine addiction. Behavioral and cognitive neuroscience reviews, 3(3), 143–158. https://doi.org/10.1177/1534582304272005Bibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., & Greengard, P. (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 410(6826), 376–380. https://doi.org/10.1038/35066591Bibb J. A. (2003). Role of Cdk5 in neuronal signaling, plasticity, and drug abuse. Neuro-Signals, 12(4-5), 191–199. https://doi.org/10.1159/000074620Bindra D. (1974). A motivational view of learning, performance, and behavior modification. Psychological review, 81(3), 199–213. https://doi.org/10.1037/h0036330Bindra, D. (1978). How adaptive behavior is produced: A perceptual-motivational alternative to response reinforcements. Behavioral and Brain Sciences, 1(1), 41-52. doi:10.1017/S0140525X00059380Blundell, P., Hall, G., & Killcross, S. (2003). Preserved sensitivity to outcome value after lesions of the basolateral amygdala. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(20), 7702–7709. https://doi.org/10.1523/JNEUROSCI.23-20-07702.2003Boakes, R. A. (1977). Performance on learning to associate a stimulus with positive reinforcement. Operant-pavlovian interactions. In H. David & H. M. B. Hurwitz (Eds.), Operant-Pavlovian interactions (pp. 67-101). Hillsdale, NJ: ErlbaumBolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79(5), 394–409. https://doi.org/10.1037/h0033120Brody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. G., Ho, M. L., Saxena, S., Baxter, L. R., Jr, Madsen, D., & Jarvik, M. E. (2002). Brain metabolic changes during cigarette craving. Archives of general psychiatry, 59(12), 1162–1172. https://doi.org/10.1001/archpsyc.59.12.1162Brown, P. L., & Jenkins, H. M. (1968). AUTO‐SHAPING OF THE PIGEON'S KEY‐PECK 1. Journal of the experimental analysis of behavior, 11(1), 1-8.Brown, R.W., & Kolb, B. (2001). Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex. Brain Research, 899, 94-100. https://doi.org/10.1016/S0006-8993(01)02201-6Brynildsen, J. K., Najar, J., Hsu, L. M., Vaupel, D. B., Lu, H., Ross, T. J., Yang, Y., & Stein, E. A. (2016). A novel method to induce nicotine dependence by intermittent drug delivery using osmotic minipumps. Pharmacology, biochemistry, and behavior, 142, 79–84. https://doi.org/10.1016/j.pbb.2015.12.010Caggiula, A. R., Donny, E. C., Palmatier, M. I., Liu, X., Chaudhri, N., & Sved, A. F. (2009). The role of nicotine in smoking: a dual-reinforcement model. Nebraska Symposium on Motivation., 55, 91–109. https://doi.org/10.1007/978-0-387-78748-0_6Cagniard, B., Balsam, P. D., Brunner, D., & Zhuang, X. (2006). Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 31(7), 1362–1370. https://doi.org/10.1038/sj.npp.1300966Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002a). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and biobehavioral reviews, 26(3), 321–352. https://doi.org/10.1016/s0149-7634(02)00007-6Cardinal, R. N., Parkinson, J. A., Lachenal, G., Halkerston, K. M., Rudarakanchana, N., Hall, J., Morrison, C. H., Howes, S. R., Robbins, T. W., & Everitt, B. J. (2002b). Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behavioral neuroscience, 116(4), 553–567. https://doi.org/10.1037//0735-7044.116.4.553Chang, S. E., Wheeler, D. S., & Holland, P. C. (2012a). Effects of lesions of the amygdala central nucleus on autoshaped lever pressing. Brain research, 1450, 49–56. https://doi.org/10.1016/j.brainres.2012.02.029Chang, S. E., Wheeler, D. S., & Holland, P. C. (2012b). Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing. Neurobiology of learning and memory, 97(4), 441–451. https://doi.org/10.1016/j.nlm.2012.03.008Chang S. E. (2014). Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning. Behavioural brain research, 273, 52–56. https://doi.org/10.1016/j.bbr.2014.07.029Chen, J., Kelz, M. B., Hope, B. T., Nakabeppu, Y., & Nestler, E. J. (1997). Chronic Fos-related antigens: stable variants of deltaFosB induced in brain by chronic treatments. The Journal of neuroscience: the official journal of the Society for Neuroscience, 17(13), 4933–4941. https://doi.org/10.1523/JNEUROSCI.17-13-04933.1997Chudasama, Y., & Robbins, T. W. (2003). Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. Journal of Neuroscience, 23(25), 8771-878. https://doi.org/10.1523/JNEUROSCI.23-25-08771.2003Clark, J. J., Collins, A. L., Sanford, C. A., & Phillips, P. E. (2013). Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training. The Journal of neuroscience: the official journal of the Society for Neuroscience, 33(8), 3526–3532. https://doi.org/10.1523/JNEUROSCI.5119-12.2013Claus, E. D., Blaine, S. K., Filbey, F. M., Mayer, A. R., & Hutchison, K. E. (2013). Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 38(12), 2363–2372. https://doi.org/10.1038/npp.2013.134Corbit, L. H., & Balleine, B. W. (2005). Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. The Journal of neuroscience: the official journal of the Society for Neuroscience, 25(4), 962–970. https://doi.org/10.1523/JNEUROSCI.4507-04.2005Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology, 99, 473-478. https://doi.org/10.1007/BF00589894Costa, D. S., & Boakes, R. A. (2009). Context blocking in rat autoshaping: Sign-tracking versus goal-tracking. Learning and Motivation, 40(2), 178-185. https://doi.org/10.1016/j.lmot.2008.11.001Dandekar, M. P., Nakhate, K. T., Kokare, D. M., & Subhedar, N. K. (2011). Effect of nicotine on feeding and body weight in rats: involvement of cocaine- and amphetamine-regulated transcript peptide. Behavioural brain research, 219(1), 31–38. https://doi.org/10.1016/j.bbr.2010.12.007Dani, J. A., & De Biasi, M. (2001). Cellular mechanisms of nicotine addiction. Pharmacology, biochemistry, and behavior, 70(4), 439–446. https://doi.org/10.1016/s0091-3057(01)00652-9Dao, J. M., McQuown, S. C., Loughlin, S. E., Belluzzi, J. D., & Leslie, F. M. (2011). Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism. Neuropsychopharmacology, 36(7), 1319–1331. https://doi.org/10.1038/npp.2011.8Day, J. J., Roitman, M. F., Wightman, R. M., & Carelli, R. M. (2007). Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nature neuroscience, 10(8), 1020–1028. https://doi.org/10.1038/nn1923Di Chiara, G., Acquas, E., & Carboni, E. (1992). Drug motivation and abuse: a neurobiological perspective. Annals of the New York Academy of Sciences, 654, 207–219. https://doi.org/10.1111/j.1749-6632.1992.tb25969.xDonny, E.C., Caggiula, A.R., Knopf, S. et al. Nicotine self-administration in rats. Psychopharmacology, 122, 390–394 (1995). https://doi.org/10.1007/BF02246272Ehlinger, D. G., Bergstrom, H. C., Burke, J. C., Fernandez, G. M., McDonald, C. G., & Smith, R. F. (2016). Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent. Brain structure & function, 221(1), 133–145. https://doi.org/10.1007/s00429-014-0897-3Ehlinger, D. G., Burke, J. C., McDonald, C. G., Smith, R. F., & Bergstrom, H. C. (2017). Nicotine-induced and D1-receptor-dependent dendritic remodeling in a subset of dorsolateral striatum medium spiny neurons. Neuroscience, 356, 242–254. https://doi.org/10.1016/j.neuroscience.2017.05.036Ehrlich, M. E., Sommer, J., Canas, E., & Unterwald, E. M. (2002). Periadolescent mice show enhanced DeltaFosB upregulation in response to cocaine and amphetamine. The Journal of neuroscience: the official journal of the Society for Neuroscience, 22(21), 9155–9159. https://doi.org/10.1523/JNEUROSCI.22-21-09155.2002Faure, P., Tolu, S., Valverde, S., & Naudé, J. (2014). Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience, 282, 86–100. https://doi.org/10.1016/j.neuroscience.2014.05.040Flagel, S. B., Watson, S. J., Robinson, T. E., & Akil, H. (2007). Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology, 191(3), 599-607. https://doi.org/10.1007/s00213-006-0535-8Flagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56, 139–148. https://doi.org/10.1016/j.neuropharm.2008.06.027Flagel, S. B., Robinson, T. E., Clark, J. J., Clinton, S. M., Watson, S. J., Seeman, P., Phillips, P. E., & Akil, H. (2010). An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 35(2), 388–400. https://doi.org/10.1038/npp.2009.142Flagel, S. B., Cameron, C. M., Pickup, K. N., Watson, S. J., Akil, H., & Robinson, T. E. (2011a). A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience, 196, 80–96. https://doi.org/10.1016/j.neuroscience.2011.09.004Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., Akers, C. A., Clinton, S. M., Phillips, P. E., & Akil, H. (2011b). A selective role for dopamine in stimulus-reward learning. Nature, 469(7328), 53–57. https://doi.org/10.1038/nature09588Fraser, K. M., & Janak, P. H. (2017). Long-lasting contribution of dopamine in the nucleus accumbens core, but not dorsal lateral striatum, to sign-tracking. The European journal of neuroscience, 46(4), 2047–2055. https://doi.org/10.1111/ejn.13642Fuchs, R. A., Evans, K. A., Parker, M. P., & See, R. E. (2004). Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. The Journal of neuroscience: the official journal of the Society for Neuroscience, 24(29), 6600–6610. https://doi.org/10.1523/JNEUROSCI.1924-04.2004Fudala, P. J., & Iwamoto, E. T. (1986). Further studies on nicotine-induced conditioned place preference in the rat. Pharmacology Biochemistry & Behavior, 25, 1041-1049. https://doi.org/10.1016/0091-3057(86)90083-3Fujii, S., Ji, Z., Morita, N., & Sumikawa, K. (1999). Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research, 846(1), 137–143. https://doi.org/10.1016/S0006-8993(99)01982-4Gallagher, M., Graham, P. W., & Holland, P. C. (1990). The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. Journal of Neuroscience, 10(6), 1906-1911.Gallagher, M., McMahan, R. W., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. Journal of Neuroscience, 19(15), 6610-6614. https://doi.org/10.1523/JNEUROSCI.19-15-06610.1999Gotti, C., Clementi, F., Fornari, A., Gaimarri, A., Guiducci, S., Manfredi, I., Moretti, M., Pedrazzi, P., Pucci, L., & Zoli, M. (2009). Structural and functional diversity of native brain neuronal nicotinic receptors. Biochemical Pharmacology, 78(7), 703–711. https://doi.org/10.1016/j.bcp.2009.05.024Groshek, F., Kerfoot, E., McKenna, V., Polackwich, A. S., Gallagher, M., & Holland, P. C. (2005). Amygdala Central Nucleus Function Is Necessary for Learning, but Not Expression, of Conditioned Auditory Orienting. Behavioral Neuroscience, 119(1), 202–212. https://doi.org/10.1037/0735-7044.119.1.202Guillem, K., & Ahmed, S. H. (2016). Proportion of cocaine-coding neurons in the orbitofrontal cortex determines individual drug preferences. bioRxiv, 050872. https://doi.org/10.1101/050872Hall, J., Parkinson, J. A., Connor, T. M., Dickinson, A., & Everitt, B. J. (2001). Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. The European journal of neuroscience, 13(10), 1984–1992. https://doi.org/10.1046/j.0953-816x.2001.01577.xHart G., Balleine B. (2017) Medial Striatum. In: Vonk J., Shackelford T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1288-1Hatfield, T., Han, J. S., Conley, M., Gallagher, M., & Holland, P. (1996). Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. Journal of Neuroscience, 16(16), 5256-5265Hearst, E., & Jenkins, H. M. (1974). Sign-tracking: The stimulus-reinforcer relation and directed action. Austin: Psychonomic SocietyHolland P. C. (2016). Enhancing second-order conditioning with lesions of the basolateral amygdala. Behavioral neuroscience, 130(2), 176–181. https://doi.org/10.1037/bne0000129Hutcheson, D. M., & Everitt, B. J. (2003). The effects of selective orbitofrontal cortex lesions on the acquisition and performance of cue-controlled cocaine seeking in rats. Annals of the New York Academy of Sciences, 1003, 410–411. https://doi.org/10.1196/annals.1300.038Kandel, E. R., & Kandel, D. B. (2014). Shattuck Lecture. A molecular basis for nicotine as a gateway drug. The New England journal of medicine, 371(10), 932–943. https://doi.org/10.1056/NEJMsa1405092Keefer, S. E., Gyawali, U., & Calu, D. J. (2021). Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behavioural Brain Research, 409, 113306. https://doi.org/10.1016/j.bbr.2021.113306Kelz, M. B., Chen, J., Carlezon, W. A., Jr, Whisler, K., Gilden, L., Beckmann, A. M., Steffen, C., Zhang, Y. J., Marotti, L., Self, D. W., Tkatch, T., Baranauskas, G., Surmeier, D. J., Neve, R. L., Duman, R. S., Picciotto, M. R., & Nestler, E. J. (1999). Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature, 401(6750), 272–276. https://doi.org/10.1038/45790Kelz, M. B., & Nestler, E. J. (2000). deltaFosB: a molecular switch underlying long-term neural plasticity. Current opinion in neurology, 13(6), 715–720. https://doi.org/10.1097/00019052-200012000-00017Kolokotroni, K. Z., Rodgers, R. J., & Harrison, A. A. (2012). Effects of chronic nicotine, nicotine withdrawal and subsequent nicotine challenges on behavioural inhibition in rats. Psychopharmacology, 219, 453-468. https://doi.org/10.1007/s00213-011-2558-zLevin, E. D., Morgan, M. M., Galvez, C., & Ellison, G. D. (1987). Chronic nicotine and withdrawal effects on body weight and food and water consumption in female rats. Physiology & behavior, 39(4), 441–444. https://doi.org/10.1016/0031-9384(87)90370-2Levine, A., Huang, Y., Drisaldi, B., Griffin, E. A., Jr, Pollak, D. D., Xu, S., Yin, D., Schaffran, C., Kandel, D. B., & Kandel, E. R. (2011). Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Science translational medicine, 3(107), 107ra109. https://doi.org/10.1126/scitranslmed.3003062Loney, G. C., Angelyn, H., Cleary, L. M., & Meyer, P. J. (2019). Nicotine Produces a High-Approach, Low-Avoidance Phenotype in Response to Alcohol-Associated Cues in Male Rats. Alcoholism, clinical and experimental research, 43(6), 1284–1295. https://doi.org/10.1111/acer.14043Macpherson, T., & Hikida, T. (2018). Nucleus Accumbens Dopamine D1-Receptor-Expressing Neurons Control the Acquisition of Sign-Tracking to Conditioned Cues in Mice. Frontiers in neuroscience, 12, 418. https://doi.org/10.3389/fnins.2018.00418Malin, D. H., Lake, J. R., Newlin-Maultsby, P., Roberts, L. K., Lanier, J. G., Carter, V. A., Cunningham, J. S., & Wilson, O. B. (1992). Rodent model of nicotine abstinence syndrome. Pharmacology, Biochemistry Behavior, 43(3), 779–784. https://doi.org/10.1016/0091-3057(92)90408-8Marttila, K., Raattamaa, H., & Ahtee, L. (2006). Effects of chronic nicotine administration and its withdrawal on striatal FosB/DeltaFosB and c-Fos expression in rats and mice. Neuropharmacology, 51(1), 44–51. https://doi.org/10.1016/j.neuropharm.2006.02.014Matta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., Craig, C. R., Collins, A. C., Damaj, M. I., Donny, E. C., Gardiner, P. S., Grady, S. R., Heberlein, U., Leonard, S. S., Levin, E. D., Lukas, R. J., Markou, A., Marks, M. J., McCallum, S. E., Parameswaran, N., … Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190(3), 269–319. https://doi.org/10.1007/s00213-006-0441-0McDonald, C. G., Dailey, V. K., Bergstrom, H. C., Wheeler, T. L., Eppolito, A. K., Smith, L. N., & Smith, R. F. (2005). Periadolescent nicotine administration produces enduring changes in dendritic morphology of medium spiny neurons from nucleus accumbens. Neuroscience letters, 385(2), 163–167. https://doi.org/10.1016/j.neulet.2005.05.041McDonald, C. G., Eppolito, A. K., Brielmaier, J. M., Smith, L. N., Bergstrom, H. C., Lawhead, M. R., & Smith, R. F. (2007). Evidence for elevated nicotine-induced structural plasticity in nucleus accumbens of adolescent rats. Brain research, 1151, 211–218. https://doi.org/10.1016/j.brainres.2007.03.019McGehee, D. S., Heath, M. J., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269(5231), 1692–1696. https://doi.org/10.1126/science.7569895Meyer, P. J., Lovic, V., Saunders, B. T., Yager, L. M., Flagel, S. B., Morrow, J. D., & Robinson, T. E. (2012). Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PloS one, 7(6), e38987. https://doi.org/10.1371/journal.pone.0038987Michalak, A., & Budzyńska, B. (2019). Nicotine and Dopamine DA1 Receptor Pharmacology. In: Preedy, V. R. (Ed.). Neuroscience of Nicotine: Mechanisms and Treatment. Academic PressMorgan, J. I., & Curran, T. (1995). Immediate-early genes: ten years on. Trends in Neurosciences, 18(2), 66–67Muller, D. L., & Unterwald, E. M. (2005). D1 dopamine receptors modulate deltaFosB induction in rat striatum after intermittent morphine administration. The Journal of pharmacology and experimental therapeutics, 314(1), 148–154. https://doi.org/10.1124/jpet.105.083410Murrin, L. C., Ferrer, J. R., Wanyun, Z., & Haley, N. J. (1987). Nicotine administration to rats: methodological considerations. Life Sciences, 40, 1699-1708. https://doi.org/10.1016/0024-3205(87)90020-8Naeem, M., & White, N. M. (2016). Parallel learning in an autoshaping paradigm. Behavioral neuroscience, 130(4), 376–392. https://doi.org/10.1037/bne0000154Naeem, M. (2016). Learning processes in autoshaping and conditioned cue preference. [PhD Thesis, McGill University] (Canada). Recuperado de: https://www.bac-lac.gc.ca/eng/services/theses/Pages/item.aspx?idNumber=973735010Nakhate, K. T., Dandekar, M. P., Kokare, D. M., & Subhedar, N. K. (2009). Involvement of neuropeptide Y Y(1) receptors in the acute, chronic and withdrawal effects of nicotine on feeding and body weight in rats. European journal of pharmacology, 609(1-3), 78–87. https://doi.org/10.1016/j.ejphar.2009.03.008Nestler, E. J., Barrot, M., & Self, D. W. (2001). DeltaFosB: a sustained molecular switch for addiction. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11042–11046. https://doi.org/10.1073/pnas.191352698Nestler E. J. (2008). Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1507), 3245–3255. https://doi.org/10.1098/rstb.2008.0067Norrholm, S. D., Bibb, J. A., Nestler, E. J., Ouimet, C. C., Taylor, J. R., & Greengard, P. (2003). Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience, 116(1), 19–22. https://doi.org/10.1016/s0306-4522(02)00560-2Olausson, P., Jentsch, J. D., & Taylor, J. R. (2003). Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology, 28, 1264-1271. https://doi.org/10.1038/sj.npp.1300173Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004a). Nicotine enhances responding with conditioned reinforcement. Psychopharmacology, 171, 173-178. https://doi.org/10.1007/s00213-003-1575-yOlausson, P., Jentsch, J. D., & Taylor, J. R. (2004b). Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology, 173, 98-104. https://doi.org/10.1007/s00213-003-1702-9Olausson, P., Jentsch, J. D., Tronson, N., Neve, R. L., Nestler, E. J., & Taylor, J. R. (2006). ΔFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation. Journal of Neuroscience, 26(36), 9196-9204. https://doi.org/10.1523/JNEUROSCI.1124-06.2006Ostlund, S. B., & Balleine, B. W. (2007). Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(18), 4819–4825. https://doi.org/10.1523/JNEUROSCI.5443-06.2007Overby, P. F., Daniels, C. W., Del Franco, A., Goenaga, J., Powell, G. L., Gipson, C. D., & Sanabria, F. (2018). Effects of nicotine self-administration on incentive salience in male Sprague Dawley rats. Psychopharmacology, 235(4), 1121–1130. https://doi.org/10.1007/s00213-018-4829-4Palmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., Liu, X., Booth, S., Gharib, M., Craven, L., & Sved, A. F. (2006). Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology, 184, 391-400. https://doi.org/10.1007/s00213-005-0183-4Palmatier, M. I., Liu, X., Matteson, G. L., Donny, E. C., Caggiula, A. R., & Sved, A. F. (2007). Conditioned reinforcement in rats established with self-administered nicotine and enhanced by noncontingent nicotine. Psychopharmacology, 195(2), 235-243. https://doi.org/10.1007/s00213-007-0897-6Palmatier, M. I., Marks, K. R., Jones, S. A., Freeman, K. S., Wissman, K. M., & Sheppard, A. B. (2013). The effect of nicotine on sign-tracking and goal-tracking in a Pavlovian conditioned approach paradigm in rats. Psychopharmacology, 226, 247-259. https://doi.org/10.1007/s00213-012-2892-9Panayi, M. C., & Killcross, S. (2018). Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits. eLife, 7, e37357. https://doi.org/10.7554/eLife.37357Panayi, M. C., & Killcross, S. (2021). The role of the rodent lateral orbitofrontal cortex in simple Pavlovian cue-outcome learning depends on training experience. Cerebral Cortex Communications, 2(1), tgab010. https://doi.org/10.1093/texcom/tgab010Parkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W., & Everitt, B. J. (1999). Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. Neuroscience, 19(6), 2401–2411. https://doi.org/10.1523/JNEUROSCI.19-06-02401.1999Parkinson, J. A., Robbins, T. W., & Everitt, B. J. (2000). Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. The European journal of neuroscience, 12(1), 405–413. https://doi.org/10.1046/j.1460-9568.2000.00960.xPaxinos, G. and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates. 6th Edition, Academic Press, San DiegoPeterson, G. B., Ackil, J. E., Frommer, G. P., & Hearst, E. S. (1972). Conditioned approach and contact behavior toward signals for food or brain-stimulation reinforcement. Science, 177(4053), 1009–1011. https://doi.org/10.1126/science.177.4053.1009Phillips, G. D., Setzu, E., Vugler, A., & Hitchcott, P. K. (2003). Immunohistochemical assessment of mesotelencephalic dopamine activity during the acquisition and expression of Pavlovian versus instrumental behaviours. Neuroscience, 117(3), 755-767. https://doi.org/10.1016/s0306-4522(02)00799-6Picciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport, 13(9), 1097–1106. https://doi.org/10.1097/00001756-200207020-00006Pich, E. M., Pagliusi, S. R., Tessari, M., Talabot-Ayer, D., van Huijsduijnen, R. H., & Chiamulera, C. (1997). Common neural substrates for the addictive properties of nicotine and cocaine. Science, 275(5296), 83-86. https://doi.org/10.1126/science.275.5296.83Pitchers, K. K., Vialou, V., Nestler, E. J., Laviolette, S. R., Lehman, M. N., & Coolen, L. M. (2013). Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. The Journal of neuroscience: the official journal of the Society for Neuroscience, 33(8), 3434–3442. https://doi.org/10.1523/JNEUROSCI.4881-12.2013Pichon-Riviere, A., Alcaraz, A., Palacios, A., Rodríguez, B., Reynales-Shigematsu, L. M., Pinto, M., Castillo-Riquelme, M., Peña, E., Osorio, D. I., Huayanay, L., Loza, C., de Miera-Juárez, B. S., Gallegos-Rivero, V., De La Puente, C., Navia-Bueno, M. P., Caporale, J., Roberti, J., Virgilio, A., Augustovski, F., & Bardach, A. (2020). The health and economic burden of smoking in 12 Latin American countries and the potential effect of increasing tobacco taxes: an economic modelling study. The Lancet Global Health, 8(10), e1282-e1294. https://doi.org/10.1016/S2214-109X(20)30311-9Rescorla, R. A., & Solomon, R. L. (1967). Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychological Review, 74(3), 151–182. https://doi.org/10.1037/h0024475Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain research. Brain research reviews, 18(3), 247–291. https://doi.org/10.1016/0165-0173(93)90013-pRobinson, T. E., & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1507), 3137–3146. https://doi.org/10.1098/rstb.2008.0093Robinson, T. E., Yager, L. M., Cogan, E. S., & Saunders, B. T. (2014). On the motivational properties of reward cues: Individual differences. Neuropharmacology, 76, 450–459. https://doi.org/10.1016/j.neuropharm.2013.05.040Rowell, P. P., & Li, M. (1997). Dose-response relationship for nicotine-induced up-regulation of rat brain nicotinic receptors. Journal of Neurochemistry, 68(5), 1982–1989. https://doi.org/10.1046/j.1471-4159.1997.68051982.xRuffle J. K. (2014). Molecular neurobiology of addiction: what's all the (Δ)FosB about?. The American journal of drug and alcohol abuse, 40(6), 428–437. https://doi.org/10.3109/00952990.2014.933840Schaefer, G. J., & Michael, R. P. (1986). Task-specific effects of nicotine in rats. Intracranial self-stimulation and locomotor activity. Neuropharmacology, 25(2), 125–131. https://doi.org/10.1016/0028-3908(86)90033-xSchiltz, C. A., Kelley, A. E., & Landry, C. F. (2005). Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. The European journal of neuroscience, 21(6), 1703–1711. https://doi.org/10.1111/j.1460-9568.2005.04001.xSchoenbaum, G., & Shaham, Y. (2008). The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biological psychiatry, 63(3), 256–262. https://doi.org/10.1016/j.biopsych.2007.06.003Schoenbaum, G., Roesch, M. R., Stalnaker, T. A., & Takahashi, Y. K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature reviews. Neuroscience, 10(12), 885–892. https://doi.org/10.1038/nrn2753Schoenbaum, G., Takahashi, Y., Liu, T. L., & McDannald, M. A. (2011). Does the orbitofrontal cortex signal value?. Annals of the New York Academy of Sciences, 1239, 87–99. https://doi.org/10.1111/j.1749-6632.2011.06210.xSerrano-Barroso, A., Vargas, J. P., Diaz, E., O'Donnell, P., & López, J. C. (2019). Sign and goal tracker rats process differently the incentive salience of a conditioned stimulus. PloS one, 14(9), e0223109. https://doi.org/10.1371/journal.pone.0223109Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288. https://doi.org/10.1146/annurev.neuro.28.061604.135722Soderstrom, K., Qin, W., Williams, H., Taylor, D. A., & McMillen, B. A. (2007). Nicotine increases FosB expression within a subset of reward- and memory-related brain regions during both peri- and post-adolescence. Psychopharmacology, 191(4), 891–897. https://doi.org/10.1007/s00213-007-0744-9Sparber, S. B., Bollweg, G. L., & Messing, R. B. (1991). Food deprivation enhances both autoshaping and autoshaping impairment by a latent inhibition procedure. Behavioural Processes, 23(1), 59–74. https://doi.org/10.1016/0376-6357(91)90106-AStringfield, S. J., Palmatier, M. I., Boettiger, C. A., & Robinson, D. L. (2017). Orbitofrontal participation in sign- and goal-tracking conditioned responses: Effects of nicotine. Neuropharmacology, 116, 208–223. https://doi.org/10.1016/j.neuropharm.2016.12.020Stringfield, S. J., Madayag, A. C., Boettiger, C. A., & Robinson, D. L. (2019). Sex differences in nicotine-enhanced Pavlovian conditioned approach in rats. Biology of sex differences, 10(1), 37. https://doi.org/10.1186/s13293-019-0244-8Theeuwes, F., & Yum, S. I. (1976). Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Annals of biomedical engineering, 4(4), 343-353.Timberlake, W. (1986). Unpredicted food produces a mode of behavior that affects rats’ subsequent reactions to a conditioned stimulus: A behavior-system approach to “context blocking”. Animal Learning & Behavior, 14(3), 276-286. https://doi.org/10.3758/BF03200068Toates, F. (1986). Motivational systems. Cambridge, UK: Cambridge University PressTomie, A. (2018). Chapter 1: Introduction: The Role of Sign-Tracking in Drug Addiction. En Tomie, A. & Morrow, J. (Eds). Sign-Tracking and Drug