Análisis espectral de operadores de Schrödinger ergódicos
ilustraciones, fotografías
- Autores:
-
Silva Barbosa, Pablo Blas Tupac
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82361
- Palabra clave:
- 510 - Matemáticas
Operadores de Schrödinger
Espectro continuo
Ergodicidad
Propiedad de repetición
Propiedad de repetición topológica
Propiedad de repetición métrica
Schrödinger operators
Continuous spectrum
Ergodicity
Repetition property
Topological repetition property
Metric repetition property
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_5976b74fc0a20523d0a4b8bd4085f0b4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82361 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis espectral de operadores de Schrödinger ergódicos |
dc.title.translated.eng.fl_str_mv |
Spectral analysis of ergodic Schrödinger operators |
title |
Análisis espectral de operadores de Schrödinger ergódicos |
spellingShingle |
Análisis espectral de operadores de Schrödinger ergódicos 510 - Matemáticas Operadores de Schrödinger Espectro continuo Ergodicidad Propiedad de repetición Propiedad de repetición topológica Propiedad de repetición métrica Schrödinger operators Continuous spectrum Ergodicity Repetition property Topological repetition property Metric repetition property |
title_short |
Análisis espectral de operadores de Schrödinger ergódicos |
title_full |
Análisis espectral de operadores de Schrödinger ergódicos |
title_fullStr |
Análisis espectral de operadores de Schrödinger ergódicos |
title_full_unstemmed |
Análisis espectral de operadores de Schrödinger ergódicos |
title_sort |
Análisis espectral de operadores de Schrödinger ergódicos |
dc.creator.fl_str_mv |
Silva Barbosa, Pablo Blas Tupac |
dc.contributor.advisor.none.fl_str_mv |
Álvarez Bilbao, Rafael José Bautista Díaz, Serafín |
dc.contributor.author.none.fl_str_mv |
Silva Barbosa, Pablo Blas Tupac |
dc.contributor.researchgroup.spa.fl_str_mv |
Sisdimunal |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas |
topic |
510 - Matemáticas Operadores de Schrödinger Espectro continuo Ergodicidad Propiedad de repetición Propiedad de repetición topológica Propiedad de repetición métrica Schrödinger operators Continuous spectrum Ergodicity Repetition property Topological repetition property Metric repetition property |
dc.subject.proposal.spa.fl_str_mv |
Operadores de Schrödinger Espectro continuo Ergodicidad Propiedad de repetición Propiedad de repetición topológica Propiedad de repetición métrica |
dc.subject.proposal.eng.fl_str_mv |
Schrödinger operators Continuous spectrum Ergodicity Repetition property Topological repetition property Metric repetition property |
description |
ilustraciones, fotografías |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-11T06:05:40Z |
dc.date.available.none.fl_str_mv |
2022-10-11T06:05:40Z |
dc.date.issued.none.fl_str_mv |
2022-10-07 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82361 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82361 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Avila, A. and Damanik, D. (2005). Generic singular spectrum for ergodic schrödinger ope rators. Duke Mathematical Journal, 130:393–400. Axler, S. (2015). Linear Algebra Done Right. Springer-Verlag, New York Axler, S. (2020). Measure, Integration Real Analysis. Springer-Verlag, New York. Boshernitzan, M. and Damanik, D. (2008). Generic continuous spectrum for ergodic schrö dinger operators. Communications in Mathematical Physics, 283:647–662. Brom, J. (1977). The theory of almost periodic functions in constructive mathematics. Pacific Journal of Mathematics, 70:67–81 Catsigeras, E. (2013). Teoría Ergódica. De los Atractores Topológicos y Estadísticos. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela. Cornfeld, I., Fomin, S., and Sinái, Y. (1982). Ergodic Theory. Springer-Verlag, New York. Cycon, H., Froese, R., Kirsch, W., and Simon, B. (1987). Schrödinger Operators with Appli cations to Quantum Mechanics and Global Geometry. Springer-Verlag, Germany. Damanik, D. (2017). Schrödinger operators with dynamically defined potentials. Electronic Journal of Differential Equations, 37:1681–1764. Damanik, D. and Stolz, G. (2000). A generalization of gordon’s theorem and applications to quasiperiodic schrödinger operators. Electronic Journal of Differential Equations, 55:1–8. Fan, Y. and Han, R. (2018). Generic continuous spectrum for multi-dimensional quasiperio dic schrödinger operators with rough potentials. Journal of