Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia
ilustraciones, diagramas
- Autores:
-
Osorio Certuche, Nicole
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84264
- Palabra clave:
- Infección latente
Latent Infection
Pseudomonas aeruginosa
Factores de virulencia
Infecciones Asociadas a la Atención en Salud
Secuencio-tipos
Virulence factors
Healthcare-associated infections
Sequence-types
WGS
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_597d2a4ffdf457e7af85f4de80f412e4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84264 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia |
dc.title.translated.eng.fl_str_mv |
Genomic characterization of virulence factors of clinical isolates of Pseudomonas aeruginosa based on WGS from a hospital in Bogotá, Colombia |
title |
Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia |
spellingShingle |
Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia Infección latente Latent Infection Pseudomonas aeruginosa Factores de virulencia Infecciones Asociadas a la Atención en Salud Secuencio-tipos Virulence factors Healthcare-associated infections Sequence-types WGS |
title_short |
Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia |
title_full |
Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia |
title_fullStr |
Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia |
title_full_unstemmed |
Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia |
title_sort |
Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia |
dc.creator.fl_str_mv |
Osorio Certuche, Nicole |
dc.contributor.advisor.none.fl_str_mv |
Barreto Hernández, Emiliano Leal Castro, Aura Lucía |
dc.contributor.author.none.fl_str_mv |
Osorio Certuche, Nicole |
dc.contributor.researchgroup.spa.fl_str_mv |
Epidemiologia molecular Bioinformática Enfermedades infecciosas |
dc.subject.decs.spa.fl_str_mv |
Infección latente |
topic |
Infección latente Latent Infection Pseudomonas aeruginosa Factores de virulencia Infecciones Asociadas a la Atención en Salud Secuencio-tipos Virulence factors Healthcare-associated infections Sequence-types WGS |
dc.subject.decs.eng.fl_str_mv |
Latent Infection |
dc.subject.proposal.spa.fl_str_mv |
Pseudomonas aeruginosa Factores de virulencia Infecciones Asociadas a la Atención en Salud Secuencio-tipos |
dc.subject.proposal.eng.fl_str_mv |
Virulence factors Healthcare-associated infections Sequence-types WGS |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-25T16:58:01Z |
dc.date.available.none.fl_str_mv |
2023-07-25T16:58:01Z |
dc.date.issued.none.fl_str_mv |
2023-01-30 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84264 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84264 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aslani, M. M., Nikbin, V. S., Sharafi, Z., Hashemipour, M., Shahcheraghi, F., & Ebrahimipour, G. H. (2012). Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iranian Journal of Microbiology, 4(3), 118–123. Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350–359. https://doi.org/10.1016/j.drudis.2018.07.003 Babour, I. A., Mohamed, M. B., & Shehabi, A. A. (2020). Molecular characterization of Pseudomonas aeruginosa isolates from various clinical specimens in Khartoum/Sudan: Antimicrobial resistance and virulence genes. The International Arabic Journal of Antimicrobial Agents, 10(1), 1–8. https://doi.org/10.3823/840 Babraham-Bioinformatics. (2020). FastQC. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 Barahona, N., Rodriguez, M., & De Moya, Y. (2019). Importancia De La Vigilancia Epidemiológica En El Control De Las Infecciones Asociadas a La Atención En Salud. Biociencias, 14(1), 79–96. https://doi.org/10.18041/2390-0512/biociencias.1.5440 Barrio-tofiño, E., López-causapé, C., & Oliver, A. (2020). association with horizontally-acquired β -lactamases : 2020 update. 56. https://doi.org/10.1016/j.ijantimicag.2020.106196 Bazghandi, S. A., Arzanlou, M., Peeridogaheh, H., Vaez, H., Sahebkar, A., & Khademi, F. (2021). Prevalence of virulence genes and drug resistance profiles of pseudomonas aeruginosa isolated from clinical specimens. Jundishapur Journal of Microbiology, 14(8). https://doi.org/10.5812/jjm.118452 Beceiro, A., Tomás, M., & Bou, G. (2013). Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clinical Microbiology Reviews, 26(2), 185–230. https://doi.org/10.1128/CMR.00059-12 Behzadi, P., Baráth, Z., & Gajdács, M. (2021). It’s not easy being green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant pseudomonas aeruginosa. Antibiotics, 10(1), 1–29. https://doi.org/10.3390/antibiotics10010042 Bertelli, C., & Greub, G. (2013). Rapid bacterial genome sequencing: Methods and applications in clinical microbiology. Clinical Microbiology and Infection, 19(9), 803–813. https://doi.org/10.1111/1469-0691.12217 Bhatta, D. R., Hamal, D., Shrestha, R., HS, S., Joshi, P., Nayak, N., & Gokhale, S. (2019). Burden of multidrug resistant respiratory pathogens in intensive care units of tertiary care hospital. Asian Journal of Medical Sciences, 10(2), 14–19. https://doi.org/10.3126/ajms.v10i2.21098 Bioptic. (2016). Qsep 100 TM Operation Manual English V1.6 July/2016 I. Bogiel, T., Depka, D., Rzepka, M., Kwiecińska-Piróg, J., & Gospodarek-Komkowska, E. (2021). Prevalence of the genes associated with biofilm and toxins synthesis amongst the pseudomonas aeruginosa clinical strains. Antibiotics, 10(3), 1–14. https://doi.org/10.3390/antibiotics10030241 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Genome analysis Trimmomatic : a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 Bravo Ojeda, J. S. (2020). Descripción de tipos de carbapenemasas expresadas en Klebsiella sp. y Pseudomonas aeruginosa en hospitales de tercer nivel de la ciudad de Bogotá, estudio descriptivo. Brindhadevi, K., LewisOscar, F., Mylonakis, E., Shanmugam, S., Verma, T. N., & Pugazhendhi, A. (2020). Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochemistry, 96(September 2019), 49–57. https://doi.org/10.1016/j.procbio.2020.06.001 Chadha, J., Harjai, K., & Chhibber, S. (2021). Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environmental Microbiology, 00. https://doi.org/10.1111/1462-2920.15784 Chávez-Jacobo, V. M. (2020). La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP Revista Especializada En Ciencias Químico-Biológicas, 23, 1–11. https://doi.org/10.22201/fesz.23958723e.2020.0.202 Chen, L., Zou, Y., She, P., & Wu, Y. (2015). Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiological Research, 172, 19–25. https://doi.org/10.1016/j.micres.2015.01.004 Clavijo, D. C. (2018). Reconstrucción, modelamiento y simulación de la red metabólica y de quorum-sensing, implicadas en la regulación de un fenotipo específico en Pseudomonas aeruginosa. Correa, Yan, R., Furlaneto, I. P., Henrique, A., Maciel, P., Pires, J., Quaresma, G., Costa, E., Matos, O. De, Cleyton, M., Le, G., Falc, N., Nepomuceno, L., & Costa, G. (2020). High prevalence of atypical virulotype and genetically diverse background among Pseudomonas aeruginosa isolates from a referral hospital in the Brazilian Amazon. 1–21. https://doi.org/10.1371/journal.pone.0238741 Correa, A., Perenguez, M., Blanco, V. M., Rodríguez-baños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, V. (2015). Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia. 12. https://doi.org/10.1128/AAC.03926-14 de Sousa, T., Hébraud, M., Enes Dapkevicius, M. L. N., Maltez, L., Pereira, J. E., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2021). Genomic and metabolic characteristics of the pathogenicity in pseudomonas aeruginosa. In International Journal of Molecular Sciences (Vol. 22, Issue 23). MDPI. https://doi.org/10.3390/ijms222312892 Diard, M., & Hardt, W. D. (2017). Evolution of bacterial virulence. FEMS Microbiology Reviews, 41(5), 679–697. https://doi.org/10.1093/FEMSRE/FUX023 Elbourne, L., Tremblay, S., Ren, Q., Roy, P. H., & Tetu, S. G. (2010). Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7. PLoS ONE, 5(1), 1–10. https://doi.org/10.1371/journal.pone.0008842 Elmouaden, C., Laglaoui, A., Ennanei, L., Bakkali, M., & Abid, M. (2019). Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. Journal of Infection in Developing Countries, 13(10), 892–898. https://doi.org/10.3855/jidc.10675 Fragozo, L., & Villalobos, C. (2016). Pseudomona aeruginosa: ESTADO DEL ARTE. 112. García Armijos, J. A., Mesa-Cano, I. C., Ramírez-Coronel, A. A., & Segovia Clavijo, A. C. (2021). Prevention of health care-associated infections: a systematic review. Journal of American Health, 8(10). http://www.jah-journal.com/index.php/jah Genovese, C., La Fauci, V., D’Amato, S., Squeri, A., Anzalone, C., Costa, G. B., Fedele, F., & Squeri, R. (2020). Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: A review of the literature. Acta Biomedica, 91(2), 256–273. https://doi.org/10.23750/abm.v91i2.9176 Gomila, A., Carratalà, J., Eliakim-Raz, N., Shaw, E., Wiegand, I., Vallejo-Torres, L., Gorostiza, A., Vigo, J. M., Morris, S., Stoddart, M., Grier, S., Vank, C., Cuperus, N., Van den Heuvel, L., Vuong, C., Macgowan, A., Leibovici, L., Addy, I., & Pujol, M. (2018). Risk factors and prognosis of complicated urinary tract infections caused by pseudomonas aeruginosa in hospitalized patients: A retrospective multicenter cohort study. Infection and Drug Resistance, 11, 2571–2581. https://doi.org/10.2147/IDR.S185753 González-Olvera, E. M., Pérez-Morales, R., González-Zamora, A., Castroescarpulli, G., Palma-Martínez, I., & Alba-Romero, J. D. J. (2019). Antibiotic resistance, virulence factors and genotyping of pseudomonas aeruginosa in public hospitals of northeastern mexico. Journal of Infection in Developing Countries, 13(5), 374–383. https://doi.org/10.3855/jidc.10953 Guo, L. li, Li, L. mei, Li, Y., Duan, X. xiao, Liu, Y. jing, Gao, R. Y., & Zhao, Y. da. (2022). Characterization of antimicrobial resistance and virulence genes of Pseudomonas aeruginosa isolated from mink in China, 2011–2020. Microbial Pathogenesis, 162(October 2021), 105323. https://doi.org/10.1016/j.micpath.2021.105323 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086 Haghi, F., Zeighami, H., Monazami, A., Toutouchi, F., Nazaralian, S., & Naderi, G. (2018). Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microbial Pathogenesis, 115, 251–256. https://doi.org/10.1016/j.micpath.2017.12.052 Haque, M., Sartelli, M., Mckimm, J., & Abu Bakar, M. (2018). Infection and Drug Resistance Dovepress Health care-associated infections-an overview. Infection and Drug Resistance, 11(1), 2321–2333. http://dx.doi.org/10.2147/IDR.S177247 Hassuna, N. A., Mandour, S. A., & Mohamed, E. S. (2020). Virulence constitution of multi-drug-resistant pseudomonas aeruginosa in upper Egypt. Infection and Drug Resistance, 13, 587–595. https://doi.org/10.2147/IDR.S233694 Higgins, S., Heeb, S., Rampioni, G., Fletcher, M. P., Williams, P., & Cámara, M. (2018). Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Frontiers in Cellular and Infection Microbiology, 8(JUL), 1–13. https://doi.org/10.3389/fcimb.2018.00252 Horna, G., Amaro, C., Palacios, A., Guerra, H., & Ruiz, J. (2019). High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-47303-4 Horna, G., & Ruiz, J. (2021). Type 3 secretion system of Pseudomonas aeruginosa. In Microbiological Research (Vol. 246). Elsevier GmbH. https://doi.org/10.1016/j.micres.2021.126719 Illumina. (2020). Mi seq system. https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_miseq.pdf Illumina. (2022). What is the PhiX Control v3 Library and what is its function in Illumina Next Generation Sequencing. https://support.illumina.com/bulletins/2017/02/what-is-the-phix-control-v3-library-and-what-is-its-function-in-.html Instituto Nacional de Salud. (2021). Análisis del comportamiento de las infecciones asociadas a la atención en salud (IAAS). BES Boletin Epidemiologico Semanal Semana Epidemiologica 44, 4. https://hospitaltarapoto.gob.pe/web/IndicadoresAnalisisComportamiento Invitrogen. (2020). PureLink TM Genomic DNA Mini Kit. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/purelink_genomic_mini_man.pdf Invitrogen. (2022). Qubit dsDNA Assay Kit. 1–8. Jolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; referees: 2 approved]. Wellcome Open Research, 3(0), 1–20. https://doi.org/10.12688/wellcomeopenres.14826.1 Jurado-Martín, I., Sainz-Mejías, M., & McClean, S. (2021). Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences, 22(6), 1–37. https://doi.org/10.3390/ijms22063128 Kainuma, A., Momiyama, K., Kimura, T., Akiyama, K., & Inoue, K. (2018). An outbreak of fl uoroquinolone-resistant Pseudomonas aeruginosa ST357 harboring the exoU gene *. Journal of Infection and Chemotherapy, 24(8), 615–622. https://doi.org/10.1016/j.jiac.2018.03.008 Kloth, C., Schirmer, B., Munder, A., Stelzer, T., Rothschuh, J., & Seifert, R. (2018). The role of Pseudomonas aeruginosa exoy in an acute mouse lung infection model. Toxins, 10(5), 1–15. https://doi.org/10.3390/toxins10050185 Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 Liew, S. M., Rajasekaram, G., Puthucheary, S. D. A., & Chua, K. H. (2019). Antimicrobial susceptibility and virulence genes of clinical and environmental isolates of Pseudomonas aeruginosa. PeerJ, 2019(1), 1–19. https://doi.org/10.7717/peerj.6217 Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–D692. https://doi.org/10.1093/nar/gky1080 Luna de Araujo Jacome, P. regina., Rodrigues Alves, L., Borges Cabral, A., Souza Lopes, A. caratina., & Vierira Maciel, M. A. (2012). Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco,Brazil. Revista Da Sociedade Brasileira de Medicina Tropical, 45(6), 707–712. Méndez-álvarez, S., & Pérez-roth, E. (2004). La PCR múltiple en microbiología clínica. Enfermedades Infecciosas y Microbiología Clínica, 22(3), 183–192 Nain, Z., & Karim, M. M. (2021). Whole-genome sequence, functional annotation, and comparative genomics of the high biofilm-producing multidrug-resistant Pseudomonas aeruginosa MZ4A isolated from clinical waste. Gene Reports, 22(December), 100999. https://doi.org/10.1016/j.genrep.2020.100999 Newman, J. W., Floyd, R. V., & Fothergill, J. L. (2017). The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiology Letters, 364(15), 1–11. https://doi.org/10.1093/femsle/fnx124 Oxford Nanopore Technologies. (2022a). Ligation sequencing gDNA-native barcoding (SQK-LSK109 with EXP-NBD196). Oxford Nanopore Technologies. (2022b). MinION. Park, Y., & Koo, S. H. (2022). Epidemiology, Molecular Characteristics, and Virulence Factors of Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Patients with Urinary Tract Infections. Infection and Drug Resistance, 15(December 2021), 141–151. https://doi.org/10.2147/IDR.S346313 Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 36(2), 180–189. https://doi.org/10.4067/s0716-10182019000200180 Pelegrin, A. C., Palmieri, M., Mirande, C., Oliver, A., Moons, P., Goossens, H., & Van Belkum, A. (2021). Pseudomonas aeruginosa: A clinical and genomics update. FEMS Microbiology Reviews, 45(6), 1–20. https://doi.org/10.1093/femsre/fuab026 Raúl Recio, Mikel Mancheño, Esther Viedma, Jennifer Villa, María Ángeles Orellana, J. L.-T. and F. C. (2020). Predictors of Mortality in Bloodstream Infections Caused by Pseudomonas aeruginosa and Impact of Antimicrobial. August 2019, 1–13. Redfern, J., Wallace, J., Belkum, A. Van, Jaillard, M., Whittard, E., Ragupathy, R., Verran, J., Kelly, P., & Enright, M. C. (2021). Biofilm associated genotypes of multiple antibiotic resistant Pseudomonas aeruginosa. 1–16. Revelas, A. (2012). Healthcare - associated infections: A public health problem. Nigerian Medical Journal, 53(2), 59. https://doi.org/10.4103/0300-1652.103543 Reynolds, D., & Kollef, M. (2021). The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, 81(18), 2117–2131. https://doi.org/10.1007/s40265-021-01635-6 Riaño Abril, D. J. (2016). Movilización de genes de resistencia en el clon de Pseudomonas aeruginosa ST235 causante de infecciones en Colombia Rodriguez, L. X. (2021). Caracterización in silico de los genes de virulencia PhoP -PhoQ en cepas de Pseudomonas aeruginosa fenotipo multidrogo-resistente (MDR. https://doi.org/10.19163/medchemrussia2021-2021-236 Sauvage, S., & Hardouin, J. (2020). Exoproteomics for better understanding Pseudomonas aeruginosa virulence. Toxins, 12(9), 1–19. https://doi.org/10.3390/toxins12090571 Seemann, T. (2020). Snippy. https://github.com/tseemann/snippy Sharma, A. K., Dhasmana, N., Dubey, N., Kumar, N., Gangwal, A., Gupta, M., & Singh, Y. (2017). Bacterial Virulence Factors: Secreted for Survival. Indian Journal of Microbiology, 57(1), 1–10. https://doi.org/10.1007/s12088-016-0625-1 Spagnolo, A. M., Sartini, M., & Cristina, M. L. (2021). Pseudomonas aeruginosa in the healthcare facility setting. Reviews in Medical Microbiology, 32(3), 169–175. https://doi.org/10.1097/mrm.0000000000000271 Springer, T. I., Reid, T. E., Gies, S. L., & Feix, J. B. (2019). Interactions of the effector ExoU from pseudomonas aeruginosa with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes. Journal of Biological Chemistry, 294(50), 19012–19021. https://doi.org/10.1074/jbc.RA119.010278 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/BIOINFORMATICS/BTU033 Subedi, D., Vijay, A. K., Kohli, G. S., Rice, S. A., & Willcox, M. (2018). Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-34020-7 Sultan, M., Arya, R., & Kim, K. K. (2021). Roles of two-component systems in pseudomonas aeruginosa virulence. International Journal of Molecular Sciences, 22(22). https://doi.org/10.3390/ijms222212152 Tagini, F., & Greub, G. (2017). Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. European Journal of Clinical Microbiology and Infectious Diseases, 36(11), 2007–2020. https://doi.org/10.1007/s10096-017-3024-6 ThermoFisher. (2020a). NadoDrop. https://www.thermofisher.com/order/catalog/product/ND-ONE-W#/ND-ONE-W ThermoFisher. (2020b). Qubit 4 Fluorometer. https://www.thermofisher.com/co/en/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/fluorometers/qubit/qubit-fluorometer.html Thi, M. T. T., Wibowo, D., & Rehm, B. H. A. (2020). Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences, 21(22), 1–25. https://doi.org/10.3390/ijms21228671 Tickler, I. A., Carlos, J., La, G. De, Alvarado, L., Obradovich, A. E., & Tenover, F. C. (2022). Journal of Global Antimicrobial Resistance Mechanisms of carbapenemase-me diate d resistance among high-risk Pseudomonas aeruginosa lineages in Peru. Journal of Global Antimicrobial Resistance, 31, 135–140. https://doi.org/10.1016/j.jgar.2022.08.018 Treepong, P., Kos, V. N., Guyeux, C., Blanc, D. S., Bertrand, X., & Valot, B. (2018). Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clinical Microbiology and Infection, 24(3), 258–266. https://doi.org/10.1016/j.cmi.2017.06.018 Valle, R. H. (2020). resistencia bacteriana y producción de biopelículas en la ciudad de Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D . C . T . -Colombia. In Universidad de cartagena. Vives-Flórez, M., & Garnica, D. (2006). Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. International Microbiology, 9(4), 247–252. https://doi.org/10.2436/im.v9i4.9582 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/JOURNAL.PCBI.1005595 World Health Organization. (2011). Report on the burden of endemic health care-associated infection worldwide: Clean care is safer care. World Health Organization, 1–40. https://apps.who.int/iris/bitstream/handle/10665/80135/9789241501507_eng.pdf?sequence=1 World Health Organization. (2017). WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, 43(148), 348–365. Yang, J. J., Tsuei, K. S. C., & Shen, E. P. (2022). The role of Type III secretion system in the pathogenesis of Pseudomonas aeruginosa microbial keratitis. Tzu Chi Medical Journal, 34(1), 8–14. https://doi.org/10.4103/tcmj.tcmj_47_21 Yang, X., Lai, Y., Li, C., Yang, J., Jia, M., & Sheng, J. (2021). Molecular epidemiology of pseudomonas aeruginosa isolated from lower respiratory tract of icu patients. Brazilian Journal of Biology, 81(2), 351–360. https://doi.org/10.1590/1519-6984.226309 Yin, R., Kwoh, C. K., & Zheng, J. (2018). Whole genome sequencing analysis. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 176–183. https://doi.org/10.1016/B978-0-12-809633-8.20095-2 Yoon, E., & Jeong, S. H. (2021). Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front. Microbiol., 12(February). https://doi.org/10.3389/fmicb.2021.614058 Zheng, M., Sun, S., Zhou, J., & Liu, M. (2021). Virulence factors impair epithelial junctions during bacterial infection. Journal of Clinical Laboratory Analysis, 35(2), 1–6. https://doi.org/10.1002/jcla.23627 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
XI. 79 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.none.fl_str_mv |
Bogotá |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84264/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84264/2/1115086252_2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84264/3/1115086252_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 9637116c15f6f30bfdd4e0304ce692b0 9d82d1d3b9745750eb6a9fb766bcda7a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090117888868352 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barreto Hernández, Emilianob7a2cae2c08b5d6a549e173576c6c82dLeal Castro, Aura Lucíaf07a334eb72fd9cef067a37ca1553060Osorio Certuche, Nicolef5a629880b839bc70ba23eb42d243a1fEpidemiologia molecular Bioinformática Enfermedades infecciosas2023-07-25T16:58:01Z2023-07-25T16:58:01Z2023-01-30https://repositorio.unal.edu.co/handle/unal/84264Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn humanos la infección por P. aeruginosa es controlada por múltiples factores de virulencia y es una de las causas más recurrentes y graves de infecciones asociadas a la atención en salud. Por lo tanto, el objetivo general de este estudio fue caracterizar los perfiles genómicos de virulencia en aislados clínicos de Pseudomonas aeruginosa provenientes de un hospital universitario de Bogotá- Colombia, utilizando la tecnología de secuenciación de genoma completo (WGS). Este estudio prospectivo se realizó durante los años 2019 y 2021, en donde se secuenciaron 54 aislamientos provenientes de 37 pacientes de los servicios de UCI, hospitalización y Unidad quirúrgica, utilizando las plataformas illumina y Oxford Nanopore. En los genomas se encontraron un total de 246 genes de virulencia, encontrando la presencia de genes de gran importancia en la virulencia de esta bacteria, como el gen pilA que se detectó en el 48,1% de los aislamientos y el gen algD en el 100%. Para las toxinas la prevalencia fue para exoU de (16,6%), exoT (92,5%), exoS (79,6%) y exoY (88,8%). Adicionalmente se encontró la presencia de 16 secuencio-tipos (ST) ya reportados y se encontraron 13 ST nuevos. En conclusión, el uso de tecnologías como WGS permitió determinar el perfil de virulencia de aislados clínicos de P. aeruginosa, logrando un acercamiento global a los perfiles de virulencia de los aislamientos clínicos de esta bacteria en el país, siendo el primer reporte de la prevalencia de más de 200 genes de virulencia en Colombia para P. aeruginosa. (Texto tomado de la fuente)In humans, P. aeruginosa infection is controlled by multiple virulence factors and is one of the most recurrent and serious causes of healthcare-associated infections. The aim of this study was to characterize the virulence genomic profiles in clinical isolates of Pseudomonas aeruginosa from a hospital in Bogotá-Colombia, using whole genome sequencing (WGS) technology. A prospective study was carried out during the years 2019 and 2021, where 54 isolates from 37 patients from both the ICU and hospitalization services, and operating rooms were sequenced, using the illumina and Oxford Nanopore platforms. A total of 246 virulence genes were found in the genomes, finding the presence of genes of great importance in the virulence of this bacterium, such as the pilA gene that was detected in 48.1% of the isolates and the algD gene that found in the 100% of them. For toxins, the prevalence was for exoU de (16.6%), exoT (92.5%), exoS (79.6%) and exoY (88.8%). Additionally, the presence of 16 sequence-types (ST) already reported and 13 new ST were found. In conclusion, the use of technologies such as WGS made it possible to determine the virulence profile of clinical isolates of P. aeruginosa, achieving a global approach to the virulence profiles of the clinical isolates of this bacterium in the country, being the first report of the prevalence of more than 200 virulence genes in Colombia for P. aeruginosa.MaestríaMagíster en Ciencias - MicrobiologíaBiología molecular de agentes infecciososXI. 79 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede BogotáCaracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, ColombiaGenomic characterization of virulence factors of clinical isolates of Pseudomonas aeruginosa based on WGS from a hospital in Bogotá, ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotáColombiaAslani, M. M., Nikbin, V. S., Sharafi, Z., Hashemipour, M., Shahcheraghi, F., & Ebrahimipour, G. H. (2012). Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iranian Journal of Microbiology, 4(3), 118–123.Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350–359. https://doi.org/10.1016/j.drudis.2018.07.003Babour, I. A., Mohamed, M. B., & Shehabi, A. A. (2020). Molecular characterization of Pseudomonas aeruginosa isolates from various clinical specimens in Khartoum/Sudan: Antimicrobial resistance and virulence genes. The International Arabic Journal of Antimicrobial Agents, 10(1), 1–8. https://doi.org/10.3823/840Babraham-Bioinformatics. (2020). FastQC. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021Barahona, N., Rodriguez, M., & De Moya, Y. (2019). Importancia De La Vigilancia Epidemiológica En El Control De Las Infecciones Asociadas a La Atención En Salud. Biociencias, 14(1), 79–96. https://doi.org/10.18041/2390-0512/biociencias.1.5440Barrio-tofiño, E., López-causapé, C., & Oliver, A. (2020). association with horizontally-acquired β -lactamases : 2020 update. 56. https://doi.org/10.1016/j.ijantimicag.2020.106196Bazghandi, S. A., Arzanlou, M., Peeridogaheh, H., Vaez, H., Sahebkar, A., & Khademi, F. (2021). Prevalence of virulence genes and drug resistance profiles of pseudomonas aeruginosa isolated from clinical specimens. Jundishapur Journal of Microbiology, 14(8). https://doi.org/10.5812/jjm.118452Beceiro, A., Tomás, M., & Bou, G. (2013). Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clinical Microbiology Reviews, 26(2), 185–230. https://doi.org/10.1128/CMR.00059-12Behzadi, P., Baráth, Z., & Gajdács, M. (2021). It’s not easy being green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant pseudomonas aeruginosa. Antibiotics, 10(1), 1–29. https://doi.org/10.3390/antibiotics10010042Bertelli, C., & Greub, G. (2013). Rapid bacterial genome sequencing: Methods and applications in clinical microbiology. Clinical Microbiology and Infection, 19(9), 803–813. https://doi.org/10.1111/1469-0691.12217Bhatta, D. R., Hamal, D., Shrestha, R., HS, S., Joshi, P., Nayak, N., & Gokhale, S. (2019). Burden of multidrug resistant respiratory pathogens in intensive care units of tertiary care hospital. Asian Journal of Medical Sciences, 10(2), 14–19. https://doi.org/10.3126/ajms.v10i2.21098Bioptic. (2016). Qsep 100 TM Operation Manual English V1.6 July/2016 I.Bogiel, T., Depka, D., Rzepka, M., Kwiecińska-Piróg, J., & Gospodarek-Komkowska, E. (2021). Prevalence of the genes associated with biofilm and toxins synthesis amongst the pseudomonas aeruginosa clinical strains. Antibiotics, 10(3), 1–14. https://doi.org/10.3390/antibiotics10030241Bolger, A. M., Lohse, M., & Usadel, B. (2014). Genome analysis Trimmomatic : a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170Bravo Ojeda, J. S. (2020). Descripción de tipos de carbapenemasas expresadas en Klebsiella sp. y Pseudomonas aeruginosa en hospitales de tercer nivel de la ciudad de Bogotá, estudio descriptivo.Brindhadevi, K., LewisOscar, F., Mylonakis, E., Shanmugam, S., Verma, T. N., & Pugazhendhi, A. (2020). Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochemistry, 96(September 2019), 49–57. https://doi.org/10.1016/j.procbio.2020.06.001Chadha, J., Harjai, K., & Chhibber, S. (2021). Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environmental Microbiology, 00. https://doi.org/10.1111/1462-2920.15784Chávez-Jacobo, V. M. (2020). La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP Revista Especializada En Ciencias Químico-Biológicas, 23, 1–11. https://doi.org/10.22201/fesz.23958723e.2020.0.202Chen, L., Zou, Y., She, P., & Wu, Y. (2015). Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiological Research, 172, 19–25. https://doi.org/10.1016/j.micres.2015.01.004Clavijo, D. C. (2018). Reconstrucción, modelamiento y simulación de la red metabólica y de quorum-sensing, implicadas en la regulación de un fenotipo específico en Pseudomonas aeruginosa.Correa, Yan, R., Furlaneto, I. P., Henrique, A., Maciel, P., Pires, J., Quaresma, G., Costa, E., Matos, O. De, Cleyton, M., Le, G., Falc, N., Nepomuceno, L., & Costa, G. (2020). High prevalence of atypical virulotype and genetically diverse background among Pseudomonas aeruginosa isolates from a referral hospital in the Brazilian Amazon. 1–21. https://doi.org/10.1371/journal.pone.0238741Correa, A., Perenguez, M., Blanco, V. M., Rodríguez-baños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, V. (2015). Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia. 12. https://doi.org/10.1128/AAC.03926-14de Sousa, T., Hébraud, M., Enes Dapkevicius, M. L. N., Maltez, L., Pereira, J. E., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2021). Genomic and metabolic characteristics of the pathogenicity in pseudomonas aeruginosa. In International Journal of Molecular Sciences (Vol. 22, Issue 23). MDPI. https://doi.org/10.3390/ijms222312892Diard, M., & Hardt, W. D. (2017). Evolution of bacterial virulence. FEMS Microbiology Reviews, 41(5), 679–697. https://doi.org/10.1093/FEMSRE/FUX023Elbourne, L., Tremblay, S., Ren, Q., Roy, P. H., & Tetu, S. G. (2010). Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7. PLoS ONE, 5(1), 1–10. https://doi.org/10.1371/journal.pone.0008842Elmouaden, C., Laglaoui, A., Ennanei, L., Bakkali, M., & Abid, M. (2019). Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. Journal of Infection in Developing Countries, 13(10), 892–898. https://doi.org/10.3855/jidc.10675Fragozo, L., & Villalobos, C. (2016). Pseudomona aeruginosa: ESTADO DEL ARTE. 112.García Armijos, J. A., Mesa-Cano, I. C., Ramírez-Coronel, A. A., & Segovia Clavijo, A. C. (2021). Prevention of health care-associated infections: a systematic review. Journal of American Health, 8(10). http://www.jah-journal.com/index.php/jahGenovese, C., La Fauci, V., D’Amato, S., Squeri, A., Anzalone, C., Costa, G. B., Fedele, F., & Squeri, R. (2020). Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: A review of the literature. Acta Biomedica, 91(2), 256–273. https://doi.org/10.23750/abm.v91i2.9176Gomila, A., Carratalà, J., Eliakim-Raz, N., Shaw, E., Wiegand, I., Vallejo-Torres, L., Gorostiza, A., Vigo, J. M., Morris, S., Stoddart, M., Grier, S., Vank, C., Cuperus, N., Van den Heuvel, L., Vuong, C., Macgowan, A., Leibovici, L., Addy, I., & Pujol, M. (2018). Risk factors and prognosis of complicated urinary tract infections caused by pseudomonas aeruginosa in hospitalized patients: A retrospective multicenter cohort study. Infection and Drug Resistance, 11, 2571–2581. https://doi.org/10.2147/IDR.S185753González-Olvera, E. M., Pérez-Morales, R., González-Zamora, A., Castroescarpulli, G., Palma-Martínez, I., & Alba-Romero, J. D. J. (2019). Antibiotic resistance, virulence factors and genotyping of pseudomonas aeruginosa in public hospitals of northeastern mexico. Journal of Infection in Developing Countries, 13(5), 374–383. https://doi.org/10.3855/jidc.10953Guo, L. li, Li, L. mei, Li, Y., Duan, X. xiao, Liu, Y. jing, Gao, R. Y., & Zhao, Y. da. (2022). Characterization of antimicrobial resistance and virulence genes of Pseudomonas aeruginosa isolated from mink in China, 2011–2020. Microbial Pathogenesis, 162(October 2021), 105323. https://doi.org/10.1016/j.micpath.2021.105323Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086Haghi, F., Zeighami, H., Monazami, A., Toutouchi, F., Nazaralian, S., & Naderi, G. (2018). Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microbial Pathogenesis, 115, 251–256. https://doi.org/10.1016/j.micpath.2017.12.052Haque, M., Sartelli, M., Mckimm, J., & Abu Bakar, M. (2018). Infection and Drug Resistance Dovepress Health care-associated infections-an overview. Infection and Drug Resistance, 11(1), 2321–2333. http://dx.doi.org/10.2147/IDR.S177247Hassuna, N. A., Mandour, S. A., & Mohamed, E. S. (2020). Virulence constitution of multi-drug-resistant pseudomonas aeruginosa in upper Egypt. Infection and Drug Resistance, 13, 587–595. https://doi.org/10.2147/IDR.S233694Higgins, S., Heeb, S., Rampioni, G., Fletcher, M. P., Williams, P., & Cámara, M. (2018). Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Frontiers in Cellular and Infection Microbiology, 8(JUL), 1–13. https://doi.org/10.3389/fcimb.2018.00252Horna, G., Amaro, C., Palacios, A., Guerra, H., & Ruiz, J. (2019). High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-47303-4Horna, G., & Ruiz, J. (2021). Type 3 secretion system of Pseudomonas aeruginosa. In Microbiological Research (Vol. 246). Elsevier GmbH. https://doi.org/10.1016/j.micres.2021.126719Illumina. (2020). Mi seq system. https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_miseq.pdfIllumina. (2022). What is the PhiX Control v3 Library and what is its function in Illumina Next Generation Sequencing. https://support.illumina.com/bulletins/2017/02/what-is-the-phix-control-v3-library-and-what-is-its-function-in-.htmlInstituto Nacional de Salud. (2021). Análisis del comportamiento de las infecciones asociadas a la atención en salud (IAAS). BES Boletin Epidemiologico Semanal Semana Epidemiologica 44, 4. https://hospitaltarapoto.gob.pe/web/IndicadoresAnalisisComportamientoInvitrogen. (2020). PureLink TM Genomic DNA Mini Kit. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/purelink_genomic_mini_man.pdfInvitrogen. (2022). Qubit dsDNA Assay Kit. 1–8.Jolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; referees: 2 approved]. Wellcome Open Research, 3(0), 1–20. https://doi.org/10.12688/wellcomeopenres.14826.1Jurado-Martín, I., Sainz-Mejías, M., & McClean, S. (2021). Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences, 22(6), 1–37. https://doi.org/10.3390/ijms22063128Kainuma, A., Momiyama, K., Kimura, T., Akiyama, K., & Inoue, K. (2018). An outbreak of fl uoroquinolone-resistant Pseudomonas aeruginosa ST357 harboring the exoU gene *. Journal of Infection and Chemotherapy, 24(8), 615–622. https://doi.org/10.1016/j.jiac.2018.03.008Kloth, C., Schirmer, B., Munder, A., Stelzer, T., Rothschuh, J., & Seifert, R. (2018). The role of Pseudomonas aeruginosa exoy in an acute mouse lung infection model. Toxins, 10(5), 1–15. https://doi.org/10.3390/toxins10050185Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301Liew, S. M., Rajasekaram, G., Puthucheary, S. D. A., & Chua, K. H. (2019). Antimicrobial susceptibility and virulence genes of clinical and environmental isolates of Pseudomonas aeruginosa. PeerJ, 2019(1), 1–19. https://doi.org/10.7717/peerj.6217Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–D692. https://doi.org/10.1093/nar/gky1080Luna de Araujo Jacome, P. regina., Rodrigues Alves, L., Borges Cabral, A., Souza Lopes, A. caratina., & Vierira Maciel, M. A. (2012). Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco,Brazil. Revista Da Sociedade Brasileira de Medicina Tropical, 45(6), 707–712.Méndez-álvarez, S., & Pérez-roth, E. (2004). La PCR múltiple en microbiología clínica. Enfermedades Infecciosas y Microbiología Clínica, 22(3), 183–192Nain, Z., & Karim, M. M. (2021). Whole-genome sequence, functional annotation, and comparative genomics of the high biofilm-producing multidrug-resistant Pseudomonas aeruginosa MZ4A isolated from clinical waste. Gene Reports, 22(December), 100999. https://doi.org/10.1016/j.genrep.2020.100999Newman, J. W., Floyd, R. V., & Fothergill, J. L. (2017). The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiology Letters, 364(15), 1–11. https://doi.org/10.1093/femsle/fnx124Oxford Nanopore Technologies. (2022a). Ligation sequencing gDNA-native barcoding (SQK-LSK109 with EXP-NBD196).Oxford Nanopore Technologies. (2022b). MinION.Park, Y., & Koo, S. H. (2022). Epidemiology, Molecular Characteristics, and Virulence Factors of Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Patients with Urinary Tract Infections. Infection and Drug Resistance, 15(December 2021), 141–151. https://doi.org/10.2147/IDR.S346313Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 36(2), 180–189. https://doi.org/10.4067/s0716-10182019000200180Pelegrin, A. C., Palmieri, M., Mirande, C., Oliver, A., Moons, P., Goossens, H., & Van Belkum, A. (2021). Pseudomonas aeruginosa: A clinical and genomics update. FEMS Microbiology Reviews, 45(6), 1–20. https://doi.org/10.1093/femsre/fuab026Raúl Recio, Mikel Mancheño, Esther Viedma, Jennifer Villa, María Ángeles Orellana, J. L.-T. and F. C. (2020). Predictors of Mortality in Bloodstream Infections Caused by Pseudomonas aeruginosa and Impact of Antimicrobial. August 2019, 1–13.Redfern, J., Wallace, J., Belkum, A. Van, Jaillard, M., Whittard, E., Ragupathy, R., Verran, J., Kelly, P., & Enright, M. C. (2021). Biofilm associated genotypes of multiple antibiotic resistant Pseudomonas aeruginosa. 1–16.Revelas, A. (2012). Healthcare - associated infections: A public health problem. Nigerian Medical Journal, 53(2), 59. https://doi.org/10.4103/0300-1652.103543Reynolds, D., & Kollef, M. (2021). The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, 81(18), 2117–2131. https://doi.org/10.1007/s40265-021-01635-6Riaño Abril, D. J. (2016). Movilización de genes de resistencia en el clon de Pseudomonas aeruginosa ST235 causante de infecciones en ColombiaRodriguez, L. X. (2021). Caracterización in silico de los genes de virulencia PhoP -PhoQ en cepas de Pseudomonas aeruginosa fenotipo multidrogo-resistente (MDR. https://doi.org/10.19163/medchemrussia2021-2021-236Sauvage, S., & Hardouin, J. (2020). Exoproteomics for better understanding Pseudomonas aeruginosa virulence. Toxins, 12(9), 1–19. https://doi.org/10.3390/toxins12090571Seemann, T. (2020). Snippy. https://github.com/tseemann/snippySharma, A. K., Dhasmana, N., Dubey, N., Kumar, N., Gangwal, A., Gupta, M., & Singh, Y. (2017). Bacterial Virulence Factors: Secreted for Survival. Indian Journal of Microbiology, 57(1), 1–10. https://doi.org/10.1007/s12088-016-0625-1Spagnolo, A. M., Sartini, M., & Cristina, M. L. (2021). Pseudomonas aeruginosa in the healthcare facility setting. Reviews in Medical Microbiology, 32(3), 169–175. https://doi.org/10.1097/mrm.0000000000000271Springer, T. I., Reid, T. E., Gies, S. L., & Feix, J. B. (2019). Interactions of the effector ExoU from pseudomonas aeruginosa with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes. Journal of Biological Chemistry, 294(50), 19012–19021. https://doi.org/10.1074/jbc.RA119.010278Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/BIOINFORMATICS/BTU033Subedi, D., Vijay, A. K., Kohli, G. S., Rice, S. A., & Willcox, M. (2018). Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-34020-7Sultan, M., Arya, R., & Kim, K. K. (2021). Roles of two-component systems in pseudomonas aeruginosa virulence. International Journal of Molecular Sciences, 22(22). https://doi.org/10.3390/ijms222212152Tagini, F., & Greub, G. (2017). Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. European Journal of Clinical Microbiology and Infectious Diseases, 36(11), 2007–2020. https://doi.org/10.1007/s10096-017-3024-6ThermoFisher. (2020a). NadoDrop. https://www.thermofisher.com/order/catalog/product/ND-ONE-W#/ND-ONE-WThermoFisher. (2020b). Qubit 4 Fluorometer. https://www.thermofisher.com/co/en/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/fluorometers/qubit/qubit-fluorometer.htmlThi, M. T. T., Wibowo, D., & Rehm, B. H. A. (2020). Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences, 21(22), 1–25. https://doi.org/10.3390/ijms21228671Tickler, I. A., Carlos, J., La, G. De, Alvarado, L., Obradovich, A. E., & Tenover, F. C. (2022). Journal of Global Antimicrobial Resistance Mechanisms of carbapenemase-me diate d resistance among high-risk Pseudomonas aeruginosa lineages in Peru. Journal of Global Antimicrobial Resistance, 31, 135–140. https://doi.org/10.1016/j.jgar.2022.08.018Treepong, P., Kos, V. N., Guyeux, C., Blanc, D. S., Bertrand, X., & Valot, B. (2018). Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clinical Microbiology and Infection, 24(3), 258–266. https://doi.org/10.1016/j.cmi.2017.06.018Valle, R. H. (2020). resistencia bacteriana y producción de biopelículas en la ciudad de Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D . C . T . -Colombia. In Universidad de cartagena.Vives-Flórez, M., & Garnica, D. (2006). Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. International Microbiology, 9(4), 247–252. https://doi.org/10.2436/im.v9i4.9582Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/JOURNAL.PCBI.1005595World Health Organization. (2011). Report on the burden of endemic health care-associated infection worldwide: Clean care is safer care. World Health Organization, 1–40. https://apps.who.int/iris/bitstream/handle/10665/80135/9789241501507_eng.pdf?sequence=1World Health Organization. (2017). WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, 43(148), 348–365.Yang, J. J., Tsuei, K. S. C., & Shen, E. P. (2022). The role of Type III secretion system in the pathogenesis of Pseudomonas aeruginosa microbial keratitis. Tzu Chi Medical Journal, 34(1), 8–14. https://doi.org/10.4103/tcmj.tcmj_47_21Yang, X., Lai, Y., Li, C., Yang, J., Jia, M., & Sheng, J. (2021). Molecular epidemiology of pseudomonas aeruginosa isolated from lower respiratory tract of icu patients. Brazilian Journal of Biology, 81(2), 351–360. https://doi.org/10.1590/1519-6984.226309Yin, R., Kwoh, C. K., & Zheng, J. (2018). Whole genome sequencing analysis. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 176–183. https://doi.org/10.1016/B978-0-12-809633-8.20095-2Yoon, E., & Jeong, S. H. (2021). Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front. Microbiol., 12(February). https://doi.org/10.3389/fmicb.2021.614058Zheng, M., Sun, S., Zhou, J., & Liu, M. (2021). Virulence factors impair epithelial junctions during bacterial infection. Journal of Clinical Laboratory Analysis, 35(2), 1–6. https://doi.org/10.1002/jcla.23627Infección latenteLatent InfectionPseudomonas aeruginosaFactores de virulenciaInfecciones Asociadas a la Atención en SaludSecuencio-tiposVirulence factorsHealthcare-associated infectionsSequence-typesWGSLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84264/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1115086252_2023.pdf1115086252_2023.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf3137609https://repositorio.unal.edu.co/bitstream/unal/84264/2/1115086252_2023.pdf9637116c15f6f30bfdd4e0304ce692b0MD52THUMBNAIL1115086252_2023.pdf.jpg1115086252_2023.pdf.jpgGenerated Thumbnailimage/jpeg4182https://repositorio.unal.edu.co/bitstream/unal/84264/3/1115086252_2023.pdf.jpg9d82d1d3b9745750eb6a9fb766bcda7aMD53unal/84264oai:repositorio.unal.edu.co:unal/842642023-08-13 23:03:45.627Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |