Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas

ilustraciones, diagramas

Autores:
Maya, Gustavo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84028
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84028
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Recobro mejorado
Baja salinidad
Salinidad modificada
Enhanced oil recovery
Low salinity
Smart water flooding
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_596560ac8d5f216b9c9c7007e1779d60
oai_identifier_str oai:repositorio.unal.edu.co:unal/84028
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas
dc.title.translated.eng.fl_str_mv Evaluation of fluid-fluid and fluid-rock interaction in salinity modified water injection processes, and its impact in oil recovery in sandstone systems
title Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas
spellingShingle Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Recobro mejorado
Baja salinidad
Salinidad modificada
Enhanced oil recovery
Low salinity
Smart water flooding
title_short Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas
title_full Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas
title_fullStr Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas
title_full_unstemmed Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas
title_sort Evaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscas
dc.creator.fl_str_mv Maya, Gustavo
dc.contributor.advisor.none.fl_str_mv Cortés Correra, Farid Bernardo
dc.contributor.author.none.fl_str_mv Maya, Gustavo
dc.contributor.researchgroup.spa.fl_str_mv Fenómenos de Superficie Michael Polanyi
dc.contributor.orcid.spa.fl_str_mv Maya Toro, Gustavo Adolfo [0000-0002-8780-3580]
Cortés Correra, Farid Bernardo [0000-0003-1207-3859]
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000182184
Maya Toro, Gustavo Adolfo [0000182184]
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Gustavo-Maya-2
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com.mx/citations?hl=en&pli=1&user=KmgMo2UAAAAJ
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Recobro mejorado
Baja salinidad
Salinidad modificada
Enhanced oil recovery
Low salinity
Smart water flooding
dc.subject.proposal.spa.fl_str_mv Recobro mejorado
Baja salinidad
Salinidad modificada
dc.subject.proposal.eng.fl_str_mv Enhanced oil recovery
Low salinity
Smart water flooding
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-16T16:08:56Z
dc.date.available.none.fl_str_mv 2023-06-16T16:08:56Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84028
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84028
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Aghaeifar, Z., Strand, S., Austad, T., Puntervold, T., Aksulu, H., Navratil, K., Storås, S., & Håmsø, D. (2015). Influence of Formation Water Salinity/Composition on the Low-Salinity Enhanced Oil Recovery Effect in High-Temperature Sandstone Reservoirs. Energy and Fuels, 29(8), 4747–4754. https://doi.org/10.1021/acs.energyfuels.5b01621
Aghaeifar, Z., Strand, S., Puntervold, T., Austad, T., & Sajjad, F. M. (2018). Smart Water injection strategies for optimized EOR in a high temperature offshore oil reservoir. Journal of Petroleum Science and Engineering, 165(July 2017), 743–751. https://doi.org/10.1016/j.petrol.2018.02.021
Ai-Saedi, H. N., & Flori, R. E. (2018). Enhanced oil recovery of low salinity water flooding in sandstone and the role of clay. Petroleum Exploration and Development, 45(5), 927–931. https://doi.org/10.1016/S1876-3804(18)30096-X
Al Maskari, N. S., Xie, Q., & Saeedi, A. (2019). Role of Basal-Charged Clays in Low Salinity Effect in Sandstone Reservoirs: Adhesion Force on Muscovite using Atomic Force Microscope [Research-article]. Energy and Fuels, 33(2), 756–764. https://doi.org/10.1021/acs.energyfuels.8b03452
Al-Saedi, H. N., & Flori, R. E. (2019). Effect of divalent cations in low salinity water flooding in sandstone reservoirs. Journal of Molecular Liquids, 283, 417–426. https://doi.org/10.1016/j.molliq.2019.03.112
Al-Shalabi, E. W., & Sepehrnoori, K. (2016). A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks. Journal of Petroleum Science and Engineering, 139, 137–161. https://doi.org/10.1016/j.petrol.2015.11.027
Al-Shalabi, E. W., Sepehrnoori, K., & Pope, G. (2014). Mysteries behind the Low Salinity Water Injection Technique. Journal of Petroleum Engineering, 2014, 1–11. https://doi.org/10.1155/2014/304312
Alvarado, V., Garcia-Olvera, G., & Manrique, E. J. (2015). Considerations of adjusted brine chemistry for waterflooding in offshore environments. Offshore Technology Conference This, May 2016, 1961–1978. https://doi.org/10.4043/26293-ms
Austad, T., RezaeiDoust, A., & Puntervold, T. (2010). Chemical mechanism of low salinity water flooding in sandstone reservoirs. Proceedings - SPE Symposium on Improved Oil Recovery, 1, 679–695.