Addiction. Maize Books. http://dx.doi.org/10.3998/mpub.10215070Versaggi, C. L., King, C. P., & Meyer, P. J. (2016). The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol. Psychopharmacology, 233(15-16), 2985–2997. https://doi.org/10.1007/s00213-016-4341-7Wallace, D. L., Vialou, V., Rios, L., Carle-Florence, T. L., Chakravarty, S., Kumar, A., Graham, D. L., Green, T. A., Kirk, A., Iñiguez, S. D., Perrotti, L. I., Barrot, M., DiLeone, R. J., Nestler, E. J., & Bolaños-Guzmán, C. A. (2008). The influence of DeltaFosB in the nucleus accumbens on natural reward-related behavior. The Journal of neuroscience: the official journal of the Society for Neuroscience, 28(41), 10272–10277. https://doi.org/10.1523/JNEUROSCI.1531-08.2008Werme, M., Messer, C., Olson, L., Gilden, L., Thorén, P., Nestler, E. J., & Brené, S. (2002). ΔFosB regulates wheel running. Journal of Neuroscience, 22(18), 8133-8138. https://doi.org/10.1523/JNEUROSCI.22-18-08133.2002Winstanley, C. A., LaPlant, Q., Theobald, D. E., Green, T. A., Bachtell, R. K., Perrotti, L. I., DiLeone, R. J., Russo, S. J., Garth, W. J., Self, D. W., & Nestler, E. J. (2007). DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(39), 10497–10507. https://doi.org/10.1523/JNEUROSCI.2566-07.2007Wills, L., & Kenny, P. J. (2021). Addiction-related neuroadaptations following chronic nicotine exposure. Journal of neurochemistry, 157(5), 1652–1673. https://doi.org/10.1111/jnc.15356Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20(2), 92–98. https://doi.org/10.1016/S0166-2236(96)10073-4Xiong, M., Li, J., Ye, J. H., & Zhang, C. (2011). Upregulation of DeltaFosB by propofol in rat nucleus accumbens. Anesthesia and analgesia, 113(2), 259–264. https://doi.org/10.1213/ANE.0b013e318222af17Yager, L. M., & Robinson, T. E. (2013). A classically conditioned cocaine cue acquires greater control over motivated behavior in rats prone to attribute incentive salience to a food cue. Psychopharmacology, 226(2), 217–228. https://doi.org/10.1007/s00213-012-2890-yYager, L. M., & Robinson, T. E. (2015). Individual variation in the motivational properties of a nicotine cue: Sign-trackers vs. Goal-trackers. Psychopharmacology, 232(17), 3149–3160. https://doi.org/10.1007/s00213-015-3962-6Yager, L. M., Pitchers, K. K., Flagel, S. B., & Robinson, T. E. (2015). Individual variation in the motivational and neurobiological effects of an opioid cue. Neuropsychopharmacology, 40(5), 1269-1277. https://doi.org/10.1038/npp.2014.314Zhang, D., Zhang, L., Lou, D. W., Nakabeppu, Y., Zhang, J., & Xu, M. (2002). The dopamine D1 receptor is a critical mediator for cocaine-induced gene expression. Journal of neurochemistry, 82(6), 1453–1464. https://doi.org/10.1046/j.1471-4159.2002.01089.xZhang, T., Zhang, L., Liang, Y., Siapas, A. G., Zhou, F. M., & Dani, J. A. (2009). Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(13), 4035–4043. https://doi.org/10.1523/JNEUROSCI.0261-09.2009Convocatoria de Investigación Orlando Fals Borda – 2019 APOYO A PROYECTOS DE INVESTIGACIÓN DOCENTES-Facultad de Ciencias Humanas de la Universidad Nacional de Colombia. Código FCH 47357Fundación Universitaria Konrad LorenzUniversidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1018493799.2022.pdf1018493799.2022.pdfTesis de Maestría en Psicologíaapplication/pdf1752187https://repositorio.unal.edu.co/bitstream/unal/81675/3/1018493799.2022.pdf31b3b503ee951ed640a625e2bbcf35c8MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81675/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1018493799.2022.pdf.jpg1018493799.2022.pdf.jpgGenerated Thumbnailimage/jpeg4025https://repositorio.unal.edu.co/bitstream/unal/81675/5/1018493799.2022.pdf.jpgba606d634f37334dafdface061548ee3MD55unal/81675oai:repositorio.unal.edu.co:unal/816752024-08-06 23:10:40.637Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK