Análisis espectral de operadores de Schrödinger ergódicos

ilustraciones, fotografías

Autores:
Silva Barbosa, Pablo Blas Tupac
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82361
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82361
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
Operadores de Schrödinger
Espectro continuo
Ergodicidad
Propiedad de repetición
Propiedad de repetición topológica
Propiedad de repetición métrica
Schrödinger operators
Continuous spectrum
Ergodicity
Repetition property
Topological repetition property
Metric repetition property
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_5976b74fc0a20523d0a4b8bd4085f0b4
oai_identifier_str oai:repositorio.unal.edu.co:unal/82361
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis espectral de operadores de Schrödinger ergódicos
dc.title.translated.eng.fl_str_mv Spectral analysis of ergodic Schrödinger operators
title Análisis espectral de operadores de Schrödinger ergódicos
spellingShingle Análisis espectral de operadores de Schrödinger ergódicos
510 - Matemáticas
Operadores de Schrödinger
Espectro continuo
Ergodicidad
Propiedad de repetición
Propiedad de repetición topológica
Propiedad de repetición métrica
Schrödinger operators
Continuous spectrum
Ergodicity
Repetition property
Topological repetition property
Metric repetition property
title_short Análisis espectral de operadores de Schrödinger ergódicos
title_full Análisis espectral de operadores de Schrödinger ergódicos
title_fullStr Análisis espectral de operadores de Schrödinger ergódicos
title_full_unstemmed Análisis espectral de operadores de Schrödinger ergódicos
title_sort Análisis espectral de operadores de Schrödinger ergódicos
dc.creator.fl_str_mv Silva Barbosa, Pablo Blas Tupac
dc.contributor.advisor.none.fl_str_mv Álvarez Bilbao, Rafael José
Bautista Díaz, Serafín
dc.contributor.author.none.fl_str_mv Silva Barbosa, Pablo Blas Tupac
dc.contributor.researchgroup.spa.fl_str_mv Sisdimunal
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
topic 510 - Matemáticas
Operadores de Schrödinger
Espectro continuo
Ergodicidad
Propiedad de repetición
Propiedad de repetición topológica
Propiedad de repetición métrica
Schrödinger operators
Continuous spectrum
Ergodicity
Repetition property
Topological repetition property
Metric repetition property
dc.subject.proposal.spa.fl_str_mv Operadores de Schrödinger
Espectro continuo
Ergodicidad
Propiedad de repetición
Propiedad de repetición topológica
Propiedad de repetición métrica
dc.subject.proposal.eng.fl_str_mv Schrödinger operators
Continuous spectrum
Ergodicity
Repetition property
Topological repetition property
Metric repetition property
description ilustraciones, fotografías
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-11T06:05:40Z
dc.date.available.none.fl_str_mv 2022-10-11T06:05:40Z
dc.date.issued.none.fl_str_mv 2022-10-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82361
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82361
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Avila, A. and Damanik, D. (2005). Generic singular spectrum for ergodic schrödinger ope rators. Duke Mathematical Journal, 130:393–400.
Axler, S. (2015). Linear Algebra Done Right. Springer-Verlag, New York
Axler, S. (2020). Measure, Integration Real Analysis. Springer-Verlag, New York.
Boshernitzan, M. and Damanik, D. (2008). Generic continuous spectrum for ergodic schrö dinger operators. Communications in Mathematical Physics, 283:647–662.
Brom, J. (1977). The theory of almost periodic functions in constructive mathematics. Pacific Journal of Mathematics, 70:67–81
Catsigeras, E. (2013). Teoría Ergódica. De los Atractores Topológicos y Estadísticos. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
Cornfeld, I., Fomin, S., and Sinái, Y. (1982). Ergodic Theory. Springer-Verlag, New York.
Cycon, H., Froese, R., Kirsch, W., and Simon, B. (1987). Schrödinger Operators with Appli cations to Quantum Mechanics and Global Geometry. Springer-Verlag, Germany.
Damanik, D. (2017). Schrödinger operators with dynamically defined potentials. Electronic Journal of Differential Equations, 37:1681–1764.
Damanik, D. and Stolz, G. (2000). A generalization of gordon’s theorem and applications to quasiperiodic schrödinger operators. Electronic Journal of Differential Equations, 55:1–8.
Fan, Y. and Han, R. (2018). Generic continuous spectrum for multi-dimensional quasiperio dic schrödinger operators with rough potentials. Journal of Spectral Theory, 8:1635–1645.
Huang, W., Xu, L., and Yi, Y. (2010). Entropy of dynamical systems with repetition property. Journal of Dynamics and Differential Equations, 23:683–693.
Jitomirskaya, S. (2007). Ergodic schrödinger operators (on one foot). Proceeings of Symposia in Pure Mathematical, 76:613–647.
Khinchin, A. Y. (1964). Continued Fractions. The University of Chicago Press, Chicago
Kirsch, W. (2007). An Invitation to Random Schrödinger Operators. Institut für Mathematik Ruhr-Universität Bochum, Bochum.
Kohlman, M. (2018). Schrödinger Operators and their Spectra. Georg-August-Universität, Göttingen.
Kreyszig, E. (1978). Introductory Functional Analysis with Applications. John Wiley and Sons, Canada
Lenz, D. (2002). Singular spectrum of lebesgue measure zero for one-dimensional quasicrys tals. Communications in Mathematical Physics, 227:119–120.
Moreira, J. (2020). Ergodic Theory. University of Warwick, United Kingdom
Oxtoby, J. (1980). Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces. Springer-Verlag, New York.
Reed, M. and Simon, B. (1980). Methods of modern mathematical physics. Academic Press, Inc., San Diego.
Renn, J. (2013). Schrödinger and the Genesis of Wave Mechanics. Max Planck Institute for the History of Science, Berlin.
Simon, B. (1982). Almost periodic schrödinger operators: A review. Advances in Applied Mathematics, 3:463–490.
Simon, B. (2000). Schrödinger operators in the twentieth century. Journal of Mathematical Physics, 41:3523–3555
Spitzer, F. (1976). Principles of Random Walk. Springer-Verlag, New York
Viana, M. and Oliveira, K. (2016). Foundations of Ergodic Theory. Cambridge University Press, Cambridge.
Walters, P. (1982). An Introduction to Ergodic Theory. Springer-Verlag, New York
Zhecheva, I. (2008). Ergodic Properties of Random Schrödinger Operators. Williams College, Massachusetts
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 72 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82361/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82361/4/TesisPabloSilva.pdf
https://repositorio.unal.edu.co/bitstream/unal/82361/5/TesisPabloSilva.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
827747b017d514a063711b71ad724faa
b6734f0623518ee573e2c36a0af93776
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089486616756224
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Álvarez Bilbao, Rafael José4940d54edae52124abf3a9db501da276Bautista Díaz, Serafína108a3a090f66f796c78ca0fa2c7e363Silva Barbosa, Pablo Blas Tupac66932b07cc1eb8cceec5fef66aa3680eSisdimunal2022-10-11T06:05:40Z2022-10-11T06:05:40Z2022-10-07https://repositorio.unal.edu.co/handle/unal/82361Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografíasEn este trabajo final de maestría estudiamos los tipos espectrales de las familias de operadores de Schrödinger unidimensionales discretos {Hω}ω∈Ω en las que el potencial de Hω está dado por Vω(n) = f(T nω), para n ∈ Z, donde f : Ω → R es una función continua y T es un homeomorfismo ergódico en un espacio compacto Ω. Con base en la investigación de Boshernitzan y Damanik (2008), definimos las propiedades de repetición topológica y métrica en el sistema dinámico {Ω, T} y demostramos detalladamente que cada una de estas propiedades es condición suficiente para que el espectro puramente continuo sea una propiedad genérica de {Hω}ω∈Ω. La principal herramienta del trabajo es el lema de Gordon, del cual propone mos una demostración paso a paso y analizamos sus implicaciones. También exponemos y demostramos dos resultados propios que generalizan el teorema central de la investigación. citada y discutimos ejemplos de aplicación. (Texto tomado de la fuente)In this thesis we study the spectral types of the families of discrete one-dimensional Schrödinger operators {Hω}ω∈Ω in which the potential of Hω is given by Vω(n) = f(T nω), for n ∈ Z, where f : Ω → R is a continuous function and T is an ergodic homeomorphism on a compact space Ω. Based on the research of Boshernitzan and Damanik (2008), we define the topological and metric repetition properties on the dynamical system {Ω, T} and show that each of these properties is a sufficient condition for the purely continuous spectrum to be a generic property of {Hω}ω∈Ω. The main tool of the work is Gordon’s lemma, of which we propose a step-by-step demonstration and analyze its implications. We propose two ge neralizations of the main theorem of the above research and discuss examples of application.MaestríaSistemas dinámicosx, 72 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - MatemáticasOperadores de SchrödingerEspectro continuoErgodicidadPropiedad de repeticiónPropiedad de repetición topológicaPropiedad de repetición métricaSchrödinger operatorsContinuous spectrumErgodicityRepetition propertyTopological repetition propertyMetric repetition propertyAnálisis espectral de operadores de Schrödinger ergódicosSpectral analysis of ergodic Schrödinger operatorsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAvila, A. and Damanik, D. (2005). Generic singular spectrum for ergodic schrödinger ope rators. Duke Mathematical Journal, 130:393–400.Axler, S. (2015). Linear Algebra Done Right. Springer-Verlag, New YorkAxler, S. (2020). Measure, Integration Real Analysis. Springer-Verlag, New York.Boshernitzan, M. and Damanik, D. (2008). Generic continuous spectrum for ergodic schrö dinger operators. Communications in Mathematical Physics, 283:647–662.Brom, J. (1977). The theory of almost periodic functions in constructive mathematics. Pacific Journal of Mathematics, 70:67–81Catsigeras, E. (2013). Teoría Ergódica. De los Atractores Topológicos y Estadísticos. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.Cornfeld, I., Fomin, S., and Sinái, Y. (1982). Ergodic Theory. Springer-Verlag, New York.Cycon, H., Froese, R., Kirsch, W., and Simon, B. (1987). Schrödinger Operators with Appli cations to Quantum Mechanics and Global Geometry. Springer-Verlag, Germany.Damanik, D. (2017). Schrödinger operators with dynamically defined potentials. Electronic Journal of Differential Equations, 37:1681–1764.Damanik, D. and Stolz, G. (2000). A generalization of gordon’s theorem and applications to quasiperiodic schrödinger operators. Electronic Journal of Differential Equations, 55:1–8.Fan, Y. and Han, R. (2018). Generic continuous spectrum for multi-dimensional quasiperio dic schrödinger operators with rough potentials. Journal of Spectral Theory, 8:1635–1645.Huang, W., Xu, L., and Yi, Y. (2010). Entropy of dynamical systems with repetition property. Journal of Dynamics and Differential Equations, 23:683–693.Jitomirskaya, S. (2007). Ergodic schrödinger operators (on one foot). Proceeings of Symposia in Pure Mathematical, 76:613–647.Khinchin, A. Y. (1964). Continued Fractions. The University of Chicago Press, ChicagoKirsch, W. (2007). An Invitation to Random Schrödinger Operators. Institut für Mathematik Ruhr-Universität Bochum, Bochum.Kohlman, M. (2018). Schrödinger Operators and their Spectra. Georg-August-Universität, Göttingen.Kreyszig, E. (1978). Introductory Functional Analysis with Applications. John Wiley and Sons, CanadaLenz, D. (2002). Singular spectrum of lebesgue measure zero for one-dimensional quasicrys tals. Communications in Mathematical Physics, 227:119–120.Moreira, J. (2020). Ergodic Theory. University of Warwick, United KingdomOxtoby, J. (1980). Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces. Springer-Verlag, New York.Reed, M. and Simon, B. (1980). Methods of modern mathematical physics. Academic Press, Inc., San Diego.Renn, J. (2013). Schrödinger and the Genesis of Wave Mechanics. Max Planck Institute for the History of Science, Berlin.Simon, B. (1982). Almost periodic schrödinger operators: A review. Advances in Applied Mathematics, 3:463–490.Simon, B. (2000). Schrödinger operators in the twentieth century. Journal of Mathematical Physics, 41:3523–3555Spitzer, F. (1976). Principles of Random Walk. Springer-Verlag, New YorkViana, M. and Oliveira, K. (2016). Foundations of Ergodic Theory. Cambridge University Press, Cambridge.Walters, P. (1982). An Introduction to Ergodic Theory. Springer-Verlag, New YorkZhecheva, I. (2008). Ergodic Properties of Random Schrödinger Operators. Williams College, MassachusettsEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82361/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINALTesisPabloSilva.pdfTesisPabloSilva.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf1500902https://repositorio.unal.edu.co/bitstream/unal/82361/4/TesisPabloSilva.pdf827747b017d514a063711b71ad724faaMD54THUMBNAILTesisPabloSilva.pdf.jpgTesisPabloSilva.pdf.jpgGenerated Thumbnailimage/jpeg4211https://repositorio.unal.edu.co/bitstream/unal/82361/5/TesisPabloSilva.pdf.jpgb6734f0623518ee573e2c36a0af93776MD55unal/82361oai:repositorio.unal.edu.co:unal/823612023-08-09 23:04:33.321Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=