Bernard, G. G. (1967). Effect of floodingwater salinity on recovery of oil from cores containing clays. Society of Petroleum Engineers of AIME, SPE 1725, 1–8. https://doi.org/10.2118/1725-MS
Cissokho, M., Boussour, S., Cordier, P., Bertin, H., & Hamon, G. (2010). Low salinity oil recovery on clayey sandstone: Experimental study. Petrophysics, 51(5), 305–313.
Collins, I. R., Couves, J. W., Hodges, M., Mcbride, E. K., Pedersen, C. S., Salino, P. A., Webb, K. J., Wicking, C., & Zeng, H. (2018). Effect of Low Salinity Waterflooding on the Chemistry of the Produced Crude Oil. Society of Petroleum Engineers, 1900191-MS, 1–17.
Doust, A. R., Puntervold, T., & Austad, T. (2011). Chemical verification of the EOR mechanism by using low saline/smart water in sandstone. Energy and Fuels, 25(5), 2151–2162. https://doi.org/10.1021/ef200215y
Fahim, M. A., Elkilani, A., & Alsahhaf, T. (2010). Fundamentals of Petroleum Refining: Vol. Elsevier First Ed. http://www.elsevierdirect.com/
Farajzadeh, R., Guo, H., van Winden, J., & Bruining, J. (2017). Cation Exchange in the Presence of Oil in Porous Media. ACS Earth and Space Chemistry, 1(2), 101–112. https://doi.org/10.1021/acsearthspacechem.6b00015
Fathi, S. J., Austad, T., & Strand, S. (2010). ‘Smart water’ as a wettability modifier in chalk: The effect of salinity and ionic composition. Energy and Fuels, 24(4), 2514–2519. https://doi.org/10.1021/ef901304m
Fredriksen, S. B., Rognmo, A. U., & Fernø, M. A. (2018). Pore-scale mechanisms during low salinity waterflooding: Oil mobilization by diffusion and osmosis. Journal of Petroleum Science and Engineering, 163, 650–660. https://doi.org/10.1016/j.petrol.2017.10.022
Gandomkar, A., & Rahimpour, M. R. (2015). Investigation of Low-Salinity Waterflooding in Secondary and Tertiary Enhanced Oil Recovery in Limestone Reservoirs. Energy and Fuels, 29(12), 7781–7792. https://doi.org/10.1021/acs.energyfuels.5b01236
Garcia-Olvera, G., & Alvarado, V. (2016). The Potential of Sulfate as Optimizer of Crude Oil-Water Interfacial Rheology to Increase Oil Recovery During Smart Water Injection in Carbonates. SPE Improved Oil Recovery Conference, 9–12. https://doi.org/10.2118/179544-MS
Haagh, M. E. J., Siretanu, I., Duits, M. H. G., & Mugele, F. (2017). Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations. Langmuir, 33(14), 3349–3357. https://doi.org/10.1021/acs.langmuir.6b04470
Hadia, N. J., Hansen, T., Tweheyo, M. T., & Torsæter, O. (2012). Influence of crude oil components on recovery by high and low salinity waterflooding. Energy and Fuels, 26(7), 4328–4335. https://doi.org/10.1021/ef3003119
Han, Y., Zhou, C., Yu, J., Li, C., Hu, F., Xu, H., & Yuan, C. (2019). Experimental investigation on the effect of wettability on rock-electricity response in sandstone reservoirs. Fuel, 239(August 2018), 1246–1257. https://doi.org/10.1016/j.fuel.2018.11.072
Hua, Z., Li, M., Ni, X., Wang, H., Yang, Z., & Lin, M. (2016). Effect of injection brine composition on wettability and oil recovery in sandstone reservoirs. Fuel, 182, 687–695. https://doi.org/10.1016/j.fuel.2016.06.009