Spectral Theory, 8:1635–1645. Huang, W., Xu, L., and Yi, Y. (2010). Entropy of dynamical systems with repetition property. Journal of Dynamics and Differential Equations, 23:683–693. Jitomirskaya, S. (2007). Ergodic schrödinger operators (on one foot). Proceeings of Symposia in Pure Mathematical, 76:613–647. Khinchin, A. Y. (1964). Continued Fractions. The University of Chicago Press, Chicago Kirsch, W. (2007). An Invitation to Random Schrödinger Operators. Institut für Mathematik Ruhr-Universität Bochum, Bochum. Kohlman, M. (2018). Schrödinger Operators and their Spectra. Georg-August-Universität, Göttingen. Kreyszig, E. (1978). Introductory Functional Analysis with Applications. John Wiley and Sons, Canada Lenz, D. (2002). Singular spectrum of lebesgue measure zero for one-dimensional quasicrys tals. Communications in Mathematical Physics, 227:119–120. Moreira, J. (2020). Ergodic Theory. University of Warwick, United Kingdom Oxtoby, J. (1980). Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces. Springer-Verlag, New York. Reed, M. and Simon, B. (1980). Methods of modern mathematical physics. Academic Press, Inc., San Diego. Renn, J. (2013). Schrödinger and the Genesis of Wave Mechanics. Max Planck Institute for the History of Science, Berlin. Simon, B. (1982). Almost periodic schrödinger operators: A review. Advances in Applied Mathematics, 3:463–490. Simon, B. (2000). Schrödinger operators in the twentieth century. Journal of Mathematical Physics, 41:3523–3555 Spitzer, F. (1976). Principles of Random Walk. Springer-Verlag, New York Viana, M. and Oliveira, K. (2016). Foundations of Ergodic Theory. Cambridge University Press, Cambridge. Walters, P. (1982). An Introduction to Ergodic Theory. Springer-Verlag, New York Zhecheva, I. (2008). Ergodic Properties of Random Schrödinger Operators. Williams College, Massachusetts |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 72 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Matemáticas |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82361/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/82361/4/TesisPabloSilva.pdf https://repositorio.unal.edu.co/bitstream/unal/82361/5/TesisPabloSilva.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 827747b017d514a063711b71ad724faa b6734f0623518ee573e2c36a0af93776 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089486616756224 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Álvarez Bilbao, Rafael José4940d54edae52124abf3a9db501da276Bautista Díaz, Serafína108a3a090f66f796c78ca0fa2c7e363Silva Barbosa, Pablo Blas Tupac66932b07cc1eb8cceec5fef66aa3680eSisdimunal2022-10-11T06:05:40Z2022-10-11T06:05:40Z2022-10-07https://repositorio.unal.edu.co/handle/unal/82361Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografíasEn este trabajo final de maestría estudiamos los tipos espectrales de las familias de operadores de Schrödinger unidimensionales discretos {Hω}ω∈Ω en las que el potencial de Hω está dado por Vω(n) = f(T nω), para n ∈ Z, donde f : Ω → R es una función continua y T es un homeomorfismo ergódico en un espacio compacto Ω. Con base en la investigación de Boshernitzan y Damanik (2008), definimos las propiedades de repetición topológica y métrica en el sistema dinámico {Ω, T} y demostramos detalladamente que cada una de estas propiedades es condición suficiente para que el espectro puramente continuo sea una propiedad genérica de {Hω}ω∈Ω. La principal herramienta del trabajo es el lema de Gordon, del cual propone mos una demostración paso a paso y analizamos sus implicaciones. También exponemos y demostramos dos resultados propios que generalizan el teorema central de la investigación. citada y discutimos ejemplos de aplicación. (Texto tomado de la fuente)In this thesis we study the spectral types of the families of discrete one-dimensional Schrödinger operators {Hω}ω∈Ω in which the potential of Hω is given by Vω(n) = f(T nω), for n ∈ Z, where f : Ω → R is a continuous function and T is an ergodic homeomorphism on a compact space Ω. Based on the research of Boshernitzan and Damanik (2008), we define the topological and metric repetition properties on the dynamical system {Ω, T} and show that each of these properties is a sufficient condition for the purely continuous spectrum to be a generic property of {Hω}ω∈Ω. The main tool of the work is Gordon’s lemma, of which we propose a step-by-step demonstration and analyze its implications. We propose two ge neralizations of the main theorem of the above research and discuss examples of application.MaestríaSistemas dinámicosx, 72 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - MatemáticasOperadores de SchrödingerEspectro continuoErgodicidadPropiedad de repeticiónPropiedad de repetición topológicaPropiedad de repetición métricaSchrödinger operatorsContinuous spectrumErgodicityRepetition propertyTopological repetition propertyMetric repetition propertyAnálisis espectral de operadores de Schrödinger ergódicosSpectral analysis of ergodic Schrödinger operatorsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAvila, A. and Damanik, D. (2005). Generic singular spectrum for ergodic schrödinger ope rators. Duke Mathematical Journal, 130:393–400.Axler, S. (2015). Linear Algebra Done Right. Springer-Verlag, New YorkAxler, S. (2020). Measure, Integration Real Analysis. Springer-Verlag, New York.Boshernitzan, M. and Damanik, D. (2008). Generic continuous spectrum for ergodic schrö dinger operators. Communications in Mathematical Physics, 283:647–662.Brom, J. (1977). The theory of almost periodic functions in constructive mathematics. Pacific Journal of Mathematics, 70:67–81Catsigeras, E. (2013). Teoría Ergódica. De los Atractores Topológicos y Estadísticos. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.Cornfeld, I., Fomin, S., and Sinái, Y. (1982). Ergodic Theory. Springer-Verlag, New York.Cycon, H., Froese, R., Kirsch, W., and Simon, B. (1987). Schrödinger Operators with Appli cations to Quantum Mechanics and Global Geometry. Springer-Verlag, Germany.Damanik, D. (2017). Schrödinger operators with dynamically defined potentials. Electronic Journal of Differential Equations, 37:1681–1764.Damanik, D. and Stolz, G. (2000). A generalization of gordon’s theorem and applications to quasiperiodic schrödinger operators. Electronic Journal of Differential Equations, 55:1–8.Fan, Y. and Han, R. (2018). Generic continuous spectrum for multi-dimensional quasiperio dic schrödinger operators with rough potentials. Journal of Spectral Theory, 8:1635–1645.Huang, W., Xu, L., and Yi, Y. (2010). Entropy of dynamical systems with repetition property. Journal of Dynamics and Differential Equations, 23:683–693.Jitomirskaya, S. (2007). Ergodic schrödinger operators (on one foot). Proceeings of Symposia in Pure Mathematical, 76:613–647.Khinchin, A. Y. (1964). Continued Fractions. The University of Chicago Press, ChicagoKirsch, W. (2007). An Invitation to Random Schrödinger Operators. Institut für Mathematik Ruhr-Universität Bochum, Bochum.Kohlman, M. (2018). Schrödinger Operators and their Spectra. Georg-August-Universität, Göttingen.Kreyszig, E. (1978). Introductory Functional Analysis with Applications. John Wiley and Sons, CanadaLenz, D. (2002). Singular spectrum of lebesgue measure zero for one-dimensional quasicrys tals. Communications in Mathematical Physics, 227:119–120.Moreira, J. (2020). Ergodic Theory. University of Warwick, United KingdomOxtoby, J. (1980). Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces. Springer-Verlag, New York.Reed, M. and Simon, B. (1980). Methods of modern mathematical physics. Academic Press, Inc., San Diego.Renn, J. (2013). Schrödinger and the Genesis of Wave Mechanics. Max Planck Institute for the History of Science, Berlin.Simon, B. (1982). Almost periodic schrödinger operators: A review. Advances in Applied Mathematics, 3:463–490.Simon, B. (2000). Schrödinger operators in the twentieth century. Journal of Mathematical Physics, 41:3523–3555Spitzer, F. (1976). Principles of Random Walk. Springer-Verlag, New YorkViana, M. and Oliveira, K. (2016). Foundations of Ergodic Theory. Cambridge University Press, Cambridge.Walters, P. (1982). An Introduction to Ergodic Theory. Springer-Verlag, New YorkZhecheva, I. (2008). Ergodic Properties of Random Schrödinger Operators. Williams College, MassachusettsEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82361/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINALTesisPabloSilva.pdfTesisPabloSilva.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf1500902https://repositorio.unal.edu.co/bitstream/unal/82361/4/TesisPabloSilva.pdf827747b017d514a063711b71ad724faaMD54THUMBNAILTesisPabloSilva.pdf.jpgTesisPabloSilva.pdf.jpgGenerated Thumbnailimage/jpeg4211https://repositorio.unal.edu.co/bitstream/unal/82361/5/TesisPabloSilva.pdf.jpgb6734f0623518ee573e2c36a0af93776MD55unal/82361oai:repositorio.unal.edu.co:unal/823612023-08-09 23:04:33.321Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |