Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii

ilustraciones, gráficas, tablas

Autores:
Aguilar Gonzalez, Karen Jhovana
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80437
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80437
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Acinetobacter baumannii
Bacterias
Farmacorresistencia Microbiana
Bacteria
Drug Resistance, Microbial
Artificial intelligence
Inteligencia artificial
Acinetobacter baumannii
Aprendizaje de máquina
Predicción fenotípica de resistencia
Concentración mínima inhibitoria
Regresión lasso
Random forest
Gradient boosting
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_5a7a470acb1717e89b90c9a71b338300
oai_identifier_str oai:repositorio.unal.edu.co:unal/80437
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii
dc.title.translated.eng.fl_str_mv Prediction of the resistance profile from the genome sequences of colombian isolates of Acinetobacter baumannii
title Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii
spellingShingle Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Acinetobacter baumannii
Bacterias
Farmacorresistencia Microbiana
Bacteria
Drug Resistance, Microbial
Artificial intelligence
Inteligencia artificial
Acinetobacter baumannii
Aprendizaje de máquina
Predicción fenotípica de resistencia
Concentración mínima inhibitoria
Regresión lasso
Random forest
Gradient boosting
title_short Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii
title_full Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii
title_fullStr Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii
title_full_unstemmed Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii
title_sort Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii
dc.creator.fl_str_mv Aguilar Gonzalez, Karen Jhovana
dc.contributor.advisor.none.fl_str_mv Barreto Hernández, Emiliano
Reguero Reza, María Teresa Jesús
dc.contributor.author.none.fl_str_mv Aguilar Gonzalez, Karen Jhovana
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Epidemiologia Molecular
Grupo de Bioinformatica
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Acinetobacter baumannii
Bacterias
Farmacorresistencia Microbiana
Bacteria
Drug Resistance, Microbial
Artificial intelligence
Inteligencia artificial
Acinetobacter baumannii
Aprendizaje de máquina
Predicción fenotípica de resistencia
Concentración mínima inhibitoria
Regresión lasso
Random forest
Gradient boosting
dc.subject.decs.none.fl_str_mv Acinetobacter baumannii
dc.subject.decs.spa.fl_str_mv Bacterias
Farmacorresistencia Microbiana
dc.subject.decs.eng.fl_str_mv Bacteria
Drug Resistance, Microbial
dc.subject.lemb.eng.fl_str_mv Artificial intelligence
dc.subject.lemb.spa.fl_str_mv Inteligencia artificial
dc.subject.proposal.other.fl_str_mv Acinetobacter baumannii
dc.subject.proposal.spa.fl_str_mv Aprendizaje de máquina
Predicción fenotípica de resistencia
Concentración mínima inhibitoria
Regresión lasso
dc.subject.proposal.eng.fl_str_mv Random forest
Gradient boosting
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-07T22:16:47Z
dc.date.available.none.fl_str_mv 2021-10-07T22:16:47Z
dc.date.issued.none.fl_str_mv 2021-04
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80437
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80437
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., Asgharzadeh, M., & Kafil, H. S. (2020). Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infection and Drug Resistance, 13, 423-434. https://doi.org/10.2147/IDR.S228089
Albornoz, H., Paciel, D., & Medina, J. (2018). Tratamiento de Acinetobacter spp extremadamente resistente (XDR) y panresistente (PR) (p. 6). Catedra de Enfermedade Infecciosas. http://www.infectologia.edu.uy/images/archivos/Esquemas_Tto_Acineto_XDR.pdf
Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. V., Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., … McArthur, A. G. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48(D1), D517-D525. https://doi.org/10.1093/nar/gkz935
AL-Enawey, A. W., Saadedin, S. M. K., & Al-Khaldi, S. A.-M. (2020). ISOLATION, IDENTIFICATION AND ANTIMICROBIAL SUSCEPTIBILITY OF STAPHYLOCOCCUS AUREUS AND ACINETOBACTER BAUMANNII ISOLATED FROM BABYLON HOSPITALS. 6.
Alzuhairi, M. A., Abdulmohsen, A. M., Falih, M. N., & Hanafiah, M. M. (2020). Genomic sequencing analysis of Acinetobacter baumannii strain ABIQM1, isolated from a meningitis patient. Gene Reports, 19, 100631. https://doi.org/10.1016/j.genrep.2020.100631
Asif, M., Alvi, I. A., & Rehman, S. U. (2018). Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance, 11, 1249-1260. https://doi.org/10.2147/IDR.S166750
Aun, E., Brauer, A., Kisand, V., Tenson, T., & Remm, M. (2018). A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria. PLOS Computational Biology, 14(10), e1006434. https://doi.org/10.1371/journal.pcbi.1006434
Ayodele, T. (2010). Types of Machine Learning Algorithms. En Yagang Zhang (Ed.), New Advances in Machine Learning. InTech. https://doi.org/10.5772/9385 Aytan-Aktug, D., Clausen, P. T. L. C., Bortolaia, V., Aarestrup, F. M., & Lund, O. (2020). Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks. MSystems, 5(1), e00774-19, /msystems/5/1/msys.00774- 19.atom. https://doi.org/10.1128/mSystems.00774-19
Babcock University, F.Y, O., J.E.T, A., O, A., J. O, H., O, O., & J, A. (2017). Supervised Machine Learning Algorithms: Classification and Comparison. International Journal of Computer Trends and Technology, 48(3), 128-138. https://doi.org/10.14445/22312803/IJCTT-V48P126
Barlam, T. F., Cosgrove, S. E., Abbo, L. M., MacDougall, C., Schuetz, A. N., Septimus, E. J., Srinivasan, A., Dellit, T. H., Falck-Ytter, Y. T., Fishman, N. O., Hamilton, C. W., Jenkins, T. C., Lipsett, P. A., Malani, P. N., May, L. S., Moran, G. J., Neuhauser, M. M., Newland, J. G., Ohl, C. A., … Trivedi, K. K. (2016). Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clinical Infectious Diseases, 62(10), e51-e77. https://doi.org/10.1093/cid/ciw118
Barletta Farías, R., Pérez Ponce, L., Castro Vega, G., Pujol Pérez, M., Barletta del Castillo, J., & Dueñas Pérez, Y. (2018). Acinetobacter baumannii multirresistente: Un reto para la terapéutica actual. MediSur, 16(2), 322-334. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1727- 897X2018000200015&lng=es&nrm=iso&tlng=es
BioSample - NCBI. (2020). National Center for Biotechnology Information. Retrieved January 06, 2020, from https://www.ncbi.nlm.nih.gov/biosample
Biswas, Raju, Panja, Anindya Sundar, & Bandopadhyay, Rajib. (2019). Molecular Mechanism of Antibiotic Resistance: The Untouched Area of Future Hope | SpringerLink. https://link.springer.com/article/10.1007/s12088-019-00781-6
Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. En Y. Lechevallier & G. Saporta (Eds.), Proceedings of COMPSTAT’2010 (pp. 177-186). Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_16
Bradley, P., Gordon, N. C., Walker, T. M., Dunn, L., Heys, S., Huang, B., Earle, S., Pankhurst, L. J., Anson, L., Cesare, M. de, Piazza, P., Votintseva, A. A., Golubchik, T., Wilson, D. J., Wyllie, D. H., Diel, R., Niemann, S., Feuerriegel, S., Kohl, T. A., … Iqbal, Z. (2015). Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nature Communications, 6(1), 1-15. https://doi.org/10.1038/ncomms10063
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Brennan, L. A., Tri, A. N., & Marcot, B. G. (2019). Quantitative Analyses in Wildlife Science. JHU Press.
Cai, H. Y., McDowall, R., Parker, L., Kaufman, E. I., & Caswell, J. L. (2019). Changes in antimicrobial susceptibility profiles of Mycoplasma bovis over time. Canadian Journal of Veterinary Research = Revue Canadienne de Recherche Veterinaire, 83(1), 34-41. https://europepmc.org/articles/PMC6318825/
Canovas-Segura, B., Morales, A., Lopez Martinez-Carrasco, A., Campos, M., Juarez, J. M., Lopez Rodriguez, L., & Palacios, F. (2019). Improving Interpretable Prediction Models for Antimicrobial Resistance. 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), 543-546. https://doi.org/10.1109/CBMS.2019.00111
Cao, J., Wang, J., Wang, Y., Wang, L., Bi, Y., Zhu, B., & Gao, G. F. (2020). Tigecycline resistance tet(X3) gene is going wild. Biosafety and Health, 2(1), 9-11. https://doi.org/10.1016/j.bsheal.2020.01.002
Casellas, J. M. (2011). Resistencia a los antibacterianos en América Latina: Consecuencias para la infectología. 16
Centers for Disease Control and Prevention (U.S.). (2019). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.). https://doi.org/10.15620/cdc:82532
Cerezales, M., Xanthopoulou, K., Wille, J., Bustamante, Z., Seifert, H., Gallego, L., & Higgins, P. G. (2019). Acinetobacter baumannii analysis by core genome multilocus sequence typing in two hospitals in Bolivia: Endemicity of international clone 7 isolates (CC25). International Journal of Antimicrobial Agents, 53(6), 844-849. https://doi.org/10.1016/j.ijantimicag.2019.03.019
Chakravarty, B. (2020). Genetic mechanisms of antibiotic resistance and virulence in Acinetobacter baumannii: Background, challenges and future prospects. Molecular Biology Reports, 47(5), 4037-4046. https://doi.org/10.1007/s11033-020-05389-4
Chen, C., Clark, C. G., Langner, S., Boyd, D. A., Bharat, A., McCorrister, S. J., McArthur, A. G., Graham, M. R., Westmacott, G. R., & Van Domselaar, G. (2019). Detection of Antimicrobial Resistance Using Proteomics and the Comprehensive Antibiotic Resistance Database: A Case Study. PROTEOMICS – Clinical Applications, 1800182. https://doi.org/10.1002/prca.201800182
Chen, M. L., Doddi, A., Royer, J., Freschi, L., Schito, M., Ezewudo, M., Kohane, I. S., Beam, A., & Farhat, M. (2019). Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. EBioMedicine, 43, 356-369. https://doi.org/10.1016/j.ebiom.2019.04.016
Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics, 99(6), 323-329. https://doi.org/10.1016/j.ygeno.2012.04.003 Clinical and Laboratory Standards Institute, & Weinstein, M. P. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.
Correa, A., del Campo, R., Escandón-Vargas, K., Perenguez, M., Rodríguez-Baños, M., Hernández-Gómez, C., Pallares, C., Perez, F., Arias, C. A., Cantón, R., & Villegas, M. V. (2017). Distinct Genetic Diversity of Carbapenem-Resistant Acinetobacter baumannii from Colombian Hospitals. Microbial Drug Resistance, 24(1), 48-54. https://doi.org/10.1089/mdr.2016.0190
Corredor, S. M., Leal, A. L., Castillo, J. S., Gutierrez, G. B., Andrade, L. C., & Rodriguez, D. (2018). PROGRAMA DE PREVENCIÓN, VIGILANCIA Y CONTROL DE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD-IAAS Y LA RESISTENCIA ANTIMICROBIANA. 64.
Cui, Z.-H., Ni, W.-N., Tang, T., He, B., Zhong, Z.-X., Fang, L.-X., Chen, L., Chen, C., Cui, C.-Y., Liu, Y.-H., Liao, X.-P., & Sun, J. (2020). Rapid detection of plasmid-mediated high-level tigecycline resistance in Escherichia coli and Acinetobacter spp. Journal of Antimicrobial Chemotherapy, 75(6), 1479-1483. https://doi.org/10.1093/jac/dkaa029
Davis, J. J., Boisvert, S., Brettin, T., Kenyon, R. W., Mao, C., Olson, R., Overbeek, R., Santerre, J., Shukla, M., Wattam, A. R., Will, R., Xia, F., & Stevens, R. (2016). Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 6, 27930. https://doi.org/10.1038/srep27930
De Bruyne, S., Speeckaert, M. M., Van Biesen, W., & Delanghe, J. R. (2020). Recent evolutions of machine learning applications in clinical laboratory medicine. Critical Reviews in Clinical Laboratory Sciences, 1-22. https://doi.org/10.1080/10408363.2020.1828811
De’ath, G., & Fabricius, K. E. (2000). Classification and Regression Trees: A Powerful yet Simple Technique for Ecological Data Analysis. Ecology, 81(11), 3178-3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
Deelder, W., Christakoudi, S., Phelan, J., Benavente, E. D., Campino, S., McNerney, R., Palla, L., & Clark, T. G. (2019). Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00922
Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A., & Crook, D. W. (2012). Transforming clinical microbiology with bacterial genome sequencing. Nature Reviews Genetics, 13(9), 601-612. https://doi.org/10.1038/nrg3226
Drouin, A., Giguère, S., Déraspe, M., Marchand, M., Tyers, M., Loo, V. G., Bourgault, A.- M., Laviolette, F., & Corbeil, J. (2016). Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics, 17(1), 754. https://doi.org/10.1186/s12864-016-2889-6
Drouin, A., Letarte, G., Raymond, F., Marchand, M., Corbeil, J., & Laviolette, F. (2019). Interpretable genotype-to-phenotype classifiers with performance guarantees. Scientific Reports, 9(1), 4071. https://doi.org/10.1038/s41598-019-40561-2
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. https://doi.org/10.1093/bioinformatics/btq461 Eliopoulos, G. M., Maragakis, L. L., & Perl, T. M. (2008). Acinetobacter baumannii: Epidemiology, Antimicrobial Resistance, and Treatment Options. Clinical Infectious Diseases, 46(8), 1254-1263. https://doi.org/10.1086/529198
Eyre, D. W., De Silva, D., Cole, K., Peters, J., Cole, M. J., Grad, Y. H., Demczuk, W., Martin, I., Mulvey, M. R., Crook, D. W., Walker, A. S., Peto, T. E. A., & Paul, J. (2017). WGS to predict antibiotic MICs for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 72(7), 1937-1947. https://doi.org/10.1093/jac/dkx067
Fàbrega, A., Madurga, S., Giralt, E., & Vila, J. (2009). Mechanism of action of and resistance to quinolones. Microbial Biotechnology, 2(1), 40-61. https://doi.org/10.1111/j.1751-7915.2008.00063.x
Gao, L., Lyu, Y., & Li, Y. (2017). Trends in Drug Resistance of Acinetobacter baumannii over a 10-year Period: Nationwide Data from the China Surveillance of Antimicrobial Resistance Program. Chinese Medical Journal, 130(6), 659-664. https://doi.org/10.4103/0366-6999.201601
Garnacho-Montero, J., & Timsit, J.-F. (2019). Managing Acinetobacter baumannii infections. Current Opinion in Infectious Diseases, 32(1), 69–76. https://doi.org/10.1097/QCO.0000000000000518
Geisinger, E., Vargas-Cuebas, G., Mortman, N. J., Syal, S., Dai, Y., Wainwright, E. L., Lazinski, D., Wood, S., Zhu, Z., Anthony, J., Opijnen, T. van, & Isberg, R. R. (2019). The Landscape of Phenotypic and Transcriptional Responses to Ciprofloxacin in Acinetobacter baumannii: Acquired Resistance Alleles Modulate Drug-Induced SOS Response and Prophage Replication. MBio, 10(3). https://doi.org/10.1128/mBio.01127-19
Genome - NCBI. (2020). National Center for Biotechnology Information. Retrieved January 06, 2020, from https://www.ncbi.nlm.nih.gov/genome
Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc.
Giacobbe, D. R., Mora, S., Giacomini, M., & Bassetti, M. (2020). Machine Learning and Multidrug-Resistant Gram-Negative Bacteria: An Interesting Combination for Current and Future Research. Antibiotics, 9(2), 54. https://doi.org/10.3390/antibiotics9020054
Goldstein, E., MacFadden, D. R., & Lipsitch, M. (2018). Antimicrobial resistance and use, and rates of hospitalization associated with bacterial infections, including sepsis. arXiv:1803.07189 [q-bio]. http://arxiv.org/abs/1803.07189
Gómez, R. F., Castillo, A., Chávez-Vivas, M., Gómez, R. F., Castillo, A., & Chávez-Vivas, M. (2017). Characterization of multidrug-resistant Acinetobacter ssp. Strains isolated from medical intensive care units in Cali—Colombia. Colombia Médica, 48(4), 183-190. https://doi.org/10.25100/cm.v48i4.2858
Gordon, N. C., Price, J. R., Cole, K., Everitt, R., Morgan, M., Finney, J., Kearns, A. M., Pichon, B., Young, B., Wilson, D. J., Llewelyn, M. J., Paul, J., Peto, T. E. A., Crook, D. W., Walker, A. S., & Golubchik, T. (2014). Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing. Journal of Clinical Microbiology, 52(4), 1182-1191. https://doi.org/10.1128/JCM.03117-13
Gwinn, M., MacCannell, D., & Armstrong, G. L. (2019). Next-Generation Sequencing of Infectious Pathogens. JAMA, 321(9), 893-894. https://doi.org/10.1001/jama.2018.21669
Hamidian, M., Ambrose, S. J., & Hall, R. M. (2016). A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Plasmid, 87-88, 43-50. https://doi.org/10.1016/j.plasmid.2016.09.001
Hamidian, M., & Nigro, S. J. (2019). Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microbial Genomics. https://doi.org/10.1099/mgen.0.000306
Hasani, A., Sheikhalizadeh, V., Ahangarzadeh Rezaee, M., Rahmati-Yamchi, M., Hasani, A., Ghotaslou, R., & Goli, H. R. (2016). Frequency of Aminoglycoside-Modifying Enzymes and ArmA Among Different Sequence Groups of Acinetobacter baumannii in Iran. Microbial Drug Resistance, 22(5), 347-353. https://doi.org/10.1089/mdr.2015.0254
Hauskrecht, M., Pelikan, R., Valko, M., & Lyons-Weiler, J. (2011). Feature Selection and Dimensionality Reduction in Genomics and Proteomics. 28.
He, T., Wang, R., Liu, D., Walsh, T. R., Zhang, R., Lv, Y., Ke, Y., Ji, Q., Wei, R., Liu, Z., Shen, Y., Wang, G., Sun, L., Lei, L., Lv, Z., Li, Y., Pang, M., Wang, L., Sun, Q., … Wang, Y. (2019). Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology, 4(9), 1450-1456. https://doi.org/10.1038/s41564-019-0445-2
Health, C. for D. and R. (2020). Antimicrobial Susceptibility Test (AST) Systems—Class II Special Controls Guidance for Industry and FDA. FDA. https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and- radiation-emitting-products/antimicrobial-susceptibility-test-ast-systems-class-iispecial-controls-guidance-industry-and-fda
Her, H.-L., & Wu, Y.-W. (2018). A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics, 34(13), i89-i95. https://doi.org/10.1093/bioinformatics/bty276
Hicks, A. L., Wheeler, N., Sánchez-Busó, L., Rakeman, J. L., Harris, S. R., & Grad, Y. H. (2019). Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data. bioRxiv, 607127. https://doi.org/10.1101/607127
Hombach, M., Böttger, E. C., & Roos, M. (2013). The critical influence of the intermediate category on interpretation errors in revised EUCAST and CLSI antimicrobial susceptibility testing guidelines. Clinical Microbiology and Infection, 19(2), E59-E71. https://doi.org/10.1111/1469-0691.12090
Honarmand Jahromy, S., Ranjbar, S., & Pishkar, L. (2020). Phenotypic Activity of Efflux Pumps by Carbonyl Cyanide M-Chlorophenyl Hydrazone (CCCP) and Mutations in GyrA and ParC Genes Among Ciprofloxacin-Resistant Acinetobacter baumannii Isolates. Jundishapur Journal of Microbiology, 13(4). https://doi.org/10.5812/jjm.99435
Hyun, J. C., Kavvas, E. S., Monk, J. M., & Palsson, B. O. (2020). Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLOS Computational Biology, 16(3), e1007608. https://doi.org/10.1371/journal.pcbi.1007608
Instituto Nacional de Salud. (2019). Fichas y Protocolos. https://www.ins.gov.co/buscadoreventos/Paginas/Fichas-y-Protocolos.aspx
Isler, B., Doi, Y., Bonomo, R. A., & Paterson, D. L. (2019). New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrobial Agents and Chemotherapy, 63(1). https://doi.org/10.1128/AAC.01110-18
Jahan, M. I., Rahaman, M. M., Hossain, M. A., & Sultana, M. (2019). Occurrence of intI1- associated VIM-5 carbapenemase and co-existence of all four classes of βlactamase in carbapenem-resistant clinical Pseudomonas aeruginosa DMC-27b. Journal of Antimicrobial Chemotherapy, dkz426. https://doi.org/10.1093/jac/dkz426
Jenuth, J. P. (1999). The NCBI. En S. Misener & S. A. Krawetz (Eds.), Bioinformatics Methods and Protocols (pp. 301-312). Humana Press. https://doi.org/10.1385/1- 59259-192-2:301
Jeukens, J., Freschi, L., Kukavica-Ibrulj, I., Emond-Rheault, J.-G., Tucker, N. P., & Levesque, R. C. (2019). Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa: Predicting antibiotic resistance in Pseudomonas. Annals of the New York Academy of Sciences, 1435(1), 5-17. https://doi.org/10.1111/nyas.13358
Jia, B., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P., Tsang, K. K., Lago, B. A., Dave, B. M., Pereira, S., Sharma, A. N., Doshi, S., Courtot, M., Lo, R., Williams, L. E., Frye, J. G., Elsayegh, T., Sardar, D., Westman, E. L., Pawlowski, A. C., … McArthur, A. G. (2017). CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research, 45(D1), D566-D573. https://doi.org/10.1093/nar/gkw1004
Jiménez Pearson, M. A., Galas, M., Corso, A., Hormazábal, J. C., Duarte Valderrama, C., Salgado Marcano, N., Ramón-Pardo, P., & Melano, R. G. (2019). Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Revista Panamericana de Salud Pública, 43. https://doi.org/10.26633/RPSP.2019.65
Kankainen, M., Ojala, T., & Holm, L. (2012). BLANNOTATOR: Enhanced homology-based function prediction of bacterial proteins. BMC Bioinformatics, 13(1), 33. https://doi.org/10.1186/1471-2105-13-33
Kester, J. C., & Fortune, S. M. (2014). Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 49(2), 91-101. https://doi.org/10.3109/10409238.2013.869543
Khaledi, A., Weimann, A., Schniederjans, M., Asgari, E., Kuo, T.-H., Oliver, A., Cabot, G., Kola, A., Gastmeier, P., Hogardt, M., Jonas, D., Mofrad, M. R. K., Bremges, A., McHardy, A. C., & Häussler, S. (2019). Fighting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. BioRxiv, 643676. https://doi.org/10.1101/643676
Khurshid, M., Rasool, M. H., Siddique, M. H., Azeem, F., Naeem, M., Sohail, M., Sarfraz, M., Saqalein, M., Taj, Z., Nisar, M. A., Qamar, M. U., & Shahzad, A. (2019). Molecular mechanisms of antibiotic co-resistance among carbapenem resistant Acinetobacter baumannii. The Journal of Infection in Developing Countries, 13(10), 899-905. https://doi.org/10.3855/jidc.11410
Kim, J., Greenberg, D. E., Pifer, R., Jiang, S., Xiao, G., Shelburne, S. A., Koh, A., Xie, Y., & Zhan, X. (2020). VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLOS Computational Biology, 16(1), e1007511. https://doi.org/10.1371/journal.pcbi.1007511
Köser, C. U., Ellington, M. J., Cartwright, E. J. P., Gillespie, S. H., Brown, N. M., Farrington, M., Holden, M. T. G., Dougan, G., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2012). Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLOS Pathogens, 8(8), e1002824. https://doi.org/10.1371/journal.ppat.1002824
Labreche, M. J., Graber, C. J., & Nguyen, H. M. (2015). Recent Updates on the Role of Pharmacokinetics-pharmacodynamics in Antimicrobial Susceptibility Testing as Applied to Clinical Practice. Clinical Infectious Diseases, 61(9), 1446-1452. https://doi.org/10.1093/cid/civ498
Ladner, J. T. (2019). Precision epidemiology for infectious disease control. Nature Medicine, 25, 6.
Lee, C.-R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C.-J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00055
Li, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research, 36(1), 22-32. https://doi.org/10.1002/jor.23656
Li, Y., Metcalf, B. J., Chochua, S., Li, Z., Gertz, R. E., Walker, H., Hawkins, P. A., Tran, T., McGee, L., Beall, B. W., & on behalf of the Active Bacterial Core surveillance team. (2017). Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences. BMC Genomics, 18(1), 621. https://doi.org/10.1186/s12864-017-4017- 7
Lin, M.-F., Lin, Y.-Y., Tu, C.-C., & Lan, C.-Y. (2017). Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. Journal of Microbiology, Immunology and Infection, 50(2), 224-231. https://doi.org/10.1016/j.jmii.2015.04.004
Lopez, P. (2019, noviembre 7). Problema grave, la resistencia bacteriana a los antibióticos. Gaceta UNAM. https://www.gaceta.unam.mx/problema-grave-la-resistenciabacteriana-a-los-antibioticos/
Maasdorp, S., Potgieter, S., Glover, E., & Joubert, G. (2021). Treatment outcomes of Acinetobacter baumannii-associated pneumonia and/or bacteraemia at the intensive care unit of Universitas Academic Hospital, Bloemfontein, South Africa. African Journal of Thoracic and Critical Care Medicine, 27(1), 14. https://doi.org/10.7196/AJTCCM.2021.v27i1.122
Macesic, N., Polubriaginof, F., & Tatonetti, N. P. (2017b). Machine learning: Novel bioinformatics approaches for combating antimicrobial resistance. Current Opinion in Infectious Diseases, 30(6), 511. https://doi.org/10.1097/QCO.0000000000000406
Macesic, N., Walk, O. J. B. D., Pe’er, I., Tatonetti, N. P., Peleg, A. Y., & Uhlemann, A.-C. (2020). Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. MSystems, 5(3). https://doi.org/10.1128/mSystems.00656-19
Maglogiannis, I. G. (Ed.). (2007). Emerging artificial intelligence applications in computer engineering: Real word AI systems with applications in eHealth, HCI, information retrieval and pervasive technologies. IOS Press.
Maguire, F., Rehman, M. A., Carrillo, C., Diarra, M. S., & Beiko, R. G. (2019). Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning. MSystems, 4(4). https://doi.org/10.1128/mSystems.00211-19
Mailman, M. D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Bagoutdinov, R., Hao, L., Kiang, A., Paschall, J., Phan, L., Popova, N., Pretel, S., Ziyabari, L., Shao, Y., Wang, Z. Y., Sirotkin, K., Ward, M., Kholodov, M., Zbicz, K., … Sherry, S. T. (2007). The NCBI dbGaP database of genotypes and phenotypes. Nature genetics, 39(10), 1181- 1186. https://doi.org/10.1038/ng1007-1181
Marchand, M., Shawe-Taylor, J., Brodley, C. E., & Danyluk, A. (2003). The Set Covering Machine. Journal of Machine Learning Research, 3(4/5), 723-746. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=a9h&AN=12320303&lang=es&site=eds-live
Martínez-Agüero, S., Mora-Jiménez, I., Lérida-García, J., Álvarez-Rodríguez, J., & Soguero-Ruiz, C. (2019). Machine Learning Techniques to Identify Antimicrobial Resistance in the Intensive Care Unit. Entropy, 21(6), 603. https://doi.org/10.3390/e21060603
Mentasti, M., Prime, K., Sands, K., Khan, S., & Wootton, M. (2020). Rapid detection of OXA-23-like, OXA-24-like and OXA-58-like carbapenemases from Acinetobacter species by real-time PCR. Journal of Hospital Infection. https://doi.org/10.1016/j.jhin.2020.06.015
Mobasseri, P., Azimi, L., Salehi, M., Hosseini, F., & Fallah, F. (2018). Multi-drug Resistance Profiles and Expression of AdeIJK and AbeM in Acinetobacter baumannii Collected from Humans by Real-time PCR. Journal of Medical Bacteriology, 7(1-2), 50-56. http://jmb.tums.ac.ir/index.php/jmb/article/view/383
Moniri, R., Farahani, R. K., Shajari, G., Shirazi, MH. N., & Ghasemi, A. (2010). Molecular Epidemiology of Aminoglycosides Resistance in Acinetobacter Spp. With Emergence of Multidrug-Resistant Strains. Iranian Journal of Public Health, 39(2), 63-68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481761/
Moradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., & Parts, L. (2018). Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLOS Computational Biology, 14(12), e1006258. https://doi.org/10.1371/journal.pcbi.1006258
Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and reemerging infectious diseases. Nature, 430(6996), 242-249. https://doi.org/10.1038/nature02759
Munck, C., Gumpert, H. K., Wallin, A. I. N., Wang, H. H., & Sommer, M. O. A. (2014). Prediction of resistance development against drug combinations by collateral responses to component drugs. Science Translational Medicine, 6(262), 262ra156- 262ra156. https://doi.org/10.1126/scitranslmed.3009940
Múnera, J. M. V., Villamil, G. A. R., & Quiceno, J. N. J. (2014). Acinetobacter baumannii: Importancia clínica, mecanismos de resistencia y diagnóstico. CES Medicina, 28(2), 233-246. http://revistas.ces.edu.co/index.php/medicina/article/view/2857
Ngiam, K. Y., & Khor, I. W. (2019). Big data and machine learning algorithms for healthcare delivery. The Lancet Oncology, 20(5), e262-e273. https://doi.org/10.1016/S1470-2045(19)30149-4
Nguyen, M., Brettin, T., Long, S. W., Musser, J. M., Olsen, R. J., Olson, R., Shukla, M., Stevens, R. L., Xia, F., Yoo, H., & Davis, J. J. (2018). Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Scientific Reports, 8(1), 1-11. https://doi.org/10.1038/s41598-017-18972-w
Nguyen, M., Long, S. W., McDermott, P. F., Olsen, R. J., Olson, R., Stevens, R. L., Tyson, G. H., Zhao, S., & Davis, J. J. (2018). Using Machine Learning To Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal Salmonella. Journal of Clinical Microbiology, 57(2), e01260-18, /jcm/57/2/JCM.01260-18.atom. https://doi.org/10.1128/JCM.01260-18
Nigro, S. J., & Hall, R. M. (2018). Does the intrinsic oxaAb (blaOXA-51-like) gene of Acinetobacter baumannii confer resistance to carbapenems when activated by ISAba1? Journal of Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dky334
Nowak, P., Paluchowska, P., & Budak, A. (2014). Co-occurrence of carbapenem and aminoglycoside resistance genes among multidrug-resistant clinical isolates of Acinetobacter baumannii from Cracow, Poland. Medical Science Monitor Basic Research, 20, 9-14. https://doi.org/10.12659/MSMBR.889811
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375(13), 1216- 1219. https://doi.org/10.1056/NEJMp1606181
Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., & Aittokallio, T. (2014). Regularized Machine Learning in the Genetic Prediction of Complex Traits. PLoS Genetics, 10(11), e1004754. https://doi.org/10.1371/journal.pgen.1004754
Opazo, A., Sonnevend, A., Lopes, B., Hamouda, A., Ghazawi, A., Pal, T., & Amyes, S. G. B. (2012). Plasmid-encoded PER-7 -lactamase responsible for ceftazidime resistance in Acinetobacter baumannii isolated in the United Arab Emirates. Journal of Antimicrobial Chemotherapy, 67(7), 1619-1622. https://doi.org/10.1093/jac/dks087
Opazo, Andrés, Domínguez, M., Bello, H., Amyes, S. G. B., & González-Rocha, G. (2012). OXA-type carbapenemases in Acinetobacter baumannii in South America. The Journal of Infection in Developing Countries, 6(04), 311-316. https://doi.org/10.3855/jidc.2310
Organización Mundial de la Salud. (2011). Mejorar la prevención y el control de infecciones. https://www.who.int/world-health-day/2011/whd2011-fs5-prevcontr-es.pdf?ua=1
Organización Mundial de la Salud. (2016, septiembre 21). Los líderes mundiales se comprometen en la ONU a abordar la resistencia a los antimicrobianos. https://www.who.int/es/news-room/detail/21-09-2016-at-un-global-leaders-committo-act-on-antimicrobial-resistance
Organización Mundial de la Salud. (2018a). Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. http://apps.who.int/medicinedocs/en/m/abstract/Js23171en/
Organización Mundial de la Salud. (2018b, enero 29). OMS | Datos recientes revelan los altos niveles de resistencia a los antibióticos en todo el mundo. WHO. http://www.who.int/mediacentre/news/releases/2018/antibiotic-resistancefound/es/
Organización Mundial de la Salud. (2018c, febrero 5). Resistencia a los antibióticos. https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antibióticos
Organización Mundial de la Salud. (2018d, febrero 15). Resistencia a los antimicrobianos. https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-losantimicrobianos
Park, S., Lee, K. M., Yoo, Y. S., Yoo, J. S., Yoo, J. I., Kim, H. S., Lee, Y. S., & Chung, G. T. (2011). Alterations of gyrA, gyrB, and parC and Activity of Efflux Pump in Fluoroquinolone-resistant Acinetobacter baumannii. Osong Public Health and Research Perspectives, 2(3), 164-170. https://doi.org/10.1016/j.phrp.2011.11.040
Parquet, M. del C., Savage, K. A., Allan, D. S., Ang, M. T. C., Chen, W., Logan, S. M., & Holbein, B. E. (2019). Antibiotic-Resistant Acinetobacter baumannii Is Susceptible to the Novel Iron-Sequestering Anti-infective DIBI In Vitro and in Experimental Pneumonia in Mice. Antimicrobial Agents and Chemotherapy, 63(9), e00855-19. https://doi.org/10.1128/AAC.00855-19
Pataki, B. Á., Matamoros, S., van der Putten, B. C. L., Remondini, D., Giampieri, E., AytanAktug, D., Hendriksen, R. S., Lund, O., Csabai, I., & Schultsz, C. (2019). Understanding and predicting ciprofloxacin minimum inhibitory concentration in Escherichia coli with machine learning [Preprint]. Microbiology. https://doi.org/10.1101/806760
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825-2830. http://jmlr.org/papers/v12/pedregosa11a.html
Pesesky, M. W., Hussain, T., Wallace, M., Patel, S., Andleeb, S., Burnham, C.-A. D., & Dantas, G. (2016). Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01887
Potron, A., Poirel, L., & Nordmann, P. (2015). Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. International Journal of Antimicrobial Agents, 45(6), 568-585. https://doi.org/10.1016/j.ijantimicag.2015.03.001
Prada Cardozo, D. A. (2018). Evaluación de los perfiles genómicos de resistencia a antibióticos de aislamientos colombianos de Acinetobacter baumannii mediante secuenciación del genoma completo [Masters, Universidad Nacional de Colombia - Sede Bogotá]. http://www.bdigital.unal.edu.co/64552/
Python Software Foundation. (2021, March 1). Welcome to. Python.Org. Retrieved July 6, 2020, from https://www.python.org/
Qu, K., Guo, F., Liu, X., Lin, Y., & Zou, Q. (2019). Application of Machine Learning in Microbiology. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00827
Ranjbar, R., & Farahani, A. (2019). Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrobial Resistance & Infection Control, 8(1), 172. https://doi.org/10.1186/s13756-019-0612-5
Raschka, S. (2015). Python Machine Learning (Vol. 1). Packt Publishing Ltd. Ríos, R., Mattar, S., & González, M. (2011). Bibliometric analysis of publications on infectious diseases in Colombia, 2000-2009. Revista de Salud Pública, 13(2), 298- 307. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0124- 00642011000200011&lng=en&nrm=iso&tlng=pt
Rolain, J.-M., Loucif, L., Al-Maslamani, M., Elmagboul, E., Al-Ansari, N., Taj-Aldeen, S., Shaukat, A., Ahmedullah, H., & Hamed, M. (2016). Emergence of multidrugresistant Acinetobacter baumannii producing OXA-23 Carbapenemase in Qatar. New Microbes and New Infections, 11, 47-51. https://doi.org/10.1016/j.nmni.2016.02.006
Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering, Design and Selection, 12(2), 85-94. https://doi.org/10.1093/protein/12.2.85
Sader, H. S., Jones, R. N., Gales, A. C., Winokur, P., Kugler, K. C., Pfaller, M. A., & Doern, G. V. (1998). Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: Analysis of results from the SENTRY Antimicrobial Surveillance Program (1997). Diagnostic Microbiology and Infectious Disease, 32(4), 289-301. https://doi.org/10.1016/S0732-8893(98)00124-2
Salih, T. S., & Shafeek, R. R. (2019). In silico Detection of Acquired Antimicrobial Resistance Genes in 110 Complete Genome Sequences of Acinetobacter baumannii. 12(5), 6.
Samuel, S. O., Kayode, O. O., Musa, O. I., Nwigwe, G. C., Aboderin, A. O., Salami, T. a. T., & Taiwo, S. S. (2010). Nosocomial infections and the challenges of control in developing countries. African Journal of Clinical and Experimental Microbiology, 11(2). https://doi.org/10.4314/ajcem.v11i2.53916
Sanchez, Cynthia: front-end and UI. Marjanovic, Zvezdana: graphic design. (2021). The makers’ choice for sysadmins, developers and desktop users. OpenSUSE. Retrieved October 15, 2020, from https://www.opensuse.org/
Schrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A New Paradigm. Trends in Genetics, 34(4), 301-312. https://doi.org/10.1016/j.tig.2017.12.005
Sheikhalizadeh, V., Hasani, A., Ahangarzadeh Rezaee, M., Rahmati-yamchi, M., Hasani, A., Ghotaslou, R., & Goli, H. R. (2017). Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. Journal of Infection and Chemotherapy, 23(2), 74-79. https://doi.org/10.1016/j.jiac.2016.09.012
Sid Ahmed, M. A., Khan, F. A., Sultan, A. A., Söderquist, B., Ibrahim, E. B., Jass, J., & Omrani, A. S. (2020). β-lactamase-mediated resistance in MDR-Pseudomonas aeruginosa from Qatar. Antimicrobial Resistance & Infection Control, 9(1), 170. https://doi.org/10.1186/s13756-020-00838-y
Su, M., Satola, S. W., & Read, T. D. (2019). Genome-Based Prediction of Bacterial Antibiotic Resistance. Journal of Clinical Microbiology, 57(3). https://doi.org/10.1128/JCM.01405-18
Sultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02066
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., … Zorzet, A. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318-327. https://doi.org/10.1016/S1473- 3099(17)30753-3
The Comprehensive Antibiotic Resistance Database. (2020). Resistance Gene Identifier. Retrieved October 15, 2019, from https://card.mcmaster.ca/analyze/rgi
Troyano-Hernáez, P., Gutiérrez-Arroyo, A., Gómez-Gil, R., Mingorance, J., & LázaroPerona, F. (2018). Emergence of Klebsiella pneumoniae Harboring the aac(6ʹ)-Ian Amikacin Resistance Gene. Antimicrobial Agents and Chemotherapy, 62(12), e01952-18, /aac/62/12/e01952-18.atom. https://doi.org/10.1128/AAC.01952-18
Van Camp, P.-J., Haslam, D. B., & Porollo, A. (2020). Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01013
Warner, W. A., Kuang, S. N., Hernandez, R., Chong, M. C., Ewing, P. J., Fleischer, J., Meng, J., Chu, S., Terashita, D., English, L., Chen, W., & Xu, H. H. (2016). Molecular characterization and antimicrobial susceptibility of Acinetobacter baumannii isolates obtained from two hospital outbreaks in Los Angeles County, California, USA. BMC Infectious Diseases, 16(1), 194. https://doi.org/10.1186/s12879-016-1526-y
Weinstein, M. P., & Clinical and Laboratory Standards Institute. (2019). Performance standards for antimicrobial susceptibility testing.
Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175. https://doi.org/10.1038/nprot.2007.521
Wilson, D. N., Hauryliuk, V., Atkinson, G. C., & O’Neill, A. J. (2020). Target protection as a key antibiotic resistance mechanism. Nature Reviews Microbiology, 18(11), 637- 648. https://doi.org/10.1038/s41579-020-0386-z
Xu, C., & Jackson, S. A. (2019). Machine learning and complex biological data. Genome Biology, 20(1), 76, s13059-019-1689-0. https://doi.org/10.1186/s13059-019-1689-0 Yakkala, H., Samantarrai, D., Gribskov, M., & Siddavattam, D. (2019). Comparative genome analysis reveals niche-specific genome expansion in Acinetobacter baumannii strains. PLOS ONE, 14(6), e0218204. https://doi.org/10.1371/journal.pone.0218204
Yamamoto, N., Hamaguchi, S., Akeda, Y., Santanirand, P., Kerdsin, A., Seki, M., Ishii, Y., Paveenkittiporn, W., Bonomo, R. A., Oishi, K., Malathum, K., & Tomono, K. (2015). Clinical Specimen-Direct LAMP: A Useful Tool for the Surveillance of blaOXA-23- Positive Carbapenem-Resistant Acinetobacter baumannii. PLOS ONE, 10(7), e0133204. https://doi.org/10.1371/journal.pone.0133204
Zankari, E., Hasman, H., Kaas, R. S., Seyfarth, A. M., Agersø, Y., Lund, O., Larsen, M. V., & Aarestrup, F. M. (2013). Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy, 68(4), 771-777. https://doi.org/10.1093/jac/dks496
Zhang, C., Ju, Y., Tang, N., Li, Y., Zhang, G., Song, Y., Fang, H., Yang, L., & Feng, J. (2019). Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbz056
Zhang, Yanpeng, Li, Z., He, X., Ding, F., Wu, W., Luo, Y., Fan, B., & Cao, H. (2018). Overproduction of efflux pumps caused reduced susceptibility to carbapenem under consecutive imipenem-selected stress in Acinetobacter baumannii. Infection and Drug Resistance, 11, 457-467. https://doi.org/10.2147/IDR.S151423
Zheng, W., Sun, W., & Simeonov, A. (2019). Drug repurposing screens and synergistic drug-combinations for infectious diseases. British Journal of Pharmacology, 181- 191. https://doi.org/10.1111/bph.13895@10.1111/(ISSN)1476-5381.BJP-BJCPOpen-Access-Collection
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 155 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.department.spa.fl_str_mv Observatorio Astronómico Nacional
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80437/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80437/2/105363113.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80437/3/105363113.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
85e9bf315b691508559df907409bc214
ec17ecd9c4ab292cfedb8b18db3f055f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089684200980480
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barreto Hernández, Emiliano67ae3f3c229b893d7e0d55415b69074a600Reguero Reza, María Teresa Jesús9ba54bc0326cdc978d84a9a9130f2d0cAguilar Gonzalez, Karen Jhovanae60e5d7085f1d8f7c76674b9031c4c87Grupo de Epidemiologia MolecularGrupo de Bioinformatica2021-10-07T22:16:47Z2021-10-07T22:16:47Z2021-04https://repositorio.unal.edu.co/handle/unal/80437Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa creciente resistencia a los antibióticos y las pocas alternativas terapéuticas disponibles vuelven una urgencia la necesidad de optimizar los diagnósticos actuales que nos permitan prescripciones más rápidas y efectivas. Últimamente uno de los enfoques para predecir resistencia a partir de los datos de secuenciación de genoma consta en aplicar modelos basados en aprendizaje de máquina, los cuales han ido tomando credibilidad debido a la capacidad de realizar predicciones precisas. Además, gracias al creciente conocimiento acerca de mecanismos de resistencia asociados a A. baumannii, este patógeno nos brinda una alternativa para desarrollar estos modelos. En este trabajo se utilizaron 343 genomas, 76 colombianos del Instituto Nacional de Salud y 267 recolectados de la base de datos Biosample NCBI, para la obtención de modelos basados en aprendizaje de máquina empleando regresión lasso, random forest y gradient boosting, para predecir la concentración mínima inhibitoria de 10 antibióticos. Random forest fue el algoritmo que mostró los mejores resultados, logrando una precisión promedio dentro de +/- una dilución doble de 91% (I.C 95, 85- 97), una tasa de very major error y major error de 1,71% y 0,7%, respectivamente. Como datos de entrada para los modelos se utilizaron genes de resistencia, los cuales fueron identificados utilizando el software Resistance Gene Identifier. Estos resultados demuestran que la predicción de la susceptibilidad de A. baumannii a los antibióticos, basada en la secuencia del genoma son prometedoras como posibles herramienta de diagnóstico en la clínica. (Texto tomado de la fuente).The increasing resistance to antibiotics and the few therapeutic choices available turns into an urgency the need to optimize the current diagnoses that allow faster and more efficient prescriptions. Lately, an approach to predict resistance from genome sequencing data applies machine learning models, which has taken credibility due to its capability to make reliable predictions. Further, thanks to the increasing knowledge about resistance mechanisms associated with A. baumannii, there is enough accessible data for developing these models. We used 343 genomes, 76 from the Colombian National Institute of Health, and 267 gathered from the Biosample NCBI database. We created models based on machine learning using lasso regression, random forest, and gradient boosting, to predict the minimum inhibitory concentration of 10 antibiotics. Random forest was the algorithm that show is better results, achieving an average accuracy within +/- a double dilution of 91% (I.C 95, 85- 97), a very major error, and a major error rate of 1.71% and 0.7% respectively. We employ known resistance genes as the model input, which were identified using the Resistance Gene Identifier software. These results show that the A. baumannii antibiotics susceptibility prediction, based on genome sequence, is promising as a possible diagnostic tool in the clinic.Incluye anexosMaestríaMagíster en Ciencias - MicrobiologíaBiología molecular de agentes infecciososxiii, 155 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaObservatorio Astronómico NacionalFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresAcinetobacter baumanniiBacteriasFarmacorresistencia MicrobianaBacteriaDrug Resistance, MicrobialArtificial intelligenceInteligencia artificialAcinetobacter baumanniiAprendizaje de máquinaPredicción fenotípica de resistenciaConcentración mínima inhibitoriaRegresión lassoRandom forestGradient boostingPredicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumanniiPrediction of the resistance profile from the genome sequences of colombian isolates of Acinetobacter baumanniiTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., Asgharzadeh, M., & Kafil, H. S. (2020). Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infection and Drug Resistance, 13, 423-434. https://doi.org/10.2147/IDR.S228089Albornoz, H., Paciel, D., & Medina, J. (2018). Tratamiento de Acinetobacter spp extremadamente resistente (XDR) y panresistente (PR) (p. 6). Catedra de Enfermedade Infecciosas. http://www.infectologia.edu.uy/images/archivos/Esquemas_Tto_Acineto_XDR.pdfAlcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. V., Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., … McArthur, A. G. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48(D1), D517-D525. https://doi.org/10.1093/nar/gkz935AL-Enawey, A. W., Saadedin, S. M. K., & Al-Khaldi, S. A.-M. (2020). ISOLATION, IDENTIFICATION AND ANTIMICROBIAL SUSCEPTIBILITY OF STAPHYLOCOCCUS AUREUS AND ACINETOBACTER BAUMANNII ISOLATED FROM BABYLON HOSPITALS. 6.Alzuhairi, M. A., Abdulmohsen, A. M., Falih, M. N., & Hanafiah, M. M. (2020). Genomic sequencing analysis of Acinetobacter baumannii strain ABIQM1, isolated from a meningitis patient. Gene Reports, 19, 100631. https://doi.org/10.1016/j.genrep.2020.100631Asif, M., Alvi, I. A., & Rehman, S. U. (2018). Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance, 11, 1249-1260. https://doi.org/10.2147/IDR.S166750Aun, E., Brauer, A., Kisand, V., Tenson, T., & Remm, M. (2018). A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria. PLOS Computational Biology, 14(10), e1006434. https://doi.org/10.1371/journal.pcbi.1006434Ayodele, T. (2010). Types of Machine Learning Algorithms. En Yagang Zhang (Ed.), New Advances in Machine Learning. InTech. https://doi.org/10.5772/9385 Aytan-Aktug, D., Clausen, P. T. L. C., Bortolaia, V., Aarestrup, F. M., & Lund, O. (2020). Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks. MSystems, 5(1), e00774-19, /msystems/5/1/msys.00774- 19.atom. https://doi.org/10.1128/mSystems.00774-19Babcock University, F.Y, O., J.E.T, A., O, A., J. O, H., O, O., & J, A. (2017). Supervised Machine Learning Algorithms: Classification and Comparison. International Journal of Computer Trends and Technology, 48(3), 128-138. https://doi.org/10.14445/22312803/IJCTT-V48P126Barlam, T. F., Cosgrove, S. E., Abbo, L. M., MacDougall, C., Schuetz, A. N., Septimus, E. J., Srinivasan, A., Dellit, T. H., Falck-Ytter, Y. T., Fishman, N. O., Hamilton, C. W., Jenkins, T. C., Lipsett, P. A., Malani, P. N., May, L. S., Moran, G. J., Neuhauser, M. M., Newland, J. G., Ohl, C. A., … Trivedi, K. K. (2016). Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clinical Infectious Diseases, 62(10), e51-e77. https://doi.org/10.1093/cid/ciw118Barletta Farías, R., Pérez Ponce, L., Castro Vega, G., Pujol Pérez, M., Barletta del Castillo, J., & Dueñas Pérez, Y. (2018). Acinetobacter baumannii multirresistente: Un reto para la terapéutica actual. MediSur, 16(2), 322-334. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1727- 897X2018000200015&lng=es&nrm=iso&tlng=esBioSample - NCBI. (2020). National Center for Biotechnology Information. Retrieved January 06, 2020, from https://www.ncbi.nlm.nih.gov/biosampleBiswas, Raju, Panja, Anindya Sundar, & Bandopadhyay, Rajib. (2019). Molecular Mechanism of Antibiotic Resistance: The Untouched Area of Future Hope | SpringerLink. https://link.springer.com/article/10.1007/s12088-019-00781-6Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. En Y. Lechevallier & G. Saporta (Eds.), Proceedings of COMPSTAT’2010 (pp. 177-186). Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_16Bradley, P., Gordon, N. C., Walker, T. M., Dunn, L., Heys, S., Huang, B., Earle, S., Pankhurst, L. J., Anson, L., Cesare, M. de, Piazza, P., Votintseva, A. A., Golubchik, T., Wilson, D. J., Wyllie, D. H., Diel, R., Niemann, S., Feuerriegel, S., Kohl, T. A., … Iqbal, Z. (2015). Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nature Communications, 6(1), 1-15. https://doi.org/10.1038/ncomms10063Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324Brennan, L. A., Tri, A. N., & Marcot, B. G. (2019). Quantitative Analyses in Wildlife Science. JHU Press.Cai, H. Y., McDowall, R., Parker, L., Kaufman, E. I., & Caswell, J. L. (2019). Changes in antimicrobial susceptibility profiles of Mycoplasma bovis over time. Canadian Journal of Veterinary Research = Revue Canadienne de Recherche Veterinaire, 83(1), 34-41. https://europepmc.org/articles/PMC6318825/Canovas-Segura, B., Morales, A., Lopez Martinez-Carrasco, A., Campos, M., Juarez, J. M., Lopez Rodriguez, L., & Palacios, F. (2019). Improving Interpretable Prediction Models for Antimicrobial Resistance. 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), 543-546. https://doi.org/10.1109/CBMS.2019.00111Cao, J., Wang, J., Wang, Y., Wang, L., Bi, Y., Zhu, B., & Gao, G. F. (2020). Tigecycline resistance tet(X3) gene is going wild. Biosafety and Health, 2(1), 9-11. https://doi.org/10.1016/j.bsheal.2020.01.002Casellas, J. M. (2011). Resistencia a los antibacterianos en América Latina: Consecuencias para la infectología. 16Centers for Disease Control and Prevention (U.S.). (2019). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.). https://doi.org/10.15620/cdc:82532Cerezales, M., Xanthopoulou, K., Wille, J., Bustamante, Z., Seifert, H., Gallego, L., & Higgins, P. G. (2019). Acinetobacter baumannii analysis by core genome multilocus sequence typing in two hospitals in Bolivia: Endemicity of international clone 7 isolates (CC25). International Journal of Antimicrobial Agents, 53(6), 844-849. https://doi.org/10.1016/j.ijantimicag.2019.03.019Chakravarty, B. (2020). Genetic mechanisms of antibiotic resistance and virulence in Acinetobacter baumannii: Background, challenges and future prospects. Molecular Biology Reports, 47(5), 4037-4046. https://doi.org/10.1007/s11033-020-05389-4Chen, C., Clark, C. G., Langner, S., Boyd, D. A., Bharat, A., McCorrister, S. J., McArthur, A. G., Graham, M. R., Westmacott, G. R., & Van Domselaar, G. (2019). Detection of Antimicrobial Resistance Using Proteomics and the Comprehensive Antibiotic Resistance Database: A Case Study. PROTEOMICS – Clinical Applications, 1800182. https://doi.org/10.1002/prca.201800182Chen, M. L., Doddi, A., Royer, J., Freschi, L., Schito, M., Ezewudo, M., Kohane, I. S., Beam, A., & Farhat, M. (2019). Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. EBioMedicine, 43, 356-369. https://doi.org/10.1016/j.ebiom.2019.04.016Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics, 99(6), 323-329. https://doi.org/10.1016/j.ygeno.2012.04.003 Clinical and Laboratory Standards Institute, & Weinstein, M. P. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.Correa, A., del Campo, R., Escandón-Vargas, K., Perenguez, M., Rodríguez-Baños, M., Hernández-Gómez, C., Pallares, C., Perez, F., Arias, C. A., Cantón, R., & Villegas, M. V. (2017). Distinct Genetic Diversity of Carbapenem-Resistant Acinetobacter baumannii from Colombian Hospitals. Microbial Drug Resistance, 24(1), 48-54. https://doi.org/10.1089/mdr.2016.0190Corredor, S. M., Leal, A. L., Castillo, J. S., Gutierrez, G. B., Andrade, L. C., & Rodriguez, D. (2018). PROGRAMA DE PREVENCIÓN, VIGILANCIA Y CONTROL DE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD-IAAS Y LA RESISTENCIA ANTIMICROBIANA. 64.Cui, Z.-H., Ni, W.-N., Tang, T., He, B., Zhong, Z.-X., Fang, L.-X., Chen, L., Chen, C., Cui, C.-Y., Liu, Y.-H., Liao, X.-P., & Sun, J. (2020). Rapid detection of plasmid-mediated high-level tigecycline resistance in Escherichia coli and Acinetobacter spp. Journal of Antimicrobial Chemotherapy, 75(6), 1479-1483. https://doi.org/10.1093/jac/dkaa029Davis, J. J., Boisvert, S., Brettin, T., Kenyon, R. W., Mao, C., Olson, R., Overbeek, R., Santerre, J., Shukla, M., Wattam, A. R., Will, R., Xia, F., & Stevens, R. (2016). Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 6, 27930. https://doi.org/10.1038/srep27930De Bruyne, S., Speeckaert, M. M., Van Biesen, W., & Delanghe, J. R. (2020). Recent evolutions of machine learning applications in clinical laboratory medicine. Critical Reviews in Clinical Laboratory Sciences, 1-22. https://doi.org/10.1080/10408363.2020.1828811De’ath, G., & Fabricius, K. E. (2000). Classification and Regression Trees: A Powerful yet Simple Technique for Ecological Data Analysis. Ecology, 81(11), 3178-3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2Deelder, W., Christakoudi, S., Phelan, J., Benavente, E. D., Campino, S., McNerney, R., Palla, L., & Clark, T. G. (2019). Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00922Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A., & Crook, D. W. (2012). Transforming clinical microbiology with bacterial genome sequencing. Nature Reviews Genetics, 13(9), 601-612. https://doi.org/10.1038/nrg3226Drouin, A., Giguère, S., Déraspe, M., Marchand, M., Tyers, M., Loo, V. G., Bourgault, A.- M., Laviolette, F., & Corbeil, J. (2016). Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics, 17(1), 754. https://doi.org/10.1186/s12864-016-2889-6Drouin, A., Letarte, G., Raymond, F., Marchand, M., Corbeil, J., & Laviolette, F. (2019). Interpretable genotype-to-phenotype classifiers with performance guarantees. Scientific Reports, 9(1), 4071. https://doi.org/10.1038/s41598-019-40561-2Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. https://doi.org/10.1093/bioinformatics/btq461 Eliopoulos, G. M., Maragakis, L. L., & Perl, T. M. (2008). Acinetobacter baumannii: Epidemiology, Antimicrobial Resistance, and Treatment Options. Clinical Infectious Diseases, 46(8), 1254-1263. https://doi.org/10.1086/529198Eyre, D. W., De Silva, D., Cole, K., Peters, J., Cole, M. J., Grad, Y. H., Demczuk, W., Martin, I., Mulvey, M. R., Crook, D. W., Walker, A. S., Peto, T. E. A., & Paul, J. (2017). WGS to predict antibiotic MICs for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 72(7), 1937-1947. https://doi.org/10.1093/jac/dkx067Fàbrega, A., Madurga, S., Giralt, E., & Vila, J. (2009). Mechanism of action of and resistance to quinolones. Microbial Biotechnology, 2(1), 40-61. https://doi.org/10.1111/j.1751-7915.2008.00063.xGao, L., Lyu, Y., & Li, Y. (2017). Trends in Drug Resistance of Acinetobacter baumannii over a 10-year Period: Nationwide Data from the China Surveillance of Antimicrobial Resistance Program. Chinese Medical Journal, 130(6), 659-664. https://doi.org/10.4103/0366-6999.201601Garnacho-Montero, J., & Timsit, J.-F. (2019). Managing Acinetobacter baumannii infections. Current Opinion in Infectious Diseases, 32(1), 69–76. https://doi.org/10.1097/QCO.0000000000000518Geisinger, E., Vargas-Cuebas, G., Mortman, N. J., Syal, S., Dai, Y., Wainwright, E. L., Lazinski, D., Wood, S., Zhu, Z., Anthony, J., Opijnen, T. van, & Isberg, R. R. (2019). The Landscape of Phenotypic and Transcriptional Responses to Ciprofloxacin in Acinetobacter baumannii: Acquired Resistance Alleles Modulate Drug-Induced SOS Response and Prophage Replication. MBio, 10(3). https://doi.org/10.1128/mBio.01127-19Genome - NCBI. (2020). National Center for Biotechnology Information. Retrieved January 06, 2020, from https://www.ncbi.nlm.nih.gov/genomeGéron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc.Giacobbe, D. R., Mora, S., Giacomini, M., & Bassetti, M. (2020). Machine Learning and Multidrug-Resistant Gram-Negative Bacteria: An Interesting Combination for Current and Future Research. Antibiotics, 9(2), 54. https://doi.org/10.3390/antibiotics9020054Goldstein, E., MacFadden, D. R., & Lipsitch, M. (2018). Antimicrobial resistance and use, and rates of hospitalization associated with bacterial infections, including sepsis. arXiv:1803.07189 [q-bio]. http://arxiv.org/abs/1803.07189Gómez, R. F., Castillo, A., Chávez-Vivas, M., Gómez, R. F., Castillo, A., & Chávez-Vivas, M. (2017). Characterization of multidrug-resistant Acinetobacter ssp. Strains isolated from medical intensive care units in Cali—Colombia. Colombia Médica, 48(4), 183-190. https://doi.org/10.25100/cm.v48i4.2858Gordon, N. C., Price, J. R., Cole, K., Everitt, R., Morgan, M., Finney, J., Kearns, A. M., Pichon, B., Young, B., Wilson, D. J., Llewelyn, M. J., Paul, J., Peto, T. E. A., Crook, D. W., Walker, A. S., & Golubchik, T. (2014). Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing. Journal of Clinical Microbiology, 52(4), 1182-1191. https://doi.org/10.1128/JCM.03117-13Gwinn, M., MacCannell, D., & Armstrong, G. L. (2019). Next-Generation Sequencing of Infectious Pathogens. JAMA, 321(9), 893-894. https://doi.org/10.1001/jama.2018.21669Hamidian, M., Ambrose, S. J., & Hall, R. M. (2016). A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Plasmid, 87-88, 43-50. https://doi.org/10.1016/j.plasmid.2016.09.001Hamidian, M., & Nigro, S. J. (2019). Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microbial Genomics. https://doi.org/10.1099/mgen.0.000306Hasani, A., Sheikhalizadeh, V., Ahangarzadeh Rezaee, M., Rahmati-Yamchi, M., Hasani, A., Ghotaslou, R., & Goli, H. R. (2016). Frequency of Aminoglycoside-Modifying Enzymes and ArmA Among Different Sequence Groups of Acinetobacter baumannii in Iran. Microbial Drug Resistance, 22(5), 347-353. https://doi.org/10.1089/mdr.2015.0254Hauskrecht, M., Pelikan, R., Valko, M., & Lyons-Weiler, J. (2011). Feature Selection and Dimensionality Reduction in Genomics and Proteomics. 28.He, T., Wang, R., Liu, D., Walsh, T. R., Zhang, R., Lv, Y., Ke, Y., Ji, Q., Wei, R., Liu, Z., Shen, Y., Wang, G., Sun, L., Lei, L., Lv, Z., Li, Y., Pang, M., Wang, L., Sun, Q., … Wang, Y. (2019). Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology, 4(9), 1450-1456. https://doi.org/10.1038/s41564-019-0445-2Health, C. for D. and R. (2020). Antimicrobial Susceptibility Test (AST) Systems—Class II Special Controls Guidance for Industry and FDA. FDA. https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and- radiation-emitting-products/antimicrobial-susceptibility-test-ast-systems-class-iispecial-controls-guidance-industry-and-fdaHer, H.-L., & Wu, Y.-W. (2018). A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics, 34(13), i89-i95. https://doi.org/10.1093/bioinformatics/bty276Hicks, A. L., Wheeler, N., Sánchez-Busó, L., Rakeman, J. L., Harris, S. R., & Grad, Y. H. (2019). Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data. bioRxiv, 607127. https://doi.org/10.1101/607127Hombach, M., Böttger, E. C., & Roos, M. (2013). The critical influence of the intermediate category on interpretation errors in revised EUCAST and CLSI antimicrobial susceptibility testing guidelines. Clinical Microbiology and Infection, 19(2), E59-E71. https://doi.org/10.1111/1469-0691.12090Honarmand Jahromy, S., Ranjbar, S., & Pishkar, L. (2020). Phenotypic Activity of Efflux Pumps by Carbonyl Cyanide M-Chlorophenyl Hydrazone (CCCP) and Mutations in GyrA and ParC Genes Among Ciprofloxacin-Resistant Acinetobacter baumannii Isolates. Jundishapur Journal of Microbiology, 13(4). https://doi.org/10.5812/jjm.99435Hyun, J. C., Kavvas, E. S., Monk, J. M., & Palsson, B. O. (2020). Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLOS Computational Biology, 16(3), e1007608. https://doi.org/10.1371/journal.pcbi.1007608Instituto Nacional de Salud. (2019). Fichas y Protocolos. https://www.ins.gov.co/buscadoreventos/Paginas/Fichas-y-Protocolos.aspxIsler, B., Doi, Y., Bonomo, R. A., & Paterson, D. L. (2019). New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrobial Agents and Chemotherapy, 63(1). https://doi.org/10.1128/AAC.01110-18Jahan, M. I., Rahaman, M. M., Hossain, M. A., & Sultana, M. (2019). Occurrence of intI1- associated VIM-5 carbapenemase and co-existence of all four classes of βlactamase in carbapenem-resistant clinical Pseudomonas aeruginosa DMC-27b. Journal of Antimicrobial Chemotherapy, dkz426. https://doi.org/10.1093/jac/dkz426Jenuth, J. P. (1999). The NCBI. En S. Misener & S. A. Krawetz (Eds.), Bioinformatics Methods and Protocols (pp. 301-312). Humana Press. https://doi.org/10.1385/1- 59259-192-2:301Jeukens, J., Freschi, L., Kukavica-Ibrulj, I., Emond-Rheault, J.-G., Tucker, N. P., & Levesque, R. C. (2019). Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa: Predicting antibiotic resistance in Pseudomonas. Annals of the New York Academy of Sciences, 1435(1), 5-17. https://doi.org/10.1111/nyas.13358Jia, B., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P., Tsang, K. K., Lago, B. A., Dave, B. M., Pereira, S., Sharma, A. N., Doshi, S., Courtot, M., Lo, R., Williams, L. E., Frye, J. G., Elsayegh, T., Sardar, D., Westman, E. L., Pawlowski, A. C., … McArthur, A. G. (2017). CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research, 45(D1), D566-D573. https://doi.org/10.1093/nar/gkw1004Jiménez Pearson, M. A., Galas, M., Corso, A., Hormazábal, J. C., Duarte Valderrama, C., Salgado Marcano, N., Ramón-Pardo, P., & Melano, R. G. (2019). Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Revista Panamericana de Salud Pública, 43. https://doi.org/10.26633/RPSP.2019.65Kankainen, M., Ojala, T., & Holm, L. (2012). BLANNOTATOR: Enhanced homology-based function prediction of bacterial proteins. BMC Bioinformatics, 13(1), 33. https://doi.org/10.1186/1471-2105-13-33Kester, J. C., & Fortune, S. M. (2014). Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 49(2), 91-101. https://doi.org/10.3109/10409238.2013.869543Khaledi, A., Weimann, A., Schniederjans, M., Asgari, E., Kuo, T.-H., Oliver, A., Cabot, G., Kola, A., Gastmeier, P., Hogardt, M., Jonas, D., Mofrad, M. R. K., Bremges, A., McHardy, A. C., & Häussler, S. (2019). Fighting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. BioRxiv, 643676. https://doi.org/10.1101/643676Khurshid, M., Rasool, M. H., Siddique, M. H., Azeem, F., Naeem, M., Sohail, M., Sarfraz, M., Saqalein, M., Taj, Z., Nisar, M. A., Qamar, M. U., & Shahzad, A. (2019). Molecular mechanisms of antibiotic co-resistance among carbapenem resistant Acinetobacter baumannii. The Journal of Infection in Developing Countries, 13(10), 899-905. https://doi.org/10.3855/jidc.11410Kim, J., Greenberg, D. E., Pifer, R., Jiang, S., Xiao, G., Shelburne, S. A., Koh, A., Xie, Y., & Zhan, X. (2020). VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLOS Computational Biology, 16(1), e1007511. https://doi.org/10.1371/journal.pcbi.1007511Köser, C. U., Ellington, M. J., Cartwright, E. J. P., Gillespie, S. H., Brown, N. M., Farrington, M., Holden, M. T. G., Dougan, G., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2012). Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLOS Pathogens, 8(8), e1002824. https://doi.org/10.1371/journal.ppat.1002824Labreche, M. J., Graber, C. J., & Nguyen, H. M. (2015). Recent Updates on the Role of Pharmacokinetics-pharmacodynamics in Antimicrobial Susceptibility Testing as Applied to Clinical Practice. Clinical Infectious Diseases, 61(9), 1446-1452. https://doi.org/10.1093/cid/civ498Ladner, J. T. (2019). Precision epidemiology for infectious disease control. Nature Medicine, 25, 6.Lee, C.-R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C.-J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00055Li, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research, 36(1), 22-32. https://doi.org/10.1002/jor.23656Li, Y., Metcalf, B. J., Chochua, S., Li, Z., Gertz, R. E., Walker, H., Hawkins, P. A., Tran, T., McGee, L., Beall, B. W., & on behalf of the Active Bacterial Core surveillance team. (2017). Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences. BMC Genomics, 18(1), 621. https://doi.org/10.1186/s12864-017-4017- 7Lin, M.-F., Lin, Y.-Y., Tu, C.-C., & Lan, C.-Y. (2017). Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. Journal of Microbiology, Immunology and Infection, 50(2), 224-231. https://doi.org/10.1016/j.jmii.2015.04.004Lopez, P. (2019, noviembre 7). Problema grave, la resistencia bacteriana a los antibióticos. Gaceta UNAM. https://www.gaceta.unam.mx/problema-grave-la-resistenciabacteriana-a-los-antibioticos/Maasdorp, S., Potgieter, S., Glover, E., & Joubert, G. (2021). Treatment outcomes of Acinetobacter baumannii-associated pneumonia and/or bacteraemia at the intensive care unit of Universitas Academic Hospital, Bloemfontein, South Africa. African Journal of Thoracic and Critical Care Medicine, 27(1), 14. https://doi.org/10.7196/AJTCCM.2021.v27i1.122Macesic, N., Polubriaginof, F., & Tatonetti, N. P. (2017b). Machine learning: Novel bioinformatics approaches for combating antimicrobial resistance. Current Opinion in Infectious Diseases, 30(6), 511. https://doi.org/10.1097/QCO.0000000000000406Macesic, N., Walk, O. J. B. D., Pe’er, I., Tatonetti, N. P., Peleg, A. Y., & Uhlemann, A.-C. (2020). Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. MSystems, 5(3). https://doi.org/10.1128/mSystems.00656-19Maglogiannis, I. G. (Ed.). (2007). Emerging artificial intelligence applications in computer engineering: Real word AI systems with applications in eHealth, HCI, information retrieval and pervasive technologies. IOS Press.Maguire, F., Rehman, M. A., Carrillo, C., Diarra, M. S., & Beiko, R. G. (2019). Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning. MSystems, 4(4). https://doi.org/10.1128/mSystems.00211-19Mailman, M. D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Bagoutdinov, R., Hao, L., Kiang, A., Paschall, J., Phan, L., Popova, N., Pretel, S., Ziyabari, L., Shao, Y., Wang, Z. Y., Sirotkin, K., Ward, M., Kholodov, M., Zbicz, K., … Sherry, S. T. (2007). The NCBI dbGaP database of genotypes and phenotypes. Nature genetics, 39(10), 1181- 1186. https://doi.org/10.1038/ng1007-1181Marchand, M., Shawe-Taylor, J., Brodley, C. E., & Danyluk, A. (2003). The Set Covering Machine. Journal of Machine Learning Research, 3(4/5), 723-746. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=a9h&AN=12320303&lang=es&site=eds-liveMartínez-Agüero, S., Mora-Jiménez, I., Lérida-García, J., Álvarez-Rodríguez, J., & Soguero-Ruiz, C. (2019). Machine Learning Techniques to Identify Antimicrobial Resistance in the Intensive Care Unit. Entropy, 21(6), 603. https://doi.org/10.3390/e21060603Mentasti, M., Prime, K., Sands, K., Khan, S., & Wootton, M. (2020). Rapid detection of OXA-23-like, OXA-24-like and OXA-58-like carbapenemases from Acinetobacter species by real-time PCR. Journal of Hospital Infection. https://doi.org/10.1016/j.jhin.2020.06.015Mobasseri, P., Azimi, L., Salehi, M., Hosseini, F., & Fallah, F. (2018). Multi-drug Resistance Profiles and Expression of AdeIJK and AbeM in Acinetobacter baumannii Collected from Humans by Real-time PCR. Journal of Medical Bacteriology, 7(1-2), 50-56. http://jmb.tums.ac.ir/index.php/jmb/article/view/383Moniri, R., Farahani, R. K., Shajari, G., Shirazi, MH. N., & Ghasemi, A. (2010). Molecular Epidemiology of Aminoglycosides Resistance in Acinetobacter Spp. With Emergence of Multidrug-Resistant Strains. Iranian Journal of Public Health, 39(2), 63-68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481761/Moradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., & Parts, L. (2018). Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLOS Computational Biology, 14(12), e1006258. https://doi.org/10.1371/journal.pcbi.1006258Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and reemerging infectious diseases. Nature, 430(6996), 242-249. https://doi.org/10.1038/nature02759Munck, C., Gumpert, H. K., Wallin, A. I. N., Wang, H. H., & Sommer, M. O. A. (2014). Prediction of resistance development against drug combinations by collateral responses to component drugs. Science Translational Medicine, 6(262), 262ra156- 262ra156. https://doi.org/10.1126/scitranslmed.3009940Múnera, J. M. V., Villamil, G. A. R., & Quiceno, J. N. J. (2014). Acinetobacter baumannii: Importancia clínica, mecanismos de resistencia y diagnóstico. CES Medicina, 28(2), 233-246. http://revistas.ces.edu.co/index.php/medicina/article/view/2857Ngiam, K. Y., & Khor, I. W. (2019). Big data and machine learning algorithms for healthcare delivery. The Lancet Oncology, 20(5), e262-e273. https://doi.org/10.1016/S1470-2045(19)30149-4Nguyen, M., Brettin, T., Long, S. W., Musser, J. M., Olsen, R. J., Olson, R., Shukla, M., Stevens, R. L., Xia, F., Yoo, H., & Davis, J. J. (2018). Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Scientific Reports, 8(1), 1-11. https://doi.org/10.1038/s41598-017-18972-wNguyen, M., Long, S. W., McDermott, P. F., Olsen, R. J., Olson, R., Stevens, R. L., Tyson, G. H., Zhao, S., & Davis, J. J. (2018). Using Machine Learning To Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal Salmonella. Journal of Clinical Microbiology, 57(2), e01260-18, /jcm/57/2/JCM.01260-18.atom. https://doi.org/10.1128/JCM.01260-18Nigro, S. J., & Hall, R. M. (2018). Does the intrinsic oxaAb (blaOXA-51-like) gene of Acinetobacter baumannii confer resistance to carbapenems when activated by ISAba1? Journal of Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dky334Nowak, P., Paluchowska, P., & Budak, A. (2014). Co-occurrence of carbapenem and aminoglycoside resistance genes among multidrug-resistant clinical isolates of Acinetobacter baumannii from Cracow, Poland. Medical Science Monitor Basic Research, 20, 9-14. https://doi.org/10.12659/MSMBR.889811Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375(13), 1216- 1219. https://doi.org/10.1056/NEJMp1606181Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., & Aittokallio, T. (2014). Regularized Machine Learning in the Genetic Prediction of Complex Traits. PLoS Genetics, 10(11), e1004754. https://doi.org/10.1371/journal.pgen.1004754Opazo, A., Sonnevend, A., Lopes, B., Hamouda, A., Ghazawi, A., Pal, T., & Amyes, S. G. B. (2012). Plasmid-encoded PER-7 -lactamase responsible for ceftazidime resistance in Acinetobacter baumannii isolated in the United Arab Emirates. Journal of Antimicrobial Chemotherapy, 67(7), 1619-1622. https://doi.org/10.1093/jac/dks087Opazo, Andrés, Domínguez, M., Bello, H., Amyes, S. G. B., & González-Rocha, G. (2012). OXA-type carbapenemases in Acinetobacter baumannii in South America. The Journal of Infection in Developing Countries, 6(04), 311-316. https://doi.org/10.3855/jidc.2310Organización Mundial de la Salud. (2011). Mejorar la prevención y el control de infecciones. https://www.who.int/world-health-day/2011/whd2011-fs5-prevcontr-es.pdf?ua=1Organización Mundial de la Salud. (2016, septiembre 21). Los líderes mundiales se comprometen en la ONU a abordar la resistencia a los antimicrobianos. https://www.who.int/es/news-room/detail/21-09-2016-at-un-global-leaders-committo-act-on-antimicrobial-resistanceOrganización Mundial de la Salud. (2018a). Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. http://apps.who.int/medicinedocs/en/m/abstract/Js23171en/Organización Mundial de la Salud. (2018b, enero 29). OMS | Datos recientes revelan los altos niveles de resistencia a los antibióticos en todo el mundo. WHO. http://www.who.int/mediacentre/news/releases/2018/antibiotic-resistancefound/es/Organización Mundial de la Salud. (2018c, febrero 5). Resistencia a los antibióticos. https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antibióticosOrganización Mundial de la Salud. (2018d, febrero 15). Resistencia a los antimicrobianos. https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-losantimicrobianosPark, S., Lee, K. M., Yoo, Y. S., Yoo, J. S., Yoo, J. I., Kim, H. S., Lee, Y. S., & Chung, G. T. (2011). Alterations of gyrA, gyrB, and parC and Activity of Efflux Pump in Fluoroquinolone-resistant Acinetobacter baumannii. Osong Public Health and Research Perspectives, 2(3), 164-170. https://doi.org/10.1016/j.phrp.2011.11.040Parquet, M. del C., Savage, K. A., Allan, D. S., Ang, M. T. C., Chen, W., Logan, S. M., & Holbein, B. E. (2019). Antibiotic-Resistant Acinetobacter baumannii Is Susceptible to the Novel Iron-Sequestering Anti-infective DIBI In Vitro and in Experimental Pneumonia in Mice. Antimicrobial Agents and Chemotherapy, 63(9), e00855-19. https://doi.org/10.1128/AAC.00855-19Pataki, B. Á., Matamoros, S., van der Putten, B. C. L., Remondini, D., Giampieri, E., AytanAktug, D., Hendriksen, R. S., Lund, O., Csabai, I., & Schultsz, C. (2019). Understanding and predicting ciprofloxacin minimum inhibitory concentration in Escherichia coli with machine learning [Preprint]. Microbiology. https://doi.org/10.1101/806760Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825-2830. http://jmlr.org/papers/v12/pedregosa11a.htmlPesesky, M. W., Hussain, T., Wallace, M., Patel, S., Andleeb, S., Burnham, C.-A. D., & Dantas, G. (2016). Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01887Potron, A., Poirel, L., & Nordmann, P. (2015). Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. International Journal of Antimicrobial Agents, 45(6), 568-585. https://doi.org/10.1016/j.ijantimicag.2015.03.001Prada Cardozo, D. A. (2018). Evaluación de los perfiles genómicos de resistencia a antibióticos de aislamientos colombianos de Acinetobacter baumannii mediante secuenciación del genoma completo [Masters, Universidad Nacional de Colombia - Sede Bogotá]. http://www.bdigital.unal.edu.co/64552/Python Software Foundation. (2021, March 1). Welcome to. Python.Org. Retrieved July 6, 2020, from https://www.python.org/Qu, K., Guo, F., Liu, X., Lin, Y., & Zou, Q. (2019). Application of Machine Learning in Microbiology. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00827Ranjbar, R., & Farahani, A. (2019). Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrobial Resistance & Infection Control, 8(1), 172. https://doi.org/10.1186/s13756-019-0612-5Raschka, S. (2015). Python Machine Learning (Vol. 1). Packt Publishing Ltd. Ríos, R., Mattar, S., & González, M. (2011). Bibliometric analysis of publications on infectious diseases in Colombia, 2000-2009. Revista de Salud Pública, 13(2), 298- 307. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0124- 00642011000200011&lng=en&nrm=iso&tlng=ptRolain, J.-M., Loucif, L., Al-Maslamani, M., Elmagboul, E., Al-Ansari, N., Taj-Aldeen, S., Shaukat, A., Ahmedullah, H., & Hamed, M. (2016). Emergence of multidrugresistant Acinetobacter baumannii producing OXA-23 Carbapenemase in Qatar. New Microbes and New Infections, 11, 47-51. https://doi.org/10.1016/j.nmni.2016.02.006Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering, Design and Selection, 12(2), 85-94. https://doi.org/10.1093/protein/12.2.85Sader, H. S., Jones, R. N., Gales, A. C., Winokur, P., Kugler, K. C., Pfaller, M. A., & Doern, G. V. (1998). Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: Analysis of results from the SENTRY Antimicrobial Surveillance Program (1997). Diagnostic Microbiology and Infectious Disease, 32(4), 289-301. https://doi.org/10.1016/S0732-8893(98)00124-2Salih, T. S., & Shafeek, R. R. (2019). In silico Detection of Acquired Antimicrobial Resistance Genes in 110 Complete Genome Sequences of Acinetobacter baumannii. 12(5), 6.Samuel, S. O., Kayode, O. O., Musa, O. I., Nwigwe, G. C., Aboderin, A. O., Salami, T. a. T., & Taiwo, S. S. (2010). Nosocomial infections and the challenges of control in developing countries. African Journal of Clinical and Experimental Microbiology, 11(2). https://doi.org/10.4314/ajcem.v11i2.53916Sanchez, Cynthia: front-end and UI. Marjanovic, Zvezdana: graphic design. (2021). The makers’ choice for sysadmins, developers and desktop users. OpenSUSE. Retrieved October 15, 2020, from https://www.opensuse.org/Schrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A New Paradigm. Trends in Genetics, 34(4), 301-312. https://doi.org/10.1016/j.tig.2017.12.005Sheikhalizadeh, V., Hasani, A., Ahangarzadeh Rezaee, M., Rahmati-yamchi, M., Hasani, A., Ghotaslou, R., & Goli, H. R. (2017). Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. Journal of Infection and Chemotherapy, 23(2), 74-79. https://doi.org/10.1016/j.jiac.2016.09.012Sid Ahmed, M. A., Khan, F. A., Sultan, A. A., Söderquist, B., Ibrahim, E. B., Jass, J., & Omrani, A. S. (2020). β-lactamase-mediated resistance in MDR-Pseudomonas aeruginosa from Qatar. Antimicrobial Resistance & Infection Control, 9(1), 170. https://doi.org/10.1186/s13756-020-00838-ySu, M., Satola, S. W., & Read, T. D. (2019). Genome-Based Prediction of Bacterial Antibiotic Resistance. Journal of Clinical Microbiology, 57(3). https://doi.org/10.1128/JCM.01405-18Sultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02066Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., … Zorzet, A. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318-327. https://doi.org/10.1016/S1473- 3099(17)30753-3The Comprehensive Antibiotic Resistance Database. (2020). Resistance Gene Identifier. Retrieved October 15, 2019, from https://card.mcmaster.ca/analyze/rgiTroyano-Hernáez, P., Gutiérrez-Arroyo, A., Gómez-Gil, R., Mingorance, J., & LázaroPerona, F. (2018). Emergence of Klebsiella pneumoniae Harboring the aac(6ʹ)-Ian Amikacin Resistance Gene. Antimicrobial Agents and Chemotherapy, 62(12), e01952-18, /aac/62/12/e01952-18.atom. https://doi.org/10.1128/AAC.01952-18Van Camp, P.-J., Haslam, D. B., & Porollo, A. (2020). Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01013Warner, W. A., Kuang, S. N., Hernandez, R., Chong, M. C., Ewing, P. J., Fleischer, J., Meng, J., Chu, S., Terashita, D., English, L., Chen, W., & Xu, H. H. (2016). Molecular characterization and antimicrobial susceptibility of Acinetobacter baumannii isolates obtained from two hospital outbreaks in Los Angeles County, California, USA. BMC Infectious Diseases, 16(1), 194. https://doi.org/10.1186/s12879-016-1526-yWeinstein, M. P., & Clinical and Laboratory Standards Institute. (2019). Performance standards for antimicrobial susceptibility testing.Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175. https://doi.org/10.1038/nprot.2007.521Wilson, D. N., Hauryliuk, V., Atkinson, G. C., & O’Neill, A. J. (2020). Target protection as a key antibiotic resistance mechanism. Nature Reviews Microbiology, 18(11), 637- 648. https://doi.org/10.1038/s41579-020-0386-zXu, C., & Jackson, S. A. (2019). Machine learning and complex biological data. Genome Biology, 20(1), 76, s13059-019-1689-0. https://doi.org/10.1186/s13059-019-1689-0 Yakkala, H., Samantarrai, D., Gribskov, M., & Siddavattam, D. (2019). Comparative genome analysis reveals niche-specific genome expansion in Acinetobacter baumannii strains. PLOS ONE, 14(6), e0218204. https://doi.org/10.1371/journal.pone.0218204Yamamoto, N., Hamaguchi, S., Akeda, Y., Santanirand, P., Kerdsin, A., Seki, M., Ishii, Y., Paveenkittiporn, W., Bonomo, R. A., Oishi, K., Malathum, K., & Tomono, K. (2015). Clinical Specimen-Direct LAMP: A Useful Tool for the Surveillance of blaOXA-23- Positive Carbapenem-Resistant Acinetobacter baumannii. PLOS ONE, 10(7), e0133204. https://doi.org/10.1371/journal.pone.0133204Zankari, E., Hasman, H., Kaas, R. S., Seyfarth, A. M., Agersø, Y., Lund, O., Larsen, M. V., & Aarestrup, F. M. (2013). Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy, 68(4), 771-777. https://doi.org/10.1093/jac/dks496Zhang, C., Ju, Y., Tang, N., Li, Y., Zhang, G., Song, Y., Fang, H., Yang, L., & Feng, J. (2019). Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbz056Zhang, Yanpeng, Li, Z., He, X., Ding, F., Wu, W., Luo, Y., Fan, B., & Cao, H. (2018). Overproduction of efflux pumps caused reduced susceptibility to carbapenem under consecutive imipenem-selected stress in Acinetobacter baumannii. Infection and Drug Resistance, 11, 457-467. https://doi.org/10.2147/IDR.S151423Zheng, W., Sun, W., & Simeonov, A. (2019). Drug repurposing screens and synergistic drug-combinations for infectious diseases. British Journal of Pharmacology, 181- 191. https://doi.org/10.1111/bph.13895@10.1111/(ISSN)1476-5381.BJP-BJCPOpen-Access-CollectionPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80437/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL105363113.2021.pdf105363113.2021.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf3784827https://repositorio.unal.edu.co/bitstream/unal/80437/2/105363113.2021.pdf85e9bf315b691508559df907409bc214MD52THUMBNAIL105363113.2021.pdf.jpg105363113.2021.pdf.jpgGenerated Thumbnailimage/jpeg5124https://repositorio.unal.edu.co/bitstream/unal/80437/3/105363113.2021.pdf.jpgec17ecd9c4ab292cfedb8b18db3f055fMD53unal/80437oai:repositorio.unal.edu.co:unal/804372023-07-28 23:04:28.457Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==