Isah, A., Arif, M., Hassan, A., Mahmoud, M., & Iglauer, S. (2022). Fluid–rock interactions and its implications on EOR: Critical analysis, experimental techniques and knowledge gaps. In Energy Reports (Vol. 8, pp. 6355–6395). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2022.04.071
Joonaki, E., Hassanpouryouzband, A., Burgass, R., & Tohidi, B. (2017). Effect of Water Chemistry on Asphaltene Stabilised Water in Oil Emulsions - A New Search for Low Salinity Water Injection Mechanism. July. https://doi.org/10.3997/2214-4609.201701297
Kakati, A., Kumar, G., & Sangwai, J. S. (2020). Oil Recovery Efficiency and Mechanism of Low Salinity-Enhanced Oil Recovery for Light Crude Oil with a Low Acid Number. ACS Omega, 5(3), 1506–1518. https://doi.org/10.1021/acsomega.9b03229
Kakati, A., & Sangwai, J. S. (2017). Effect of monovalent and divalent salts on the interfacial tension of pure hydrocarbon-brine systems relevant for low salinity water flooding. Journal of Petroleum Science and Engineering, 157, 1106–1114. https://doi.org/10.1016/j.petrol.2017.08.017
Lager, A., Webb, K. J., Collins, I. R., & Richmond, D. M. (2008). LoSal Enhanced Oil Recovery: Evidence of Enhanced Oil Recovery at the Reservoir Scale. SPE Symposium on Improved Oil Recovery, SPE 113976. https://doi.org/10.2118/113976-MS
Lashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system. Energy and Fuels, 28(11), 6820–6829. https://doi.org/10.1021/ef5015692
Ligthelm, D. J., Gronsveld, J., Hofman, J., Brussee, N., Marcelis, F., & van der Linde, H. (2009). Novel Waterflooding Strategy By Manipulation Of Injection Brine Composition. EUROPEC/EAGE Conference and Exhibition, 3, 1–2. https://doi.org/10.2118/119835-MS
Mahzari, P., & Sohrabi, M. (2015). Impact of Micro-Dispersion Formation on Effectiveness of Low Salinity Waterflooding. April. https://doi.org/10.3997/2214-4609.201412103
Manrique, E., Delgadillo, C., Maya, G., & Gelvis, J. (2020). EOR Screening Methods Assisted by Digital Rock Analysis: A Step Forward. Society of Petroleum Engineers, 199107-MS(Latin America and Caribbean Pet. Eng. Conf. (LACPEC)), Bogota July 27-31, 2020.
Maya, G., Cardona, L., Rueda, M., & Cortés, F. (2020). Effect of ionic strength in low salinity water injection processes. CTyF - Ciencia, Tecnologia y Futuro, 10(2), 17–26. https://doi.org/10.29047/01225383.269
McGuire, P. L., Chatham, J. R., Paskvan, F. K., Sommer, D. M., & Carini, F. H. (2005). Low Salinity Oil Recovery: An Exciting New EOR Opportunity for Alaska´s North Slope. SPE Western Regional Meeting, 1–15. https://doi.org/10.2118/93903-MS
Mehana, M., Fahes, M., Kang, Q., & Viswanathan, H. (2020). Molecular simulation of double layer expansion mechanism during low-salinity waterflooding. Journal of Molecular Liquids, 318. https://doi.org/10.1016/j.molliq.2020.114079
Mokhtari, R., Ayatollahi, S., & Fatemi, M. (2019). Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding. Journal of Petroleum Science and Engineering, 182. https://doi.org/10.1016/j.petrol.2019.106194
Morrow, N., & Buckley, J. (2011). Improved Oil Recovery by Low-Salinity Waterflooding. Journal of Petroleum Technology, 63(05), 106–112. https://doi.org/10.2118/129421-JPT
Morrow, N. R., & Carlisle, C. (2012). Low Salinity Waterflooding Fundamentals and Case Studies.
Nasralla, R. A., Bataweel, M. A., & Nasr-El-Din, H. A. (2013). Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock. Journal of Canadian Petroleum Technology, 52(2), 144–154. https://doi.org/10.2118/146322-PA
Nasralla, R. A., Mahani, H., van der Linde, H. A., Marcelis, F. H. M., Masalmeh, S. K., Sergienko, E., Brussee, N. J., Pieterse, S. G. J., & Basu, S. (2018). Low salinity waterflooding for a carbonate reservoir: Experimental evaluation and numerical interpretation. Journal of Petroleum Science and Engineering, 164, 640–654. https://doi.org/10.1016/j.petrol.2018.01.028
Nasralla, R. A., & Nasr-El-Din, H. A. (2011). Coreflood Study of Low Salinity Water Injection in Sandstone Reservoirs. SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, May, 15–18. https://doi.org/10.2118/149077-MS
Nguele, R., Sasaki, K., Al-Salim, H. S., Sugai, Y., & Nakano, M. (2015). Wettability alteration in berea sandstone cores by contact angle measurements. 21st Formation Evaluation Symposium of Japan, 1–6.
Piñerez Torrijos, I. D., Puntervold, T., Strand, S., Austad, T., Abdullah, H. I., & Olsen, K. (2016). Experimental Study of the Response Time of the Low-Salinity Enhanced Oil Recovery Effect during Secondary and Tertiary Low-Salinity Waterflooding. Energy and Fuels, 30(6), 4733–4739. https://doi.org/10.1021/acs.energyfuels.6b00641
Piñerez Torrijos, I. D., Puntervold, T., Strand, S., Austad, T., Bleivik, T. H., & Abdullah, H. I. (2018). An experimental study of the low salinity Smart Water - Polymer hybrid EOR effect in sandstone material. Journal of Petroleum Science and Engineering, 164(January), 219–229. https://doi.org/10.1016/j.petrol.2018.01.031
Pooryousefy, E., Xie, Q., Chen, Y., Sari, A., & Saeedi, A. (2018). Drivers of low salinity effect in sandstone reservoirs. Journal of Molecular Liquids, 250, 396–403. https://doi.org/10.1016/j.molliq.2017.11.170
Raphaug, M., Soerland, G. H., & Urkedal, H. (2010). Investigation of Low Salinity Water Flooding By NMR and Cryoesem. International Symposium of the Society of Core Analysts, 1–12.
Rashid, S., Mousapour, M. S., Ayatollahi, S., Vossoughi, M., & Beigy, A. H. (2015). Wettability alteration in carbonates during ‘Smart Waterflood’: Underling mechanisms and the effect of individual ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 142–153. https://doi.org/10.1016/j.colsurfa.2015.09.067
RezaeiDoust, A., Puntervold, T., & Austad, T. (2011). Chemical verification of the EOR mechanism by using low saline/smart water in sandstone. Energy and Fuels, 25(5), 2151–2162. https://doi.org/10.1021/ef200215y
Rezaeidoust, A., Puntervold, T., Strand, S., & Austad, T. (2009). Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms. Energy and Fuels, 23(9), 4479–4485. https://doi.org/10.1021/ef900185q
Robertson, E. P. (2007). Low-Salinity Waterflooding to Improve Oil Recovery-Historical Field Evidence. SPE Annual Technical Conference and Exhibition. https://doi.org/10.4161/cc.8.18.9614
Romero, M. I., Gamage, P., Jiang, H., Chopping, C., & Thyne, G. (2013). Study of low-salinity waterflooding for single- and two-phase experiments in Berea sandstone cores. Journal of Petroleum Science and Engineering, 110, 149–154. https://doi.org/10.1016/j.petrol.2013.08.050
Shaker Shiran, B., & Skauge, A. (2012). Wettability and Oil Recovery by Low Salinity Injection. SPE EOR Conference at Oil and Gas West Asia, 1957, 1–2. https://doi.org/10.2118/155651-MS
Shaker Shiran, B., & Skauge, A. (2013). Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding. Energy and Fuels, 27(3), 1223–1235. https://doi.org/10.1021/ef301538e
Soraya, B., Malick, C., Philippe, C., Bertin, H. J., & Hamon, G. (2009). Oil Recovery by Low-Salinity Brine Injection: Laboratory Results on Outcrop and Reservoir Cores. SPE Annual Technical Conference and Exhibition, 2005. https://doi.org/10.2118/124277-MS
