Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina

ilustraciones, diagramas, mapas, tablas

Autores:
Páez Lugo, Eliana Alejandra
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86537
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86537
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
INFILTRACION DEL SUELO
USO DE LA TIERRA
HIDROLOGIA-MODELOS MATEMATICOS
Soil infiltration
Land use
Hidrology - mathematical models
Sensoramiento remoto
Propiedades físicas del suelo
Hidrodinámica del suelo
Modelo de elevación digital
Cobertura y uso del suelo
Modelación espacial
Análisis de impactos
Remote sensing
Soil physical properties
Soil hydrodynamics
Digital elevation model
Land cover and use
Spatial modeling
Impact analysis
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_5ab75d5cd225ca1bd1a3df26bf31cba4
oai_identifier_str oai:repositorio.unal.edu.co:unal/86537
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
dc.title.translated.eng.fl_str_mv Prediction of soil infiltration through the integration of remote sensors and spatial inference in an Andean micro-watershed
title Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
spellingShingle Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
INFILTRACION DEL SUELO
USO DE LA TIERRA
HIDROLOGIA-MODELOS MATEMATICOS
Soil infiltration
Land use
Hidrology - mathematical models
Sensoramiento remoto
Propiedades físicas del suelo
Hidrodinámica del suelo
Modelo de elevación digital
Cobertura y uso del suelo
Modelación espacial
Análisis de impactos
Remote sensing
Soil physical properties
Soil hydrodynamics
Digital elevation model
Land cover and use
Spatial modeling
Impact analysis
title_short Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
title_full Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
title_fullStr Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
title_full_unstemmed Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
title_sort Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
dc.creator.fl_str_mv Páez Lugo, Eliana Alejandra
dc.contributor.advisor.none.fl_str_mv Darghan Contreras, Aquiles Enrique
Leal Villamil, Julián
dc.contributor.author.none.fl_str_mv Páez Lugo, Eliana Alejandra
dc.contributor.orcid.spa.fl_str_mv Paez Lugo, Eliana Alejandra [0009-0009-6435-1049]
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
INFILTRACION DEL SUELO
USO DE LA TIERRA
HIDROLOGIA-MODELOS MATEMATICOS
Soil infiltration
Land use
Hidrology - mathematical models
Sensoramiento remoto
Propiedades físicas del suelo
Hidrodinámica del suelo
Modelo de elevación digital
Cobertura y uso del suelo
Modelación espacial
Análisis de impactos
Remote sensing
Soil physical properties
Soil hydrodynamics
Digital elevation model
Land cover and use
Spatial modeling
Impact analysis
dc.subject.lemb.spa.fl_str_mv INFILTRACION DEL SUELO
USO DE LA TIERRA
HIDROLOGIA-MODELOS MATEMATICOS
dc.subject.lemb.eng.fl_str_mv Soil infiltration
Land use
Hidrology - mathematical models
dc.subject.proposal.spa.fl_str_mv Sensoramiento remoto
Propiedades físicas del suelo
Hidrodinámica del suelo
Modelo de elevación digital
Cobertura y uso del suelo
Modelación espacial
Análisis de impactos
dc.subject.proposal.eng.fl_str_mv Remote sensing
Soil physical properties
Soil hydrodynamics
Digital elevation model
Land cover and use
Spatial modeling
Impact analysis
description ilustraciones, diagramas, mapas, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-17T18:36:20Z
dc.date.available.none.fl_str_mv 2024-07-17T18:36:20Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86537
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86537
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Achouri, M., y Gifford, G. F. (1984). Spatial and seasonal variability of field Measured Infiltration Rates on a Rangeland Site in Utah. Journal of Range Management, 37(5), 451. https://doi.org/10.2307/3899635
Al-Qinna, M. I., Salahat, M. A. y Shatnawi, Z. N. (2008). Effect of carbonates and gravel contents on hydraulic properties in gravely-calcareous soils. Dirasat, Agricultural Sciences, 35 (3), 145-158
Angelaki, A., Singh Nain, S., Singh, V., y Sihag, P. (2018). Estimation of models for cumulative infiltration of soil using machine learning methods. Https://Doi.Org/10.1080/09715010.2018.1531274, 27(2), 162–169. https://doi.org/10.1080/09715010.2018.1531274
Asfawesen Molla, G., Desta, G., y Dananto, M. (2022). Soil Management and crop practice effect on soil water infiltration and soil water storage in the humid lowlands of Beles sub-basin, Ethiopia. Hydrology, 10(1), 1. https://doi.org/10.11648/j.hyd.20221001.11
Atwood, D. K., Small, D., & Gens, R. (2012). Improving PolSAR land cover classification with radiometric correction of the coherency matrix. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3), 848–856. https://doi.org/10.1109/JSTARS.2012.2186791
Baraha, S., & Sahoo, A. K. (2023). Synthetic aperture radar image and its despeckling using variational methods: A Review of recent trends. Signal Processing, 212, 109156. https://doi.org/10.1016/J.SIGPRO.2023.109156
Bautista, S., Mayor, Á. G., Bourakhouadar, J., y Bellot, J. (2007). Plant spatial pattern Predicts Hillslope Runoff and Erosion in a Semiarid Mediterranean Landscape. Ecosystems 2007 10:6, 10(6), 987–998. https://doi.org/10.1007/S10021-007-9074-3
Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., y Steenhuis, T. S. (2019). Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338, 159–169. https://doi.org/10.1016/J.GEODERMA.2018.11.028
Bergeson, C. B., Martin, K. L., Doll, B., y Cutts, B. B. (2022). Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA. Journal of Environmental Management, 313, 115004. https://doi.org/10.1016/j.jenvman.2022.115004
Berryman, E., Hatten, J., Page-Dumroese, D. S., Heckman, K. A., D’Amore, D. V., Puttere, J., SanClements, M., Connolly, S. J., Hobie Perry, C. H., y Domke, G. M. (2020). Soil Carbon. Forest and rangeland soils of the United States under changing conditions: A Comprehensive Science Synthesis, 9–31. https://doi.org/10.1007/978-3-030-45216-2_2/TABLES/2
Bivand, R. (2023a). Package “spatialreg.” https://doi.org/10.1080/01621459.1975.10480272
Bivand, R. (2023b). Package “spdep.” https://doi.org/10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID
Brady, N. C., y Weil, R. R. (2008). The Nature and properties of soils.
Brath, A., Montanari, A., Brath, A., y Montanari, A. (2000). The effects of the spatial variability of soil infiltration capacity in distributed flood modelling. HyPr, 14(15), 2779–2794. https://doi.org/10.1002/1099-1085(20001030)14:15
Bryan, B. A. (2003). Physical environmental modeling, visualization and query for supporting landscape planning decisions. Landscape and Urban Planning, 65(4), 237–259. https://doi.org/10.1016/S0169-2046(03)00059-8
Buzai, G. D., y Montes Galbán, E. J. (2022). Estadística Espacial: Fundamentos y aplicación con Sistemas de Información Geográfica. https://ri.conicet.gov.ar/handle/11336/161048
Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. 667.
Capowiez, Y., Sammartino, S., Keller, T., y Bottinelli, N. (2021). Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density. Pedobiologia, 85–86, 150728. https://doi.org/10.1016/J.PEDOBI.2021.150728
Chari, M. M., Poozan, M. T., y Afrasiab, P. (2020). Modelling soil water infiltration variability using scaling. Biosystems Engineering, 196, 56–66. https://doi.org/10.1016/J.BIOSYSTEMSENG.2020.05.014
Chavent, M., Kuentz-Simonet, V., Labenne, A., y Saracco, J. (2018). ClustGeo: an R package for hierarchical clustering with spatial constraints. Computational Statistics, 33(4), 1799–1822. https://doi.org/10.1007/S00180-018-0791-1/METRICS
Cohen, J., Lemmetyinen, J., Jorge Ruiz, J., Rautiainen, K., Ikonen, J., Kontu, A., & Pulliainen, J. (2024). Detection of soil and canopy freeze/thaw state in the boreal region with L and C Band Synthetic Aperture Radar. Remote Sensing of Environment, 305, 114102. https://doi.org/10.1016/J.RSE.2024.114102
Corporación Autónoma Regional del Tolima. (2016). Cartografía escala 1:25,000 de las microcuencas del departamento del Tolima.
Corporación Autónoma Regional del Tolima, y Universidad de Ibagué. (2018). Ajuste parcial a la zonificación ambiental del Plan de Ordenación y Manejo de la cuenca hidrográfica del río Coello: Cartografía 1:25.000 de la Cobertura y Uso de la Tierra.
CORTOLIMA, & Universidad del Tolima. (2021). Informe Final Evaluación Regional del Agua del Departamento del Tolima Fase 1.
Cortes-D, D. L., Camacho-Tamayo, J. H., y Giraldo, R. (2018). Spatial prediction of soil infiltration using functional geostatistics. Acta Universitatis Carolinae, Geographica, 53(2), 149–155. https://doi.org/10.14712/23361980.2018.15
Das, K., & Paul, P. K. (2015). Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1), 1084669. https://doi.org/10.1080/23312041.2015.1084669
Dubitzky, W., Wolkenhauer, O., Cho, K.-H., y Yokota, H. (2013). Encyclopedia of Systems Biology. Encyclopedia of Systems Biology. https://doi.org/10.1007/978-1-4419-9863-7
Dualeh, E. W., Ebmeier, S. K., Wright, T. J., Poland, M. P., Grandin, R., Stinton, A. J., Camejo-Harry, M., Esse, B., & Burton, M. (2023). Rapid pre-explosion increase in dome extrusion rate at La Soufrière, St. Vincent quantified from synthetic aperture radar backscatter. Earth and Planetary Science Letters, 603, 117980. https://doi.org/10.1016/J.EPSL.2022.117980
Duan, R., Fedler, C. B., y Borrelli, J. (2011). Field evaluation of infiltration models in lawn soils. Irrigation Science, 29(5), 379–389. https://doi.org/10.1007/S00271-010-0248-Y/METRICS
Ekhmaj, A. I. (2010). Predicting soil infiltration rate using artificial neural network. ICEEA 2010 - 2010 International Conference on Environmental Engineering and Applications, Proceedings, 117–121. https://doi.org/10.1109/ICEEA.2010.5596107
Elhorst, J. P. (2014). Spatial econometrics from Cross-Sectional Data to Spatial Panels. http://www.springer.com/series/10096
ESA. (2023). Copernicus Sentinel data.
Esch, S., Korres, W., Reichenau, T. G., y Schneider, K. (2018). Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas. Https://Doi.Org/10.1117/1.JRS.12.022206, 12(2), 022206. https://doi.org/10.1117/1.JRS.12.022206
Fil, P. P., Yurova, A. Y., Dobrokhotov, A., Kozlov, D., Yurova, P. P. ;, Dobrokhotov, A. Y. ;, Kozlov, A. ;, Cugueró-Escofet, À., y Puig, V. (2021). Estimation of Infiltration Volumes and Rates in Seasonally Water-Filled Topographic Depressions Based on Remote-Sensing Time Series. Sensors 2021, Vol. 21, Page 7403, 21(21), 7403. https://doi.org/10.3390/S21217403
Fischer, M. M., & Nijkamp, P. (2014). Handbook of regional science. Handbook of Regional Science, 1–1732. https://doi.org/10.1007/978-3-642-23430-9/COVER
Flores-Anderson, A., Herndon, K., Thapa, R. B., & Cherrington, E. (2019). The SAR Handbook:Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. https://doi.org/10.25966/nr2c-s697
Flügel, W. A. (1997). Combining GIS with regional hydrological modelling using hydrological response units (HRUs): An application from Germany. Mathematics and Computers in Simulation, 43(3–6), 297–304. https://doi.org/10.1016/S0378-4754(97)00013-X
Franceschetti, G., & Lanari, R. (2018). Synthetic aperture radar processing. Synthetic Aperture Radar Processing, 1–307. https://doi.org/10.1201/9780203737484/Synthetic-aperture-radar-processing-fidler-giorgio-franceschetti-riccardo-lanari-giorgio-franceschetti-riccardo-lanari
Francos, N., Chabrillat, S., Tziolas, N., Milewski, R., Brell, M., Samarinas, N., Angelopoulou, T., Tsakiridis, N., Liakopoulos, V., Ruhtz, T., y Ben-Dor, E. (2023). Estimation of water-infiltration rate in Mediterranean sandy soils using airborne hyperspectral sensors. CATENA, 233, 107476. https://doi.org/10.1016/J.CATENA.2023.107476
Francos, N., Romano, N., Nasta, P., Zeng, Y., Szabó, B., Manfreda, S., Ciraolo, G., Mészáros, J., Zhuang, R., Su, B., y Ben‐dor, E. (2021). Mapping Water Infiltration Rate Using Ground and UAV Hyperspectral Data: A Case Study of Alento, Italy. Remote Sensing 2021, Vol. 13, Page 2606, 13(13), 2606. https://doi.org/10.3390/RS13132606
Frery, A. C., Wu, J., y Gómez, L. (2022). SAR image analysis: a computational statistics approach : with R code, data, and applications. 182. https://www.wiley.com/en-us/SAR+Image+Analysis+A+Computational+Statistics+Approach%3A+With+R+Code%2C+Data%2C+and+Applications-p-9781119795292
Gan, F., Shi, H., Gou, J., Zhang, L., y Liu, C. (2023). Effects of bedrock strata dip on soil infiltration capacity under different land use types in a karst trough valley of Southwest China. CATENA, 230, 107253. https://doi.org/10.1016/J.CATENA.2023.107253
Goldshleger, N., Chudnovsky, A., & Ben-Dor, E. (2012). Using reflectance spectroscopy and artificial neural network to assess water infiltration rate into the soil profile. Applied and Environmental Soil Science, 2012. https://doi.org/10.1155/2012/439567
Govindaraju, R. S., Corradini, C., y Morbidelli, R. (2006). A semi-analytical model of expected areal-average infiltration under spatial heterogeneity of rainfall and soil saturated hydraulic conductivity. Journal of Hydrology, 316(1–4), 184–194. https://doi.org/10.1016/J.JHYDROL.2005.04.019
Gray, D. M., y Norum, D. I. (1967). Effect of soil moisture in infiltration as related to runoff and recharge. Hydrol Symp Proc. https://doi.org/10.3/JQUERY-UI.JS
Hadria, R., Duchemin, B., Baup, F., Le Toan, T., Bouvet, A., Dedieu, G., y Le Page, M. (2009). Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco. Agricultural Water Management, 96(7), 1120–1127. https://doi.org/10.1016/J.AGWAT.2009.02.010
Hervada-Sala, C., y Jarauta-Bragulat, E. (2004). A program to perform Ward’s clustering method on several regionalized variables. Computers y Geosciences, 30(8), 881–886. https://doi.org/10.1016/J.CAGEO.2004.07.003
Hervé-Fernández, P., Muñoz-Arriagada, R., Glucevic-Almonacid, C., Bahamonde-Vidal, L., y Radic-Schilling, S. (2023). Influence of Rangeland Land Cover on Infiltration Rates, Field-Saturated Hydraulic Conductivity, and Soil Water Repellency in Southern Patagonia. Rangeland Ecology y Management, 90, 92–100. https://doi.org/10.1016/J.RAMA.2023.06.004
Hillel, D. (2003). Introduction to environmental soil physics. Introduction to Environmental Soil Physics, 1–494. https://doi.org/10.1016/B978-0-12-348655-4.X5000-X
Hoekman, D. H., & Reiche, J. (2015). Multi-model radiometric slope correction of SAR images of complex terrain using a two-stage semi-empirical approach. Remote Sensing of Environment, 156, 1–10. https://doi.org/10.1016/J.RSE.2014.08.037
Hovde, K., Mevik, B.-H., Wehrens, R., & Hiemstra, P. (2023). Partial Least Squares and Principal Component Regression [R package pls version 2.8-3]. https://CRAN.R-project.org/package=pls
IDEAM. (2012). Mapa de clasificación climática Caldas-Lang de la República de Colombia.
IDEAM. (2022). Proyecto DHIME.
Instituto Geográfico Agustín Codazzi. (2004). Estudio general de suelos y zonificación de tierras departamento del Tolima. Instituto Geográfico Agustín Codazzi.
JAXA/METI. (2010). ALOS-1PALSAR Radiometric High Resolution Terrain Corrected Image.
Ji, X., Thompson, A., Lin, J., Jiang, F., Ge, H., Yu, M., y Huang, Y. (2020). Modeling spatial distribution of rainfall infiltration amounts in South China using cellular automata and its relationship with the occurrence of collapsing gullies. Catena, 194. https://doi.org/10.1016/j.catena.2020.104676
Jin, F., y Lee, L. fei. (2018). Outer-product-of-gradients tests for spatial autoregressive models. Regional Science and Urban Economics, 72, 35–57. https://doi.org/10.1016/J.REGSCIURBECO.2017.03.006
Kang, X., Ma, X., Fan, H., Liu, H., y Shojaaddini, A. (2022). Soil infiltration, its prediction, and GIS-mapping in calcareous soils in northwest Iran. Archives of Agronomy and Soil Science, 68(2), 242–256. https://doi.org/10.1080/03650340.2020.1830377
Kambezidis, H. D. (2012). The Solar Resource. Comprehensive Renewable Energy, 27–84. https://doi.org/10.1016/B978-0-08-087872-0.00302-4
Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609–629. https://doi.org/10.1016/J.INS.2021.11.036
Kashi, H., Emamgholizadeh, S., y Ghorbani, H. (2014). Estimation of Soil Infiltration and Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models. Communications in Soil Science and Plant Analysis, 45(9), 1195–1213. https://doi.org/10.1080/00103624.2013.874029
Kirkland, E. J. (2010). Advanced computing in electron microscopy: Second edition. Advanced Computing in Electron Microscopy: Second Edition, 1–289. https://doi.org/10.1007/978-1-4419-6533-2
Kornelsen, K. C., y Coulibaly, P. (2013). Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460–489. https://doi.org/10.1016/J.JHYDROL.2012.10.044
Lähderanta, T., Lovén, L., Ruha, L., Leppänen, T., Launonen, I., Riekki, J., & Sillanpää, M. J. (2024). Capacitated spatial clustering with multiple constraints and attributes. Engineering Applications of Artificial Intelligence, 127, 107182. https://doi.org/10.1016/J.ENGAPPAI.2023.107182
Leal, J. (2022). Evaluación del comportamiento hidráulico de suelos con presencia de fragmentos de roca en el perfil. Estudio de caso: Microcuenca Zanja Honda, Cuenca Baja del Rio Combeima (Ibagué-Tolima). Universidad Del Tolima.
Leal, J., Avila, E. A., Darghan, A. E., y Lobo, D. (2023). Spatial modeling of infiltration and its relationship with surface coverage of rock fragments and porosity in soils of an andean micro-watershed in Tolima (Colombia). Geoderma Regional, 33, e00637. https://doi.org/10.1016/J.GEODRS.2023.E00637
LeSage, J., y Pace, R. K. (2011). Introduction to Spatial Econometrics. Journal of the Royal Statistical Society Series A: Statistics in Society, 174(2), 513–514. https://doi.org/10.1111/J.1467-985X.2010.00681_13.X
Liu, T., y Lee, L. fei. (2019). A likelihood ratio test for spatial model selection. Journal of Econometrics, 213(2), 434–458. https://doi.org/10.1016/J.JECONOM.2019.07.001
Liu, C. an, Chen, Z. xin, Shao, Y., Chen, J. song, Hasi, T., & Pan, H. zhu. (2019). Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 18(3), 506–525. https://doi.org/10.1016/S2095-3119(18)62016-7
Machiwal, D., Jha, M. K., y Mal, B. C. (2006). Modelling Infiltration and quantifying Spatial Soil Variability in a Wasteland of Kharagpur, India. Biosystems Engineering, 95(4), 569–582. https://doi.org/10.1016/j.biosystemseng.2006.08.007
Mahapatra, S., Jha, M. K., Biswal, S., y Senapati, D. (2020). Assessing Variability of Infiltration Characteristics and Reliability of Infiltration Models in a Tropical Sub-humid Region of India. Scientific Reports 2020 10:1, 10(1), 1–18. https://doi.org/10.1038/s41598-020-58333-8
Mahdian, M. H., Oskoee, R. S., Kamali, K., Angoshtari, H., y Kadkhodapo, M. A. (2009). Developing Pedo Transfer Functions to Predict Infiltration Rate in Flood Spreading Stations of Iran. Research Journal of Environmental Sciences, 3(6), 697–704. https://doi.org/10.3923/RJES.2009.697.704
Maître, H. (2008). Processing of Synthetic Aperture Radar Images. Processing of Synthetic Aperture Radar Images. https://doi.org/10.1002/9780470611111
Mandal, D., Kumar, V., Ratha, D., Lopez-Sanchez, J. M., Bhattacharya, A., McNairn, H., Rao, Y. S., y Ramana, K. V. (2020). Assessment of rice growth conditions in a semi-arid region of India using the Generalized Radar Vegetation Index derived from RADARSAT-2 polarimetric SAR data. Remote Sensing of Environment, 237, 111561. https://doi.org/10.1016/J.RSE.2019.111561
Martínez, E., Fuentes, J. P., y Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de La Ciencia Del Suelo y Nutrición Vegetal, 8(1), 68–96. https://doi.org/10.4067/S0718-27912008000100006
Mishra, S. K., Tyagi, J. V., y Singh, V. P. (2003). Comparison of infiltration models. Hydrological Processes, 17(13), 2629–2652. https://doi.org/10.1002/HYP.1257
Miyata, S., Gomi, T., Sidle, R. C., Hiraoka, M., Onda, Y., Yamamoto, K., y Nonoda, T. (2019). Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments: Implications for hydrological connectivity. Science of The Total Environment, 669, 148–159. https://doi.org/10.1016/J.SCITOTENV.2019.02.453
Moraes, A. G. de L., de Carvalho, D. F., Antunes, M. A. H., Ceddia, M. B., y Flanagan, D. C. (2020). Steady infiltration rate spatial modeling from remote sensing data and terrain attributes in southeast Brazil. Geoderma Regional, 20, e00242. https://doi.org/10.1016/J.GEODRS.2019.E00242
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–43. https://doi.org/10.1109/MGRS.2013.2248301
Mosquera, L. (1986). Clasificación de las tierras por su capacidad de uso. Instituto Geográfico Agustín Codazzi. Subdirección Agrológica.
Mosquera, L., Polo, M., & Carrera, E. (1973). Clasificación de las tierras por su capacidad de uso. Instituto Geográfico Agustín Codazzi. Subdirección Agrológica
Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., y Reiche, J. (2021). Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing 2021, Vol. 13, Page 1954, 13(10), 1954. https://doi.org/10.3390/RS13101954
Muneer, A. S., Sayl, K. N., y Kamal, A. H. (2021). Modeling of spatially distributed infiltration in the Iraqi Western Desert. Applied Geomatics 2021 13:3, 13(3), 467–479. https://doi.org/10.1007/S12518-021-00363-6
Nasirzadehdizaji, R., Sanli, F. B., Abdikan, S., Cakir, Z., Sekertekin, A., y Ustuner, M. (2019). Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Applied Sciences 2019, Vol. 9, Page 655, 9(4), 655. https://doi.org/10.3390/APP9040655
Novak, V., y Surda, P. (2010). The water retention of a granite rock fragments in high tatras stony soils. Journal of Hydrology and Hydromechanics, 58(3), 181–187. https://doi.org/10.2478/v10098-010-0017-x
Orjuela-Matta, H. M., Sanabria, Y. R., & Camacho-Tamayo, J. H. (2012). Spatial Analysis of Infiltration in an Oxisol of the Eastern Plains of Colombia. Chilean Journal of Agricultural Research, 72(3), 404–410. https://doi.org/10.4067/S0718-58392012000300015
Pahlavan-Rad, M. R., Dahmardeh, K., Hadizadeh, M., Keykha, G., Mohammadnia, N., Gangali, M., Keikha, M., Davatgar, N., y Brungard, C. (2020a). Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran. Catena, 194, 104715. https://doi.org/10.1016/J.CATENA.2020.104715
Paige, G., y Stone, J. (2000). Measurement Methods to Identify and Quantify Spatial Variability of Infiltration on Rangelands
Panahi, M., Khosravi, K., Ahmad, S., Panahi, S., Heddam, S., Melesse, A. M., Omidvar, E., y Lee, C. W. (2021). Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: A study in Western Iran. Journal of Hydrology: Regional Studies, 35, 100825. https://doi.org/10.1016/J.EJRH.2021.100825
Pebesma, E. (2023). Package “sp” Title Classes and Methods for Spatial Data.
Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P., … Loew, A. (2021). A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sensing of Environment, 252, 112162. https://doi.org/10.1016/J.RSE.2020.112162
Pinto, E. P., Pires, M. A., Matos, R. S., Zamora, R. R. M., Menezes, R. P., Araújo, R. S., y de Souza, T. M. (2021). Lacunarity exponent and Moran index: A complementary methodology to analyze AFM images and its application to chitosan films. Physica A: Statistical Mechanics and Its Applications, 581, 126192. https://doi.org/10.1016/J.PHYSA.2021.126192
Profillidis, V. A., y Botzoris, G. N. (2019). Statistical Methods for Transport Demand Modeling. Modeling of Transport Demand, 163–224. https://doi.org/10.1016/B978-0-12-811513-8.00005-4
QGIS Association. (2023). QGIS Geographic Information System. QGIS Association.
Quegan, S., & Yu, J. J. (2001). Filtering of multichannel SAR images. IEEE Transactions on Geoscience and Remote Sensing, 39(11), 2373–2379. https://doi.org/10.1109/36.964973
Quiroz Londoño, O. M., Romanelli, A., Lima, M. L., Massone, H. E., y Martínez, D. E. (2016). Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds. Journal of Environmental Management, 176, 101–111. https://doi.org/10.1016/J.JENVMAN.2016.03.038
Rayyad, A., Elderderi, S., Massot, V., y Chourpa, I. (2023). Comparison of SVMR and PLSR for ATR-IR data treatment: Application to AQC of mAbs in clinical solutions. Vibrational Spectroscopy, 129, 103594. https://doi.org/10.1016/j.vibspec.2023.103594
R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Restrepo, L., y González, J. (2007). De Pearson a Spearman. Revista Colombiana de Ciencias Pecuarias, 20. http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0120-06902007000200010
Rodríguez-Vásquez, A. F., Aristizábal-Castillo, A. M., y Camacho-Tamayo, J. H. (2008). Variabilidad espacial de los modelos de infiltración de Philip y Kostiakov en un suelo Ándico. Engenharia Agrícola, 28(1), 64–75. https://doi.org/10.1590/S0100-69162008000100007
Sarmadian, F., & Taghizadeh-Mehrjardi, R. (2014). Estimation of infiltration rate and deep percolation water using feed-forward neural networks in Gorgan Province. Eurasian Journal of Soil Science, 3, 1–6.
Shukla, M. K. (2014). Soil Physics an Introduction.
Stasolla, M., & Neyt, X. (2018). An Operational Tool for the Automatic Detection and Removal of Border Noise in Sentinel-1 GRD Products. Sensors 2018, Vol. 18, Page 3454, 18(10), 3454. https://doi.org/10.3390/S18103454
Tashayo, B., Honarbakhsh, A., Akbari, M., y Ostovari, Y. (2020). Digital mapping of Philip model parameters for prediction of water infiltration at the watershed scale in a semi-arid region of Iran. Geoderma Regional, 22, e00301. https://doi.org/10.1016/J.GEODRS.2020.E00301
Teegavarapu, R. S. V., Salas, J. D., y Stedinger, J. R. (2019). Statistical Analysis of Hydrologic Variables: Methods and Applications. In Statistical Analysis of Hydrologic Variables: Methods and Applications. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/9780784415177
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B. Ö., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., … Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9–24. https://doi.org/10.1016/j.rse.2011.05.028
Valentin, C. y Casenave, A. (1992). Infiltration into sealed soils as influenced by gravel cover. Soil Science Society of America Journal, 56 (6), 1667-1673. https://doi.org/10.2136/sssaj1992.0361599500 5600060002x
Valentin, C. (1994). Surface sealing as affected by various rock fragment covers in West Africa. Catena, 23(1-2), 87-97. https://doi.org/10. 1016/0341-8162(94)90055-8
van Schaik, N. L. M. B. (2009). Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena, 78(1), 36–47. https://doi.org/10.1016/j.catena.2009.02.017
Vollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing 2020, Vol. 12, Page 1867, 12(11), 1867. https://doi.org/10.3390/RS12111867
Woodhouse, I. H. (2017). Introduction to microwave remote sensing. Introduction to Microwave Remote Sensing, 1–400. https://doi.org/10.1201/9781315272573/introduction-microwave-remote-sensing-iain-woodhouse
Xie, K., Liu, P., Zhang, J., Wang, G., Zhang, X., y Zhou, L. (2021). Identification of spatially distributed parameters of hydrological models using the dimension-adaptive key grid calibration strategy. Journal of Hydrology, 598, 125772. https://doi.org/10.1016/J.JHYDROL.2020.125772
Xiong, Y., Yang, W., Liao, H., Gong, Z., Xu, Z., Du, Y., y Li, W. (2022). Soft variable selection combining partial least squares and attention mechanism for multivariable calibration. Chemometrics and Intelligent Laboratory Systems, 223, 104532. https://doi.org/10.1016/J.CHEMOLAB.2022.104532
Yamagata, Y., & Seya, H. (2019). Spatial Analysis Using Big Data : Econometrical Methods and Applications. Elsevier Academic Press. http://www.sciencedirect.com:5070/book/9780128131275/spatial-analysis-using-big-data
Yang, M., Zhang, Y., y Pan, X. (2020). Improving the Horton infiltration equation by considering soil moisture variation. Journal of Hydrology, 586, 124864. https://doi.org/10.1016/J.JHYDROL.2020.124864
Zapata, N., & Playán, E. (2000). Elevation and infiltration in a level basin. I. Characterizing variability. Irrigation Science, 19(4), 155–164.https://doi.org/10.1007/s002710000017
Zhu, P., Zhang, G., Yang, Y., Wang, C., Chen, S., y Wan, Y. (2023). Infiltration properties affected by slope position on cropped hillslopes. Geoderma, 432, 116379. https://doi.org/10.1016/J.GEODERMA.2023.11637
Zou, C., Wang, Z., Cui, X., & Ostovari, Y. (2020). GIS-based digital modeling of soil infiltration in calcareous soils. Communications in Soil Science and Plant Analysis, 1590–1601. https://doi.org/10.1080/00103624.2020.1791153
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 118 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Geomática
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86537/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86537/2/1016087397.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86537/3/1016087397.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9e03e3f296b70c0016bc39311dff37c4
4159a8b1b4701c386bdd17c9bd436fdf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089948700082176
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Darghan Contreras, Aquiles Enrique47b75e73e4fb74030d670c282e8637d0Leal Villamil, Julián87dc436ececd4dcda67785c5f1f486c1Páez Lugo, Eliana Alejandrafb39d577bdeaf840431e7e6880641117Paez Lugo, Eliana Alejandra [0009-0009-6435-1049]2024-07-17T18:36:20Z2024-07-17T18:36:20Z2024https://repositorio.unal.edu.co/handle/unal/86537Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasLa infiltración es el proceso de entrada del agua al suelo, su estimación es importante tanto para hacer un eficiente uso del recurso hídrico en cultivos, como para efectos de los modelos hidrológicos. Debido a su complejidad metodológica y espacial, se han desarrollado diversos modelos para su estimación; sin embargo, la idoneidad y ajuste de estos a las condiciones particulares de cada suelo generalmente no resulta simple, conllevando a la necesidad de disminuir su incertidumbre para obtener resultados más consistentes. Esta investigación desarrolló un modelo espacial para estimar la tasa de infiltración básica empleando índices de humedad y vegetación provenientes de imágenes Sentinel- 1, atributos del terreno obtenidos del modelo digital de elevación ALOS PALSAR y algunas propiedades del suelo. Los resultados demostraron que el modelo autorregresivo espacial con errores autorregresivos permitió modelar espacialmente la infiltración base, donde el ajuste de los valores observados y estimados presentaron un coeficiente de correlación de 0.98. Se evidenció una relación estadística significativa entre los índices de radar y la infiltración base en los suelos y se confirmó la incidencia de la elevación y algunas de las propiedades físicas del suelo en la estimación de la infiltración base, esta relación se entiende también como el impacto que tienen dichas variables en el cálculo de la infiltración, allí se encontró que todas las variables tuvieron impacto positivo, particularmente el índice de humedad y la elevación tuvieron el mayor impacto y el porcentaje de arenas el menor (texto tomado de la fuente).Infiltration is the process of entry of water into the soil, its estimation is important both for an efficient use of the water resource in crops, and for the effects of hydrological models. Due to its methodological and spatial complexity, various models have been developed for its estimation; however, the suitability and adjustment of these to the particular conditions of each soil is generally not simple, leading to the need to reduce their uncertainty to obtain more consistent results. This research developed a spatial model to estimate the steady-state infiltration rate using moisture and vegetation indices from Sentinel-1 images, terrain attributes obtained from the ALOS PALSAR digital elevation model and some soil properties. The results showed that the spatial autoregressive model with autoregressive errors allowed to spatially model the base infiltration, where the adjustment of the observed and estimated values presented a Pearson correlation coefficient of 0.98. A significant statistical relationship between radar indices and steady-state infiltration rate in soils was evidenced and the incidence of elevation and some of the physical properties of the soil in the estimation of base infiltration was confirmed, this relationship is also understood as the impact that these variables have on the calculation of infiltration, it was found that all variables had a positive impact, particularly the humidity index and elevation had the greatest impact and the percentage of sand the least.MaestríaMagister en GeomáticaTecnologías Geoespaciales118 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesINFILTRACION DEL SUELOUSO DE LA TIERRAHIDROLOGIA-MODELOS MATEMATICOSSoil infiltrationLand useHidrology - mathematical modelsSensoramiento remotoPropiedades físicas del sueloHidrodinámica del sueloModelo de elevación digitalCobertura y uso del sueloModelación espacialAnálisis de impactosRemote sensingSoil physical propertiesSoil hydrodynamicsDigital elevation modelLand cover and useSpatial modelingImpact analysisPredicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andinaPrediction of soil infiltration through the integration of remote sensors and spatial inference in an Andean micro-watershedTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAchouri, M., y Gifford, G. F. (1984). Spatial and seasonal variability of field Measured Infiltration Rates on a Rangeland Site in Utah. Journal of Range Management, 37(5), 451. https://doi.org/10.2307/3899635Al-Qinna, M. I., Salahat, M. A. y Shatnawi, Z. N. (2008). Effect of carbonates and gravel contents on hydraulic properties in gravely-calcareous soils. Dirasat, Agricultural Sciences, 35 (3), 145-158Angelaki, A., Singh Nain, S., Singh, V., y Sihag, P. (2018). Estimation of models for cumulative infiltration of soil using machine learning methods. Https://Doi.Org/10.1080/09715010.2018.1531274, 27(2), 162–169. https://doi.org/10.1080/09715010.2018.1531274Asfawesen Molla, G., Desta, G., y Dananto, M. (2022). Soil Management and crop practice effect on soil water infiltration and soil water storage in the humid lowlands of Beles sub-basin, Ethiopia. Hydrology, 10(1), 1. https://doi.org/10.11648/j.hyd.20221001.11Atwood, D. K., Small, D., & Gens, R. (2012). Improving PolSAR land cover classification with radiometric correction of the coherency matrix. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3), 848–856. https://doi.org/10.1109/JSTARS.2012.2186791Baraha, S., & Sahoo, A. K. (2023). Synthetic aperture radar image and its despeckling using variational methods: A Review of recent trends. Signal Processing, 212, 109156. https://doi.org/10.1016/J.SIGPRO.2023.109156Bautista, S., Mayor, Á. G., Bourakhouadar, J., y Bellot, J. (2007). Plant spatial pattern Predicts Hillslope Runoff and Erosion in a Semiarid Mediterranean Landscape. Ecosystems 2007 10:6, 10(6), 987–998. https://doi.org/10.1007/S10021-007-9074-3Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., y Steenhuis, T. S. (2019). Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338, 159–169. https://doi.org/10.1016/J.GEODERMA.2018.11.028Bergeson, C. B., Martin, K. L., Doll, B., y Cutts, B. B. (2022). Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA. Journal of Environmental Management, 313, 115004. https://doi.org/10.1016/j.jenvman.2022.115004Berryman, E., Hatten, J., Page-Dumroese, D. S., Heckman, K. A., D’Amore, D. V., Puttere, J., SanClements, M., Connolly, S. J., Hobie Perry, C. H., y Domke, G. M. (2020). Soil Carbon. Forest and rangeland soils of the United States under changing conditions: A Comprehensive Science Synthesis, 9–31. https://doi.org/10.1007/978-3-030-45216-2_2/TABLES/2Bivand, R. (2023a). Package “spatialreg.” https://doi.org/10.1080/01621459.1975.10480272Bivand, R. (2023b). Package “spdep.” https://doi.org/10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AIDBrady, N. C., y Weil, R. R. (2008). The Nature and properties of soils.Brath, A., Montanari, A., Brath, A., y Montanari, A. (2000). The effects of the spatial variability of soil infiltration capacity in distributed flood modelling. HyPr, 14(15), 2779–2794. https://doi.org/10.1002/1099-1085(20001030)14:15Bryan, B. A. (2003). Physical environmental modeling, visualization and query for supporting landscape planning decisions. Landscape and Urban Planning, 65(4), 237–259. https://doi.org/10.1016/S0169-2046(03)00059-8Buzai, G. D., y Montes Galbán, E. J. (2022). Estadística Espacial: Fundamentos y aplicación con Sistemas de Información Geográfica. https://ri.conicet.gov.ar/handle/11336/161048Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. 667.Capowiez, Y., Sammartino, S., Keller, T., y Bottinelli, N. (2021). Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density. Pedobiologia, 85–86, 150728. https://doi.org/10.1016/J.PEDOBI.2021.150728Chari, M. M., Poozan, M. T., y Afrasiab, P. (2020). Modelling soil water infiltration variability using scaling. Biosystems Engineering, 196, 56–66. https://doi.org/10.1016/J.BIOSYSTEMSENG.2020.05.014Chavent, M., Kuentz-Simonet, V., Labenne, A., y Saracco, J. (2018). ClustGeo: an R package for hierarchical clustering with spatial constraints. Computational Statistics, 33(4), 1799–1822. https://doi.org/10.1007/S00180-018-0791-1/METRICSCohen, J., Lemmetyinen, J., Jorge Ruiz, J., Rautiainen, K., Ikonen, J., Kontu, A., & Pulliainen, J. (2024). Detection of soil and canopy freeze/thaw state in the boreal region with L and C Band Synthetic Aperture Radar. Remote Sensing of Environment, 305, 114102. https://doi.org/10.1016/J.RSE.2024.114102Corporación Autónoma Regional del Tolima. (2016). Cartografía escala 1:25,000 de las microcuencas del departamento del Tolima.Corporación Autónoma Regional del Tolima, y Universidad de Ibagué. (2018). Ajuste parcial a la zonificación ambiental del Plan de Ordenación y Manejo de la cuenca hidrográfica del río Coello: Cartografía 1:25.000 de la Cobertura y Uso de la Tierra.CORTOLIMA, & Universidad del Tolima. (2021). Informe Final Evaluación Regional del Agua del Departamento del Tolima Fase 1.Cortes-D, D. L., Camacho-Tamayo, J. H., y Giraldo, R. (2018). Spatial prediction of soil infiltration using functional geostatistics. Acta Universitatis Carolinae, Geographica, 53(2), 149–155. https://doi.org/10.14712/23361980.2018.15Das, K., & Paul, P. K. (2015). Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1), 1084669. https://doi.org/10.1080/23312041.2015.1084669Dubitzky, W., Wolkenhauer, O., Cho, K.-H., y Yokota, H. (2013). Encyclopedia of Systems Biology. Encyclopedia of Systems Biology. https://doi.org/10.1007/978-1-4419-9863-7Dualeh, E. W., Ebmeier, S. K., Wright, T. J., Poland, M. P., Grandin, R., Stinton, A. J., Camejo-Harry, M., Esse, B., & Burton, M. (2023). Rapid pre-explosion increase in dome extrusion rate at La Soufrière, St. Vincent quantified from synthetic aperture radar backscatter. Earth and Planetary Science Letters, 603, 117980. https://doi.org/10.1016/J.EPSL.2022.117980Duan, R., Fedler, C. B., y Borrelli, J. (2011). Field evaluation of infiltration models in lawn soils. Irrigation Science, 29(5), 379–389. https://doi.org/10.1007/S00271-010-0248-Y/METRICSEkhmaj, A. I. (2010). Predicting soil infiltration rate using artificial neural network. ICEEA 2010 - 2010 International Conference on Environmental Engineering and Applications, Proceedings, 117–121. https://doi.org/10.1109/ICEEA.2010.5596107Elhorst, J. P. (2014). Spatial econometrics from Cross-Sectional Data to Spatial Panels. http://www.springer.com/series/10096ESA. (2023). Copernicus Sentinel data.Esch, S., Korres, W., Reichenau, T. G., y Schneider, K. (2018). Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas. Https://Doi.Org/10.1117/1.JRS.12.022206, 12(2), 022206. https://doi.org/10.1117/1.JRS.12.022206Fil, P. P., Yurova, A. Y., Dobrokhotov, A., Kozlov, D., Yurova, P. P. ;, Dobrokhotov, A. Y. ;, Kozlov, A. ;, Cugueró-Escofet, À., y Puig, V. (2021). Estimation of Infiltration Volumes and Rates in Seasonally Water-Filled Topographic Depressions Based on Remote-Sensing Time Series. Sensors 2021, Vol. 21, Page 7403, 21(21), 7403. https://doi.org/10.3390/S21217403Fischer, M. M., & Nijkamp, P. (2014). Handbook of regional science. Handbook of Regional Science, 1–1732. https://doi.org/10.1007/978-3-642-23430-9/COVERFlores-Anderson, A., Herndon, K., Thapa, R. B., & Cherrington, E. (2019). The SAR Handbook:Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. https://doi.org/10.25966/nr2c-s697Flügel, W. A. (1997). Combining GIS with regional hydrological modelling using hydrological response units (HRUs): An application from Germany. Mathematics and Computers in Simulation, 43(3–6), 297–304. https://doi.org/10.1016/S0378-4754(97)00013-XFranceschetti, G., & Lanari, R. (2018). Synthetic aperture radar processing. Synthetic Aperture Radar Processing, 1–307. https://doi.org/10.1201/9780203737484/Synthetic-aperture-radar-processing-fidler-giorgio-franceschetti-riccardo-lanari-giorgio-franceschetti-riccardo-lanariFrancos, N., Chabrillat, S., Tziolas, N., Milewski, R., Brell, M., Samarinas, N., Angelopoulou, T., Tsakiridis, N., Liakopoulos, V., Ruhtz, T., y Ben-Dor, E. (2023). Estimation of water-infiltration rate in Mediterranean sandy soils using airborne hyperspectral sensors. CATENA, 233, 107476. https://doi.org/10.1016/J.CATENA.2023.107476Francos, N., Romano, N., Nasta, P., Zeng, Y., Szabó, B., Manfreda, S., Ciraolo, G., Mészáros, J., Zhuang, R., Su, B., y Ben‐dor, E. (2021). Mapping Water Infiltration Rate Using Ground and UAV Hyperspectral Data: A Case Study of Alento, Italy. Remote Sensing 2021, Vol. 13, Page 2606, 13(13), 2606. https://doi.org/10.3390/RS13132606Frery, A. C., Wu, J., y Gómez, L. (2022). SAR image analysis: a computational statistics approach : with R code, data, and applications. 182. https://www.wiley.com/en-us/SAR+Image+Analysis+A+Computational+Statistics+Approach%3A+With+R+Code%2C+Data%2C+and+Applications-p-9781119795292Gan, F., Shi, H., Gou, J., Zhang, L., y Liu, C. (2023). Effects of bedrock strata dip on soil infiltration capacity under different land use types in a karst trough valley of Southwest China. CATENA, 230, 107253. https://doi.org/10.1016/J.CATENA.2023.107253Goldshleger, N., Chudnovsky, A., & Ben-Dor, E. (2012). Using reflectance spectroscopy and artificial neural network to assess water infiltration rate into the soil profile. Applied and Environmental Soil Science, 2012. https://doi.org/10.1155/2012/439567Govindaraju, R. S., Corradini, C., y Morbidelli, R. (2006). A semi-analytical model of expected areal-average infiltration under spatial heterogeneity of rainfall and soil saturated hydraulic conductivity. Journal of Hydrology, 316(1–4), 184–194. https://doi.org/10.1016/J.JHYDROL.2005.04.019Gray, D. M., y Norum, D. I. (1967). Effect of soil moisture in infiltration as related to runoff and recharge. Hydrol Symp Proc. https://doi.org/10.3/JQUERY-UI.JSHadria, R., Duchemin, B., Baup, F., Le Toan, T., Bouvet, A., Dedieu, G., y Le Page, M. (2009). Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco. Agricultural Water Management, 96(7), 1120–1127. https://doi.org/10.1016/J.AGWAT.2009.02.010Hervada-Sala, C., y Jarauta-Bragulat, E. (2004). A program to perform Ward’s clustering method on several regionalized variables. Computers y Geosciences, 30(8), 881–886. https://doi.org/10.1016/J.CAGEO.2004.07.003Hervé-Fernández, P., Muñoz-Arriagada, R., Glucevic-Almonacid, C., Bahamonde-Vidal, L., y Radic-Schilling, S. (2023). Influence of Rangeland Land Cover on Infiltration Rates, Field-Saturated Hydraulic Conductivity, and Soil Water Repellency in Southern Patagonia. Rangeland Ecology y Management, 90, 92–100. https://doi.org/10.1016/J.RAMA.2023.06.004Hillel, D. (2003). Introduction to environmental soil physics. Introduction to Environmental Soil Physics, 1–494. https://doi.org/10.1016/B978-0-12-348655-4.X5000-XHoekman, D. H., & Reiche, J. (2015). Multi-model radiometric slope correction of SAR images of complex terrain using a two-stage semi-empirical approach. Remote Sensing of Environment, 156, 1–10. https://doi.org/10.1016/J.RSE.2014.08.037Hovde, K., Mevik, B.-H., Wehrens, R., & Hiemstra, P. (2023). Partial Least Squares and Principal Component Regression [R package pls version 2.8-3]. https://CRAN.R-project.org/package=plsIDEAM. (2012). Mapa de clasificación climática Caldas-Lang de la República de Colombia.IDEAM. (2022). Proyecto DHIME.Instituto Geográfico Agustín Codazzi. (2004). Estudio general de suelos y zonificación de tierras departamento del Tolima. Instituto Geográfico Agustín Codazzi.JAXA/METI. (2010). ALOS-1PALSAR Radiometric High Resolution Terrain Corrected Image.Ji, X., Thompson, A., Lin, J., Jiang, F., Ge, H., Yu, M., y Huang, Y. (2020). Modeling spatial distribution of rainfall infiltration amounts in South China using cellular automata and its relationship with the occurrence of collapsing gullies. Catena, 194. https://doi.org/10.1016/j.catena.2020.104676Jin, F., y Lee, L. fei. (2018). Outer-product-of-gradients tests for spatial autoregressive models. Regional Science and Urban Economics, 72, 35–57. https://doi.org/10.1016/J.REGSCIURBECO.2017.03.006Kang, X., Ma, X., Fan, H., Liu, H., y Shojaaddini, A. (2022). Soil infiltration, its prediction, and GIS-mapping in calcareous soils in northwest Iran. Archives of Agronomy and Soil Science, 68(2), 242–256. https://doi.org/10.1080/03650340.2020.1830377Kambezidis, H. D. (2012). The Solar Resource. Comprehensive Renewable Energy, 27–84. https://doi.org/10.1016/B978-0-08-087872-0.00302-4Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609–629. https://doi.org/10.1016/J.INS.2021.11.036Kashi, H., Emamgholizadeh, S., y Ghorbani, H. (2014). Estimation of Soil Infiltration and Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models. Communications in Soil Science and Plant Analysis, 45(9), 1195–1213. https://doi.org/10.1080/00103624.2013.874029Kirkland, E. J. (2010). Advanced computing in electron microscopy: Second edition. Advanced Computing in Electron Microscopy: Second Edition, 1–289. https://doi.org/10.1007/978-1-4419-6533-2Kornelsen, K. C., y Coulibaly, P. (2013). Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460–489. https://doi.org/10.1016/J.JHYDROL.2012.10.044Lähderanta, T., Lovén, L., Ruha, L., Leppänen, T., Launonen, I., Riekki, J., & Sillanpää, M. J. (2024). Capacitated spatial clustering with multiple constraints and attributes. Engineering Applications of Artificial Intelligence, 127, 107182. https://doi.org/10.1016/J.ENGAPPAI.2023.107182Leal, J. (2022). Evaluación del comportamiento hidráulico de suelos con presencia de fragmentos de roca en el perfil. Estudio de caso: Microcuenca Zanja Honda, Cuenca Baja del Rio Combeima (Ibagué-Tolima). Universidad Del Tolima.Leal, J., Avila, E. A., Darghan, A. E., y Lobo, D. (2023). Spatial modeling of infiltration and its relationship with surface coverage of rock fragments and porosity in soils of an andean micro-watershed in Tolima (Colombia). Geoderma Regional, 33, e00637. https://doi.org/10.1016/J.GEODRS.2023.E00637LeSage, J., y Pace, R. K. (2011). Introduction to Spatial Econometrics. Journal of the Royal Statistical Society Series A: Statistics in Society, 174(2), 513–514. https://doi.org/10.1111/J.1467-985X.2010.00681_13.XLiu, T., y Lee, L. fei. (2019). A likelihood ratio test for spatial model selection. Journal of Econometrics, 213(2), 434–458. https://doi.org/10.1016/J.JECONOM.2019.07.001Liu, C. an, Chen, Z. xin, Shao, Y., Chen, J. song, Hasi, T., & Pan, H. zhu. (2019). Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 18(3), 506–525. https://doi.org/10.1016/S2095-3119(18)62016-7Machiwal, D., Jha, M. K., y Mal, B. C. (2006). Modelling Infiltration and quantifying Spatial Soil Variability in a Wasteland of Kharagpur, India. Biosystems Engineering, 95(4), 569–582. https://doi.org/10.1016/j.biosystemseng.2006.08.007Mahapatra, S., Jha, M. K., Biswal, S., y Senapati, D. (2020). Assessing Variability of Infiltration Characteristics and Reliability of Infiltration Models in a Tropical Sub-humid Region of India. Scientific Reports 2020 10:1, 10(1), 1–18. https://doi.org/10.1038/s41598-020-58333-8Mahdian, M. H., Oskoee, R. S., Kamali, K., Angoshtari, H., y Kadkhodapo, M. A. (2009). Developing Pedo Transfer Functions to Predict Infiltration Rate in Flood Spreading Stations of Iran. Research Journal of Environmental Sciences, 3(6), 697–704. https://doi.org/10.3923/RJES.2009.697.704Maître, H. (2008). Processing of Synthetic Aperture Radar Images. Processing of Synthetic Aperture Radar Images. https://doi.org/10.1002/9780470611111Mandal, D., Kumar, V., Ratha, D., Lopez-Sanchez, J. M., Bhattacharya, A., McNairn, H., Rao, Y. S., y Ramana, K. V. (2020). Assessment of rice growth conditions in a semi-arid region of India using the Generalized Radar Vegetation Index derived from RADARSAT-2 polarimetric SAR data. Remote Sensing of Environment, 237, 111561. https://doi.org/10.1016/J.RSE.2019.111561Martínez, E., Fuentes, J. P., y Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de La Ciencia Del Suelo y Nutrición Vegetal, 8(1), 68–96. https://doi.org/10.4067/S0718-27912008000100006Mishra, S. K., Tyagi, J. V., y Singh, V. P. (2003). Comparison of infiltration models. Hydrological Processes, 17(13), 2629–2652. https://doi.org/10.1002/HYP.1257Miyata, S., Gomi, T., Sidle, R. C., Hiraoka, M., Onda, Y., Yamamoto, K., y Nonoda, T. (2019). Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments: Implications for hydrological connectivity. Science of The Total Environment, 669, 148–159. https://doi.org/10.1016/J.SCITOTENV.2019.02.453Moraes, A. G. de L., de Carvalho, D. F., Antunes, M. A. H., Ceddia, M. B., y Flanagan, D. C. (2020). Steady infiltration rate spatial modeling from remote sensing data and terrain attributes in southeast Brazil. Geoderma Regional, 20, e00242. https://doi.org/10.1016/J.GEODRS.2019.E00242Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–43. https://doi.org/10.1109/MGRS.2013.2248301Mosquera, L. (1986). Clasificación de las tierras por su capacidad de uso. Instituto Geográfico Agustín Codazzi. Subdirección Agrológica.Mosquera, L., Polo, M., & Carrera, E. (1973). Clasificación de las tierras por su capacidad de uso. Instituto Geográfico Agustín Codazzi. Subdirección AgrológicaMullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., y Reiche, J. (2021). Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing 2021, Vol. 13, Page 1954, 13(10), 1954. https://doi.org/10.3390/RS13101954Muneer, A. S., Sayl, K. N., y Kamal, A. H. (2021). Modeling of spatially distributed infiltration in the Iraqi Western Desert. Applied Geomatics 2021 13:3, 13(3), 467–479. https://doi.org/10.1007/S12518-021-00363-6Nasirzadehdizaji, R., Sanli, F. B., Abdikan, S., Cakir, Z., Sekertekin, A., y Ustuner, M. (2019). Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Applied Sciences 2019, Vol. 9, Page 655, 9(4), 655. https://doi.org/10.3390/APP9040655Novak, V., y Surda, P. (2010). The water retention of a granite rock fragments in high tatras stony soils. Journal of Hydrology and Hydromechanics, 58(3), 181–187. https://doi.org/10.2478/v10098-010-0017-xOrjuela-Matta, H. M., Sanabria, Y. R., & Camacho-Tamayo, J. H. (2012). Spatial Analysis of Infiltration in an Oxisol of the Eastern Plains of Colombia. Chilean Journal of Agricultural Research, 72(3), 404–410. https://doi.org/10.4067/S0718-58392012000300015Pahlavan-Rad, M. R., Dahmardeh, K., Hadizadeh, M., Keykha, G., Mohammadnia, N., Gangali, M., Keikha, M., Davatgar, N., y Brungard, C. (2020a). Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran. Catena, 194, 104715. https://doi.org/10.1016/J.CATENA.2020.104715Paige, G., y Stone, J. (2000). Measurement Methods to Identify and Quantify Spatial Variability of Infiltration on RangelandsPanahi, M., Khosravi, K., Ahmad, S., Panahi, S., Heddam, S., Melesse, A. M., Omidvar, E., y Lee, C. W. (2021). Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: A study in Western Iran. Journal of Hydrology: Regional Studies, 35, 100825. https://doi.org/10.1016/J.EJRH.2021.100825Pebesma, E. (2023). Package “sp” Title Classes and Methods for Spatial Data.Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P., … Loew, A. (2021). A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sensing of Environment, 252, 112162. https://doi.org/10.1016/J.RSE.2020.112162Pinto, E. P., Pires, M. A., Matos, R. S., Zamora, R. R. M., Menezes, R. P., Araújo, R. S., y de Souza, T. M. (2021). Lacunarity exponent and Moran index: A complementary methodology to analyze AFM images and its application to chitosan films. Physica A: Statistical Mechanics and Its Applications, 581, 126192. https://doi.org/10.1016/J.PHYSA.2021.126192Profillidis, V. A., y Botzoris, G. N. (2019). Statistical Methods for Transport Demand Modeling. Modeling of Transport Demand, 163–224. https://doi.org/10.1016/B978-0-12-811513-8.00005-4QGIS Association. (2023). QGIS Geographic Information System. QGIS Association.Quegan, S., & Yu, J. J. (2001). Filtering of multichannel SAR images. IEEE Transactions on Geoscience and Remote Sensing, 39(11), 2373–2379. https://doi.org/10.1109/36.964973Quiroz Londoño, O. M., Romanelli, A., Lima, M. L., Massone, H. E., y Martínez, D. E. (2016). Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds. Journal of Environmental Management, 176, 101–111. https://doi.org/10.1016/J.JENVMAN.2016.03.038Rayyad, A., Elderderi, S., Massot, V., y Chourpa, I. (2023). Comparison of SVMR and PLSR for ATR-IR data treatment: Application to AQC of mAbs in clinical solutions. Vibrational Spectroscopy, 129, 103594. https://doi.org/10.1016/j.vibspec.2023.103594R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.Restrepo, L., y González, J. (2007). De Pearson a Spearman. Revista Colombiana de Ciencias Pecuarias, 20. http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0120-06902007000200010Rodríguez-Vásquez, A. F., Aristizábal-Castillo, A. M., y Camacho-Tamayo, J. H. (2008). Variabilidad espacial de los modelos de infiltración de Philip y Kostiakov en un suelo Ándico. Engenharia Agrícola, 28(1), 64–75. https://doi.org/10.1590/S0100-69162008000100007Sarmadian, F., & Taghizadeh-Mehrjardi, R. (2014). Estimation of infiltration rate and deep percolation water using feed-forward neural networks in Gorgan Province. Eurasian Journal of Soil Science, 3, 1–6.Shukla, M. K. (2014). Soil Physics an Introduction.Stasolla, M., & Neyt, X. (2018). An Operational Tool for the Automatic Detection and Removal of Border Noise in Sentinel-1 GRD Products. Sensors 2018, Vol. 18, Page 3454, 18(10), 3454. https://doi.org/10.3390/S18103454Tashayo, B., Honarbakhsh, A., Akbari, M., y Ostovari, Y. (2020). Digital mapping of Philip model parameters for prediction of water infiltration at the watershed scale in a semi-arid region of Iran. Geoderma Regional, 22, e00301. https://doi.org/10.1016/J.GEODRS.2020.E00301Teegavarapu, R. S. V., Salas, J. D., y Stedinger, J. R. (2019). Statistical Analysis of Hydrologic Variables: Methods and Applications. In Statistical Analysis of Hydrologic Variables: Methods and Applications. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/9780784415177Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B. Ö., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., … Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9–24. https://doi.org/10.1016/j.rse.2011.05.028Valentin, C. y Casenave, A. (1992). Infiltration into sealed soils as influenced by gravel cover. Soil Science Society of America Journal, 56 (6), 1667-1673. https://doi.org/10.2136/sssaj1992.0361599500 5600060002xValentin, C. (1994). Surface sealing as affected by various rock fragment covers in West Africa. Catena, 23(1-2), 87-97. https://doi.org/10. 1016/0341-8162(94)90055-8van Schaik, N. L. M. B. (2009). Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena, 78(1), 36–47. https://doi.org/10.1016/j.catena.2009.02.017Vollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing 2020, Vol. 12, Page 1867, 12(11), 1867. https://doi.org/10.3390/RS12111867Woodhouse, I. H. (2017). Introduction to microwave remote sensing. Introduction to Microwave Remote Sensing, 1–400. https://doi.org/10.1201/9781315272573/introduction-microwave-remote-sensing-iain-woodhouseXie, K., Liu, P., Zhang, J., Wang, G., Zhang, X., y Zhou, L. (2021). Identification of spatially distributed parameters of hydrological models using the dimension-adaptive key grid calibration strategy. Journal of Hydrology, 598, 125772. https://doi.org/10.1016/J.JHYDROL.2020.125772Xiong, Y., Yang, W., Liao, H., Gong, Z., Xu, Z., Du, Y., y Li, W. (2022). Soft variable selection combining partial least squares and attention mechanism for multivariable calibration. Chemometrics and Intelligent Laboratory Systems, 223, 104532. https://doi.org/10.1016/J.CHEMOLAB.2022.104532Yamagata, Y., & Seya, H. (2019). Spatial Analysis Using Big Data : Econometrical Methods and Applications. Elsevier Academic Press. http://www.sciencedirect.com:5070/book/9780128131275/spatial-analysis-using-big-dataYang, M., Zhang, Y., y Pan, X. (2020). Improving the Horton infiltration equation by considering soil moisture variation. Journal of Hydrology, 586, 124864. https://doi.org/10.1016/J.JHYDROL.2020.124864Zapata, N., & Playán, E. (2000). Elevation and infiltration in a level basin. I. Characterizing variability. Irrigation Science, 19(4), 155–164.https://doi.org/10.1007/s002710000017Zhu, P., Zhang, G., Yang, Y., Wang, C., Chen, S., y Wan, Y. (2023). Infiltration properties affected by slope position on cropped hillslopes. Geoderma, 432, 116379. https://doi.org/10.1016/J.GEODERMA.2023.11637Zou, C., Wang, Z., Cui, X., & Ostovari, Y. (2020). GIS-based digital modeling of soil infiltration in calcareous soils. Communications in Soil Science and Plant Analysis, 1590–1601. https://doi.org/10.1080/00103624.2020.1791153EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86537/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1016087397.2024.pdf1016087397.2024.pdfTesis de Maestría en Geomáticaapplication/pdf5277256https://repositorio.unal.edu.co/bitstream/unal/86537/2/1016087397.2024.pdf9e03e3f296b70c0016bc39311dff37c4MD52THUMBNAIL1016087397.2024.pdf.jpg1016087397.2024.pdf.jpgGenerated Thumbnailimage/jpeg4958https://repositorio.unal.edu.co/bitstream/unal/86537/3/1016087397.2024.pdf.jpg4159a8b1b4701c386bdd17c9bd436fdfMD53unal/86537oai:repositorio.unal.edu.co:unal/865372024-08-26 23:11:03.598Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=