Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos

Ilustraciones

Autores:
Rios Álvarez, Santiago
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86672
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86672
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
530 - Física::539 - Física moderna
Fisica cuantica
Teoria cuantica
Optica cuantica
Operador de Schrodinger
Anillos cuánticos
Anillos acoplados
Impureza donadora
Complejo molecular
Susceptibilidad eléctrica
Respuesta óptica
Efecto Aharanov-Bohm
Efecto Stark
Propiedades térmicas
Anti-crossing
Quantum rings
Donor impurity
Molecular complex
Electric susceptibility
Optical response
Aharanov-Bohm effect
Stark effect
Thermal properties
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_5a29feed0d746334eaae6c4877ef917b
oai_identifier_str oai:repositorio.unal.edu.co:unal/86672
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos
dc.title.translated.eng.fl_str_mv Study of electronic, optical and thermal properties of diamond-shaped quantum rings under the presence of external fields
title Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos
spellingShingle Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos
530 - Física
530 - Física::539 - Física moderna
Fisica cuantica
Teoria cuantica
Optica cuantica
Operador de Schrodinger
Anillos cuánticos
Anillos acoplados
Impureza donadora
Complejo molecular
Susceptibilidad eléctrica
Respuesta óptica
Efecto Aharanov-Bohm
Efecto Stark
Propiedades térmicas
Anti-crossing
Quantum rings
Donor impurity
Molecular complex
Electric susceptibility
Optical response
Aharanov-Bohm effect
Stark effect
Thermal properties
title_short Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos
title_full Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos
title_fullStr Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos
title_full_unstemmed Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos
title_sort Estudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externos
dc.creator.fl_str_mv Rios Álvarez, Santiago
dc.contributor.advisor.none.fl_str_mv Marín-Cadavid, Jairo Humberto
Suaza-Tabares, Yoder Alberto
dc.contributor.author.none.fl_str_mv Rios Álvarez, Santiago
dc.contributor.researchgroup.spa.fl_str_mv Materiales Cerámicos y Vítreos
dc.contributor.orcid.spa.fl_str_mv Ríos-Álvarez, Santiago [0000000303751961]
dc.subject.ddc.spa.fl_str_mv 530 - Física
530 - Física::539 - Física moderna
topic 530 - Física
530 - Física::539 - Física moderna
Fisica cuantica
Teoria cuantica
Optica cuantica
Operador de Schrodinger
Anillos cuánticos
Anillos acoplados
Impureza donadora
Complejo molecular
Susceptibilidad eléctrica
Respuesta óptica
Efecto Aharanov-Bohm
Efecto Stark
Propiedades térmicas
Anti-crossing
Quantum rings
Donor impurity
Molecular complex
Electric susceptibility
Optical response
Aharanov-Bohm effect
Stark effect
Thermal properties
dc.subject.lemb.none.fl_str_mv Fisica cuantica
Teoria cuantica
Optica cuantica
Operador de Schrodinger
dc.subject.proposal.spa.fl_str_mv Anillos cuánticos
Anillos acoplados
Impureza donadora
Complejo molecular
Susceptibilidad eléctrica
Respuesta óptica
Efecto Aharanov-Bohm
Efecto Stark
Propiedades térmicas
Anti-crossing
dc.subject.proposal.eng.fl_str_mv Quantum rings
Donor impurity
Molecular complex
Electric susceptibility
Optical response
Aharanov-Bohm effect
Stark effect
Thermal properties
description Ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-03-11
dc.date.accessioned.none.fl_str_mv 2024-07-31T21:32:54Z
dc.date.available.none.fl_str_mv 2024-07-31T21:32:54Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86672
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86672
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Acosta, R. E. ; Morales, A. L. ; Duque, C. M. ; Mora-Ramos, M. E. ; Duque, C. A.: Optical absorption and refractive index changes in a semiconductor quantum ring: Electric eld and donor impurity e ects. In: Phys. Status Solidi B, n °4 254 (2016), S. 744-754
Aharonov, Y. ; Bohm, D.: Signi cance of Electromagnetic Potentials in the Quantum Theory. In: Phys. Rev., n °3 115 (1959), S. 485-491
Baghdasaryan, D. A. ; Hayrapetyan, D. B. ; Kazaryan, E. M. ; Sarkisyan, H. A.: Thermal and magnetic properties of electron gas in toroidal quantum dot. In: Physica E. 101 (2018), S. 1{-4
Banyai, L. ; Koch, S. W.: Semiconductor Quantum dots. Singapore : World Scienti c, 1993
Bayer, M. ; Korkusinski, M. ; Hawrylak, P. ; Gutbrod, T. ; Michel, M. ; Forchel, A.: Optical Detection of the Aharonov-Bohm Effect on a Charged Particle in a Nanoscale Quantum Ring. In: Physical Review Letters 90 (2003), S. 18{21
Bejan, D. ; Stan, C. ; Niculescu, E. C.: Optical properties of an elliptic quantum ring: Eccentricity and electric fi eld effects. In: Optical Materials 381 (2018), S. 207-219
Bejan, D. ; Stan, C.: Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field. In: The European Physical Journal Plus 134 (2019)
Bimberg, D. ; Pohl, U. W.: Quantum dots: promises and accomplish. In: Mater. Today, n°9 14 (2006), S. 388-397
Boyacioglu, A. B. et C. B. et Chatterjee: Heat capacity and entropy of a GaAs quantum dot with Gaussian con finement. In: J. Appl. Phys. 112, 083514 (2012), S. 1-6
Boyd, R. W. ; Gaeta, A. L. ; Giese, E.: Nonlinear Optics. Wiley, 2007
Dahan, P. ; Malits, P.: E ect of symmetry on the electronic properties of arbitrarily shaped quantum rings in a magnetic field. In: Physica E. 56 (2014), S. 165-171
Duque, C. M. ; Morales, A. L. ; Mora-Ramos, M. E. ; Duque, C. A.: Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings. In: J. Lumin. 143 (2013), S. 81-88
Esaki, L. ; Tsu, R.: Superlattice and Negative Differential Conductivity in Semiconductors. (1970), S. 61-65
Fomin, V.: Physics of Quantum Dots. 2018
Fuhrer, A. ; Luscher, S. ; Ihn, T. ; Heinzel, T. ; Ensslin, K. ; Wegscheider, W. ; Bichler, M.: Energy spectra of quantum rings. In: Nature 413 (2001), S. 822-825
García, J. M. ; Medeiros-Ribeiro, G. ; Schmidt, K. ; Ngo, T. ; Feng, J. L. ; Lorke, A. ; Kotthaus, J. ; Petroff, P. M.: Intermixing and shape changes during the formation of InAs self-assembled quantum dots. In: Appl. Phys. Lett. 71 (1997), S. 2014-2016
Grynberg, G. ; Aspect, A. ; Fabre, C.: Introduction to Quantum Optics. Cambridge, 2010
Gumber, S. ; Kumar, M. ; Gambhir, M. ; Mohan, M. ; Kumar-Jha, P.: Thermal and magnetic properties of cylindrical quantum dot with asymmetric con nement. In: Can. J. Phys. 93 (2015), S. 1264{1268
Harrison, P. ; Valavanis, A.: Quantum Wells, Wires and Dots. Leeds : Wiley, 2016
Hernández, N. ; López, R. ; Álvarez, J. A. ; Marín, J.H. ; Fulla, M. R. ; Tobón, H.: Optical absorption computation of a D+2 arti cial molecule in GaAs/Ga1-xAlxAs nanometer-scale rings. In: Optik 245 (2021), S. 1-4
Huang, S. ; Niu, Z. ; Fang, Z. ; Ni, H. ; Zheng, G. ; Xia, J.: Complex quantum ring structures formed by droplet epitaxy. In: Appl. Phys. Lett., n 389(2006); S;89-91
Huang, S. ; Niu, Z. C. ; Xia, J.: Self-Assembled GaAs Quantum Rings by MBE Droplet Epitaxy. In: Solid State Phenom., n 3 121-123 (2007), S. 541-544
Jacak, L. ; W., Hawrylak A.: Quantum Dots. 2013
Jewell, J. L. ; Lee, Y. H. ; Warren, M. ; Gibbs, H. M. ; Peyghambarian, N. ; Gossard, A. C. ; Wiegmann, W.: 82 - MHz optical logic gates in a room temperature GaAs/AlGaAs multiple quantum well etalon. In: Appl. Phys. Lett, n °10 46 (1985), S. 918-920
Karabulut, I. ; Baskoutas, S.: Linear and nonlinear optical absorption coe cients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. In: J. Appl. Phys. 103, 073512 (2008), S. 1-5
Khordad, R. ; Rastegar Sedehi, H. R.: Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. In: Journal of Low Tem- perature Physics 190 (2018), S. 200-212
Kirak, M.: Magnetic and thermodynamic properties of GaAs quantum dot confi ned by parabolic-inverse square plus gaussian potential. In: Journal of Magnetism and Magnetic Materials 536 (2021), S. 1-10
Kiravittaya, S. ; Rastelli, A. ; Schmidt, O. G.: Advanced quantum dot con figurations. In: Rep. Prog. Phys. 72 (2009), S. 1-34
Lafaurie-Ponce, L. G. ; Suaza, Y. A. ; Pérez, J. A. ; Ávila, A. ; Rincón, M. ; Marín, J. H.: Thermal Properties of a Hydrogen Molecular Ion in Quantum Rings Under Electric and Intense Laser Fields. In: SSRN 1 (2021)
Lampert, M. A.: Mobile and Immobile Effective-Mass-Particle Complexes in Nonmetallic Solids. In: Phys. Rev. Lett., n 12 1 (1958), S. 450{453
Lee, C. M. ; Li, J. Q. ; Ruan, W. Y. ; Lee, R. C. H.: Optical spectra and intensities of a magnetic quantum ring bound to an off-center neutral donor D0. In: Physical Review B. 73 (2006), S. 212407- 212411
Liang, S. ; W., Xie ; Shen, H.: Optical properties in a two-dimensional quantum ring: Con nement potential and Aharonov Bohm effect. In: Optics Communications 284 (2011), S. 5818-5828
Lima, R. P. A. ; M., Amado: Electronic states of on- and off-center donors in quantum rings of nite width. In: J. Lumin., n° 5-6 128 (2021), S. 858-861
Lorke, A. ; Johannes-Luyken, R. ; Govorov, A. O. ; Kotthaus, J. P. ; Garcia, J. M. ; Petroff, P. M.: Spectroscopy of Nanoscopic Semiconductor Rings. In: Phys. Rev. Lett., n°10 84 (2000), S. 2223-2226
Lucjan, J. ; Pawel, H. ; Arkadiusz, W.: Quantum Dots. 2014
Michler, P.: Single Semiconductor Quantum Dots. 2009
Nasri, D.: On the eccentricity effects on the intraband optical transitions in two dimensional quantum rings with and without donor impurity. In: Phys. B Condens. Matter 540 (2021), S. 51-57
Patrick Tung, K. H. ; Huang, J. ; Danner, A.: Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy. In: Journal of Nanoscience and Nanotechnology 16(6) (2016), S. 6465-6469
Radhouene, M. ; Najjara, M. ; Kumar-Chhipa, M. ; Robinsond, S. ; Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. In: Journal of Applied Physics, n°103 7 (2017), S. 311-1316
Radhouene, M. ; Najjara, M. ; Kumar-Chhipa, M. ; Robinsond, S. ; Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. In: Optik 172 (2018), S. 924-929
Radu, A. ; Kirakosyan, A. A. ; Laroze, D. ; Baghramyan, H. M. ; Barseghyan, M. G.: Electronic and intraband optical properties of single quantum rings under intense laser field radiation. In: Appl. Phys. 116 (2014)
Radu, A. ; Kirakosyan, A. A. ; Laroze, D. ; Barseghyan, M. G.: The effects of the intense laser and homogeneous electric fields on the electronic and intraband optical properties of a GaAs/Ga0.7Al0.3As quantum ring. In: Semicond. Sci. Technol. 30 (2015)
Rahmatullaha ; Abbas, M. ; Ziauddin ; Qamar, S.: Spatially structured transparency and transfer of optical vortices via four-wave mixing in a quantum-dot nanostructure. In: Physical Review A. 023821 101 (2020), S. 1-8
Salazar-Santa, J. D. ; Fonnegra-García, D. ; Marín, J. H.: Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. In: Opt. Quantum Electron, n°4 53 (2021), S. 176
Salazar-Santa, J. D. ; Fonnegra-García, D. ; Marín, J. H.: Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. In: Opt. Quant. Electron. 53 (2021), S. 176
Salinas, S. R. A.: Introduction to Statistical Physics. Springer, 2007
Shuai, K. ; Yi-Ming, L ; Ting-Yun, S.: H+2 Like impurities con ned by spherical quantum dots: a candidate for charge qubits. In: Commun Theor. Phys, n°3 50 (2008), S. 767-770
Vinasco, J. A. ; Radu, A. ; Kasapoglu, E. ; Restrepo, R. L. ; Morales, A. L. ; Feddi, E. ; Mora-Ramos, M. E. ; Duque, C. A.: Effects of Geometry on the Electronic Properties of Semiconductor Elliptical Quantum Rings. In: Sci. Rep. 8 (2018), S. 13299
Wang, Z. M.: Self-Assembled Quantum Dots. 2008
Wood, T. H. ; Burrus, C. A. ; Miller, D. A. B. ; Chemia, D. S. ; Damen, T. C. ; Gossard, A. C. ; Wiegmann, W.: High - speed optical modulation with GaAs/GaAlAs quantum wells in a p-diode structure. In: Appl. Phys. Lett, n 11 44 (1984), S. 16-18
Wu, X. ; S., Gray ; Pelton, M.: Quantum-dot-induced transparency in a nanoscale plasmonic resonator. In: Optics Express, n°23 18 (2010), S. 23633-23645
Xie, W.: Effect of an electric eld on the nonlinear optical recti cation of a quantum ring. In: Phys. B Condens. Ma 443 (2014), S. 60-62
Yun, K. ; Sheng, W. ; Li-Xianli, J.: Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. In: Semicond. 36 (2015), S. 032003
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 108 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86672/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86672/2/1152214259.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/86672/3/1152214259.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0ed0ab698ad777057ec1934f7915552f
60da008384a4e31501e520d7d3c3796d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089623801954304
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Marín-Cadavid, Jairo Humbertoe39ce6b53fb59ca137ea0668b5e5f1c0Suaza-Tabares, Yoder Albertoe1ca88e77c0c039103a8170b98502ff4Rios Álvarez, Santiago0527c3ce0c4eebc94d4314995a72ed22Materiales Cerámicos y VítreosRíos-Álvarez, Santiago [0000000303751961]2024-07-31T21:32:54Z2024-07-31T21:32:54Z2022-03-11https://repositorio.unal.edu.co/handle/unal/86672Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesIn the present thesis, a exhaustive analysis of the electronic, optical and thermal properties of diamond-shaped semiconductor quantum rings with elliptical crater was performed by varying both the morphology and the external elds to which the systems are exposed. First, an electron con ned in a GaAs/Ga0.7Al0.3As quantum ring was considered, whose shape resembles quantum dots obtained by various growth techniques. The Lamé curve was used to represent the outer contour of the quantum ring in a more realistic way. Topological parameters associated with the size of the ring, the proportions of the crater and the shape of the contour were assigned. To carry out this study, a Schrödinger equation was proposed to show the interaction with external elds and geometrical con nement, being able to observe phenomena such as the Stark effect, the Aharonov-Bohm effect and the formation of anticrossing points. The Hamiltonian approach is based on the effective mass approximation, and then resorts to nite element computational methods to solve the differential equation. The analysis performed from the variations and parametric sweeps in both morphologies and external elds were taken to different situations, such as the topological analysis as an alternative to predict the properties of the quantum ring, the behavior of the nanostructure when it con nes an atomic system with a donor impurity, the manipulation of the thermal properties from the conformation of a statistical assembly with the electronic states and the optical responses of the proposed systems due to fluctuations in the probability densities caused by the topological and external eld variations.En la presente tesis se realizó un análisis exhaustivo de las propiedades electrónicas, ópticas y térmicas de anillos cuánticos semiconductores con forma de diamante y con cráter elíptico, variando tanto la morfología como los campos externos a los que se exponen los sistemas. En primer lugar, se consideró un electrón confi nado en un anillo cuántico de GaAs/Ga0.7Al0.3As, cuya forma se asemeja a los puntos cuánticos obtenidos mediante diversas técnicas de crecimiento. Se utilizó la curva de Lamé para representar el contorno externo del anillo cuántico de una forma más realista. Se asignaron parámetros topológicos asociados con el tamaño del anillo, las proporciones del cráter y la forma del contorno. Para llevar a cabo dicho estudio, se planteó una ecuación de Schrödinger que dé muestra de la interacción con campos externos y con el con namiento geométrico, pudiendo observar fenómenos como el efecto Stark, el efecto Aharonov-Bohm y la formaci on de puntos de anti-crossing. El planteamiento del Hamiltoniano se fundamenta en la aproximación de masa efectiva, para luego recurrir a métodos computacionales por elementos finitos para resolver la ecuación diferencial. El análisis realizado a partir de las variaciones y los barridos param etricos tanto en las morfologías como en los campos externos se llevaron a distintas situaciones, como el análisis topológico como alternativa para predecir las propiedades del anillo cuántico, el comportamiento de la nanoestructura cuando con na un sistema atómico con una impureza donadora, la manipulación de las propiedades térmicas a partir de la conformación de un ensamble estadístico con los estados electrónicos y las respuestas ópticas de los sistemas propuestos a raíz de las fluctuaciones en las densidades de probabilidad provocadas por las variaciones topológicas y de campos externos.MaestríaMagíster en Ciencias - FísicaSistemas de baja dimensionalidadÁrea Curricular en Física108 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín530 - Física530 - Física::539 - Física modernaFisica cuanticaTeoria cuanticaOptica cuanticaOperador de SchrodingerAnillos cuánticosAnillos acopladosImpureza donadoraComplejo molecularSusceptibilidad eléctricaRespuesta ópticaEfecto Aharanov-BohmEfecto StarkPropiedades térmicasAnti-crossingQuantum ringsDonor impurityMolecular complexElectric susceptibilityOptical responseAharanov-Bohm effectStark effectThermal propertiesEstudio de las propiedades electrónicas, ópticas y termodinámicas de anillos cuánticos en forma de diamante bajo la presencia de campos externosStudy of electronic, optical and thermal properties of diamond-shaped quantum rings under the presence of external fieldsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcosta, R. E. ; Morales, A. L. ; Duque, C. M. ; Mora-Ramos, M. E. ; Duque, C. A.: Optical absorption and refractive index changes in a semiconductor quantum ring: Electric eld and donor impurity e ects. In: Phys. Status Solidi B, n °4 254 (2016), S. 744-754Aharonov, Y. ; Bohm, D.: Signi cance of Electromagnetic Potentials in the Quantum Theory. In: Phys. Rev., n °3 115 (1959), S. 485-491Baghdasaryan, D. A. ; Hayrapetyan, D. B. ; Kazaryan, E. M. ; Sarkisyan, H. A.: Thermal and magnetic properties of electron gas in toroidal quantum dot. In: Physica E. 101 (2018), S. 1{-4Banyai, L. ; Koch, S. W.: Semiconductor Quantum dots. Singapore : World Scienti c, 1993Bayer, M. ; Korkusinski, M. ; Hawrylak, P. ; Gutbrod, T. ; Michel, M. ; Forchel, A.: Optical Detection of the Aharonov-Bohm Effect on a Charged Particle in a Nanoscale Quantum Ring. In: Physical Review Letters 90 (2003), S. 18{21Bejan, D. ; Stan, C. ; Niculescu, E. C.: Optical properties of an elliptic quantum ring: Eccentricity and electric fi eld effects. In: Optical Materials 381 (2018), S. 207-219Bejan, D. ; Stan, C.: Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field. In: The European Physical Journal Plus 134 (2019)Bimberg, D. ; Pohl, U. W.: Quantum dots: promises and accomplish. In: Mater. Today, n°9 14 (2006), S. 388-397Boyacioglu, A. B. et C. B. et Chatterjee: Heat capacity and entropy of a GaAs quantum dot with Gaussian con finement. In: J. Appl. Phys. 112, 083514 (2012), S. 1-6Boyd, R. W. ; Gaeta, A. L. ; Giese, E.: Nonlinear Optics. Wiley, 2007Dahan, P. ; Malits, P.: E ect of symmetry on the electronic properties of arbitrarily shaped quantum rings in a magnetic field. In: Physica E. 56 (2014), S. 165-171Duque, C. M. ; Morales, A. L. ; Mora-Ramos, M. E. ; Duque, C. A.: Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings. In: J. Lumin. 143 (2013), S. 81-88Esaki, L. ; Tsu, R.: Superlattice and Negative Differential Conductivity in Semiconductors. (1970), S. 61-65Fomin, V.: Physics of Quantum Dots. 2018Fuhrer, A. ; Luscher, S. ; Ihn, T. ; Heinzel, T. ; Ensslin, K. ; Wegscheider, W. ; Bichler, M.: Energy spectra of quantum rings. In: Nature 413 (2001), S. 822-825García, J. M. ; Medeiros-Ribeiro, G. ; Schmidt, K. ; Ngo, T. ; Feng, J. L. ; Lorke, A. ; Kotthaus, J. ; Petroff, P. M.: Intermixing and shape changes during the formation of InAs self-assembled quantum dots. In: Appl. Phys. Lett. 71 (1997), S. 2014-2016Grynberg, G. ; Aspect, A. ; Fabre, C.: Introduction to Quantum Optics. Cambridge, 2010Gumber, S. ; Kumar, M. ; Gambhir, M. ; Mohan, M. ; Kumar-Jha, P.: Thermal and magnetic properties of cylindrical quantum dot with asymmetric con nement. In: Can. J. Phys. 93 (2015), S. 1264{1268Harrison, P. ; Valavanis, A.: Quantum Wells, Wires and Dots. Leeds : Wiley, 2016Hernández, N. ; López, R. ; Álvarez, J. A. ; Marín, J.H. ; Fulla, M. R. ; Tobón, H.: Optical absorption computation of a D+2 arti cial molecule in GaAs/Ga1-xAlxAs nanometer-scale rings. In: Optik 245 (2021), S. 1-4Huang, S. ; Niu, Z. ; Fang, Z. ; Ni, H. ; Zheng, G. ; Xia, J.: Complex quantum ring structures formed by droplet epitaxy. In: Appl. Phys. Lett., n 389(2006); S;89-91Huang, S. ; Niu, Z. C. ; Xia, J.: Self-Assembled GaAs Quantum Rings by MBE Droplet Epitaxy. In: Solid State Phenom., n 3 121-123 (2007), S. 541-544Jacak, L. ; W., Hawrylak A.: Quantum Dots. 2013Jewell, J. L. ; Lee, Y. H. ; Warren, M. ; Gibbs, H. M. ; Peyghambarian, N. ; Gossard, A. C. ; Wiegmann, W.: 82 - MHz optical logic gates in a room temperature GaAs/AlGaAs multiple quantum well etalon. In: Appl. Phys. Lett, n °10 46 (1985), S. 918-920Karabulut, I. ; Baskoutas, S.: Linear and nonlinear optical absorption coe cients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. In: J. Appl. Phys. 103, 073512 (2008), S. 1-5Khordad, R. ; Rastegar Sedehi, H. R.: Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. In: Journal of Low Tem- perature Physics 190 (2018), S. 200-212Kirak, M.: Magnetic and thermodynamic properties of GaAs quantum dot confi ned by parabolic-inverse square plus gaussian potential. In: Journal of Magnetism and Magnetic Materials 536 (2021), S. 1-10Kiravittaya, S. ; Rastelli, A. ; Schmidt, O. G.: Advanced quantum dot con figurations. In: Rep. Prog. Phys. 72 (2009), S. 1-34Lafaurie-Ponce, L. G. ; Suaza, Y. A. ; Pérez, J. A. ; Ávila, A. ; Rincón, M. ; Marín, J. H.: Thermal Properties of a Hydrogen Molecular Ion in Quantum Rings Under Electric and Intense Laser Fields. In: SSRN 1 (2021)Lampert, M. A.: Mobile and Immobile Effective-Mass-Particle Complexes in Nonmetallic Solids. In: Phys. Rev. Lett., n 12 1 (1958), S. 450{453Lee, C. M. ; Li, J. Q. ; Ruan, W. Y. ; Lee, R. C. H.: Optical spectra and intensities of a magnetic quantum ring bound to an off-center neutral donor D0. In: Physical Review B. 73 (2006), S. 212407- 212411Liang, S. ; W., Xie ; Shen, H.: Optical properties in a two-dimensional quantum ring: Con nement potential and Aharonov Bohm effect. In: Optics Communications 284 (2011), S. 5818-5828Lima, R. P. A. ; M., Amado: Electronic states of on- and off-center donors in quantum rings of nite width. In: J. Lumin., n° 5-6 128 (2021), S. 858-861Lorke, A. ; Johannes-Luyken, R. ; Govorov, A. O. ; Kotthaus, J. P. ; Garcia, J. M. ; Petroff, P. M.: Spectroscopy of Nanoscopic Semiconductor Rings. In: Phys. Rev. Lett., n°10 84 (2000), S. 2223-2226Lucjan, J. ; Pawel, H. ; Arkadiusz, W.: Quantum Dots. 2014Michler, P.: Single Semiconductor Quantum Dots. 2009Nasri, D.: On the eccentricity effects on the intraband optical transitions in two dimensional quantum rings with and without donor impurity. In: Phys. B Condens. Matter 540 (2021), S. 51-57Patrick Tung, K. H. ; Huang, J. ; Danner, A.: Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy. In: Journal of Nanoscience and Nanotechnology 16(6) (2016), S. 6465-6469Radhouene, M. ; Najjara, M. ; Kumar-Chhipa, M. ; Robinsond, S. ; Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. In: Journal of Applied Physics, n°103 7 (2017), S. 311-1316Radhouene, M. ; Najjara, M. ; Kumar-Chhipa, M. ; Robinsond, S. ; Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. In: Optik 172 (2018), S. 924-929Radu, A. ; Kirakosyan, A. A. ; Laroze, D. ; Baghramyan, H. M. ; Barseghyan, M. G.: Electronic and intraband optical properties of single quantum rings under intense laser field radiation. In: Appl. Phys. 116 (2014)Radu, A. ; Kirakosyan, A. A. ; Laroze, D. ; Barseghyan, M. G.: The effects of the intense laser and homogeneous electric fields on the electronic and intraband optical properties of a GaAs/Ga0.7Al0.3As quantum ring. In: Semicond. Sci. Technol. 30 (2015)Rahmatullaha ; Abbas, M. ; Ziauddin ; Qamar, S.: Spatially structured transparency and transfer of optical vortices via four-wave mixing in a quantum-dot nanostructure. In: Physical Review A. 023821 101 (2020), S. 1-8Salazar-Santa, J. D. ; Fonnegra-García, D. ; Marín, J. H.: Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. In: Opt. Quantum Electron, n°4 53 (2021), S. 176Salazar-Santa, J. D. ; Fonnegra-García, D. ; Marín, J. H.: Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. In: Opt. Quant. Electron. 53 (2021), S. 176Salinas, S. R. A.: Introduction to Statistical Physics. Springer, 2007Shuai, K. ; Yi-Ming, L ; Ting-Yun, S.: H+2 Like impurities con ned by spherical quantum dots: a candidate for charge qubits. In: Commun Theor. Phys, n°3 50 (2008), S. 767-770Vinasco, J. A. ; Radu, A. ; Kasapoglu, E. ; Restrepo, R. L. ; Morales, A. L. ; Feddi, E. ; Mora-Ramos, M. E. ; Duque, C. A.: Effects of Geometry on the Electronic Properties of Semiconductor Elliptical Quantum Rings. In: Sci. Rep. 8 (2018), S. 13299Wang, Z. M.: Self-Assembled Quantum Dots. 2008Wood, T. H. ; Burrus, C. A. ; Miller, D. A. B. ; Chemia, D. S. ; Damen, T. C. ; Gossard, A. C. ; Wiegmann, W.: High - speed optical modulation with GaAs/GaAlAs quantum wells in a p-diode structure. In: Appl. Phys. Lett, n 11 44 (1984), S. 16-18Wu, X. ; S., Gray ; Pelton, M.: Quantum-dot-induced transparency in a nanoscale plasmonic resonator. In: Optics Express, n°23 18 (2010), S. 23633-23645Xie, W.: Effect of an electric eld on the nonlinear optical recti cation of a quantum ring. In: Phys. B Condens. Ma 443 (2014), S. 60-62Yun, K. ; Sheng, W. ; Li-Xianli, J.: Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. In: Semicond. 36 (2015), S. 032003EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86672/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152214259.2023.pdf1152214259.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf48580298https://repositorio.unal.edu.co/bitstream/unal/86672/2/1152214259.2023.pdf0ed0ab698ad777057ec1934f7915552fMD52THUMBNAIL1152214259.2023.pdf.jpg1152214259.2023.pdf.jpgGenerated Thumbnailimage/jpeg5089https://repositorio.unal.edu.co/bitstream/unal/86672/3/1152214259.2023.pdf.jpg60da008384a4e31501e520d7d3c3796dMD53unal/86672oai:repositorio.unal.edu.co:unal/866722024-07-31 23:04:36.105Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=