Strand, S., Puntervold, T., & Austad, T. (2016). Water based EOR from clastic oil reservoirs by wettability alteration: A review of chemical aspects. Journal of Petroleum Science and Engineering, 146, 1079–1091. https://doi.org/10.1016/j.petrol.2016.08.012
Tabrizy, V. A., Hamouda, A. A., & Denoyel, R. (2011). Influence of magnesium and sulfate ions on wettability alteration of calcite, quartz, and kaolinite: Surface energy analysis. Energy and Fuels, 25(4), 1667–1680. https://doi.org/10.1021/ef200039m
Takeya, M., Shimokawara, M., Elakneswaran, Y., Nawa, T., & Takahashi, S. (2019). Predicting the electrokinetic properties of the crude oil/brine interface for enhanced oil recovery in low salinity water flooding. Fuel, 235, 822–831. https://doi.org/10.1016/j.fuel.2018.08.079
Tang, G. Q., & Morrow, N. R. (1997). Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding. SPE Reservoir Engineering, 12(04), 269–276. https://doi.org/10.2118/36680-PA
Tang, G. Q., & Morrow, N. R. (1999). Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. Journal of Petroleum Science and Engineering, 24(2–4), 99–111. https://doi.org/10.1016/S0920-4105(99)00034-0
Valocchi, A. J., Street, R. L., & Roberts, P. v. (1981). Transport of Ion-Exchanging Solutes in Groundwater: Chromatographic Theory and Field Simulation. In WATER RESOURCES RESEARCH (Vol. 17, Issue 5).
Xie, Q., Liu, F., Chen, Y., Yang, H., Saeedi, A., & Hossain, M. M. (2019). Effect of electrical double layer and ion exchange on low salinity EOR in a pH controlled system. Journal of Petroleum Science and Engineering, 174(June 2018), 418–424. https://doi.org/10.1016/j.petrol.2018.11.050
Yang, J., Dong, Z., Yang, Z., Lin, M., Zhang, J., & Chen, C. (2016). Wettability Alteration During Low Salinity Waterflooding: Effect Oil Composition and Divalent Cations. 12th Middle East Geosciences Conference & Exhibition, 41835.
Yu, M., Zeinijahromi, A., Bedrikovetsky, P., Genolet, L., Behr, A., Kowollik, P., & Hussain, F. (2019). Effects of fines migration on oil displacement by low-salinity water. Journal of Petroleum Science and Engineering, 175, 665–680. https://doi.org/10.1016/j.petrol.2018.12.005
Zhang, Y., Xie, X., & Morrow, N. (2007). Waterflood Performance by Injection of Brine With Different Salinity for Reservoir Cores. SPE Annual Technical Conference and Exhibition, SPE 109849, 1217–1228. https://doi.org/10.2523/109849-MS
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 204 pagínas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84028/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84028/2/71782146.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84028/3/71782146.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
fc9e0d97c39836a7475257ee279569c8
78f0362dc361beb7edaa5ed476d4e544
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089431738482688
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Correra, Farid Bernardo514b746bae487e09d89c383afe7e5d83Maya, Gustavo540e375a0df18455aba6c74b78a46efcFenómenos de Superficie Michael PolanyiMaya Toro, Gustavo Adolfo [0000-0002-8780-3580]Cortés Correra, Farid Bernardo [0000-0003-1207-3859]https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000182184Maya Toro, Gustavo Adolfo [0000182184]https://www.researchgate.net/profile/Gustavo-Maya-2https://scholar.google.com.mx/citations?hl=en&pli=1&user=KmgMo2UAAAAJ2023-06-16T16:08:56Z2023-06-16T16:08:56Z2023https://repositorio.unal.edu.co/handle/unal/84028Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLos procesos de recobro mejorado son una familia de tecnologías que buscan obtener el mayor beneficio de los yacimientos de hidrocarburos; sin embargo, cada uno de ellos presenta dificultades de diversas índoles; técnicas, económicas y ambientales. La inyección de agua de salinidad controlada, o inyección de agua de baja salinidad como también se le conoce, ha resaltado en la industria por sus bajos impactos ambientales y beneficios económicos; sin embargo, no existe acuerdo científico en los fenómenos que lo gobiernan. Este estudio analiza los efectos en sistemas específicos de roca-crudo-salmuera al inyectar aguas de baja salinidad con diferentes composiciones, separando las interacciones fluido-fluido y roca-fluido para identificar los fenómenos hasta ahora propuestos en la literatura. Los resultados obtenidos arrojan evidencias muy claras sobre la importancia de los mecanismos fluido-fluido. Desalado (salting in / out) y posible generación de microemulsiones cobran importancia frente a otros mecanismos propuestos en la literatura, en particular los mecanismos fluido-roca. La investigación permite también evidenciar que los mecanismos presentes en el proceso de recobro mejorado bajo estudio van más allá de la reducción de la salinidad del agua de inyección, y obedecen al manejo específico del contenido iónico de la misma. Esta investigación utilizó la técnica de electroforesis capilar para medición de iones disueltos en el agua a la ejecución de pruebas de desplazamiento de crudo en medios porosos, lo cual al momento no ha sido reportado en la literatura, siendo una mejora importante para el análisis de este tipo de procesos. (Texto tomado de la fuente)Enhanced recovery processes are a family of technologies that seek to obtain the most significant benefit from hydrocarbon deposits; however, each presents various technical, economic, and environmental difficulties. Controlled salinity water injection, or low salinity water injection as it is also known, has stood out in the industry for its low environmental impacts and economic benefits; however, there is no scientific agreement on the phenomena that govern it. This study analyzes the effects on specific rock-oil-brine systems when injecting low-salinity waters with different compositions, separating fluid-fluid and rock-fluid interactions to identify the phenomena so far proposed in the literature. The results obtained provide unequivocal evidence of the importance of fluid-fluid mechanisms. Desalination (salting in / out) and possible generation of microemulsions gain importance compared to other mechanisms proposed in the literature, particularly fluid-rock mechanisms. The investigation also makes it possible to demonstrate that the mechanisms present in the improved recovery process under study go beyond the reduction of the salinity of the injection water and obey the specific management of its ionic content. This research used the capillary electrophoresis technique to measure dissolved ions in the water to carry out displacement tests of crude oil in porous media, which at the moment has not been reported in the literature, being an essential improvement for the analysis of this type of process.Contrato FP44842-338-2017 (Ecopetrol - Colciencias).DoctoradoDoctor en IngenieríaConvocatoria 758 – 2016 (Doctorado Nacional Empresa).Recobro MejoradoÁrea curricular de Ingeniería Química e Ingeniería de Petróleosxxi, 204 pagínasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesRecobro mejoradoBaja salinidadSalinidad modificadaEnhanced oil recoveryLow salinitySmart water floodingEvaluación de la interacción fluido – fluido y fluido - roca en procesos de inyección de agua de salinidad modificada (IASM) y su impacto en la recuperación de aceite en sistemas de areniscasEvaluation of fluid-fluid and fluid-rock interaction in salinity modified water injection processes, and its impact in oil recovery in sandstone systemsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaAghaeifar, Z., Strand, S., Austad, T., Puntervold, T., Aksulu, H., Navratil, K., Storås, S., & Håmsø, D. (2015). Influence of Formation Water Salinity/Composition on the Low-Salinity Enhanced Oil Recovery Effect in High-Temperature Sandstone Reservoirs. Energy and Fuels, 29(8), 4747–4754. https://doi.org/10.1021/acs.energyfuels.5b01621Aghaeifar, Z., Strand, S., Puntervold, T., Austad, T., & Sajjad, F. M. (2018). Smart Water injection strategies for optimized EOR in a high temperature offshore oil reservoir. Journal of Petroleum Science and Engineering, 165(July 2017), 743–751. https://doi.org/10.1016/j.petrol.2018.02.021Ai-Saedi, H. N., & Flori, R. E. (2018). Enhanced oil recovery of low salinity water flooding in sandstone and the role of clay. Petroleum Exploration and Development, 45(5), 927–931. https://doi.org/10.1016/S1876-3804(18)30096-XAl Maskari, N. S., Xie, Q., & Saeedi, A. (2019). Role of Basal-Charged Clays in Low Salinity Effect in Sandstone Reservoirs: Adhesion Force on Muscovite using Atomic Force Microscope [Research-article]. Energy and Fuels, 33(2), 756–764. https://doi.org/10.1021/acs.energyfuels.8b03452Al-Saedi, H. N., & Flori, R. E. (2019). Effect of divalent cations in low salinity water flooding in sandstone reservoirs. Journal of Molecular Liquids, 283, 417–426. https://doi.org/10.1016/j.molliq.2019.03.112Al-Shalabi, E. W., & Sepehrnoori, K. (2016). A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks. Journal of Petroleum Science and Engineering, 139, 137–161. https://doi.org/10.1016/j.petrol.2015.11.027Al-Shalabi, E. W., Sepehrnoori, K., & Pope, G. (2014). Mysteries behind the Low Salinity Water Injection Technique. Journal of Petroleum Engineering, 2014, 1–11. https://doi.org/10.1155/2014/304312Alvarado, V., Garcia-Olvera, G., & Manrique, E. J. (2015). Considerations of adjusted brine chemistry for waterflooding in offshore environments. Offshore Technology Conference This, May 2016, 1961–1978. https://doi.org/10.4043/26293-msAustad, T., RezaeiDoust, A., & Puntervold, T. (2010). Chemical mechanism of low salinity water flooding in sandstone reservoirs. Proceedings - SPE Symposium on Improved Oil Recovery, 1, 679–695.Bernard, G. G. (1967). Effect of floodingwater salinity on recovery of oil from cores containing clays. Society of Petroleum Engineers of AIME, SPE 1725, 1–8. https://doi.org/10.2118/1725-MSCissokho, M., Boussour, S., Cordier, P., Bertin, H., & Hamon, G. (2010). Low salinity oil recovery on clayey sandstone: Experimental study. Petrophysics, 51(5), 305–313.Collins, I. R., Couves, J. W., Hodges, M., Mcbride, E. K., Pedersen, C. S., Salino, P. A., Webb, K. J., Wicking, C., & Zeng, H. (2018). Effect of Low Salinity Waterflooding on the Chemistry of the Produced Crude Oil. Society of Petroleum Engineers, 1900191-MS, 1–17.Doust, A. R., Puntervold, T., & Austad, T. (2011). Chemical verification of the EOR mechanism by using low saline/smart water in sandstone. Energy and Fuels, 25(5), 2151–2162. https://doi.org/10.1021/ef200215yFahim, M. A., Elkilani, A., & Alsahhaf, T. (2010). Fundamentals of Petroleum Refining: Vol. Elsevier First Ed. http://www.elsevierdirect.com/Farajzadeh, R., Guo, H., van Winden, J., & Bruining, J. (2017). Cation Exchange in the Presence of Oil in Porous Media. ACS Earth and Space Chemistry, 1(2), 101–112. https://doi.org/10.1021/acsearthspacechem.6b00015Fathi, S. J., Austad, T., & Strand, S. (2010). ‘Smart water’ as a wettability modifier in chalk: The effect of salinity and ionic composition. Energy and Fuels, 24(4), 2514–2519. https://doi.org/10.1021/ef901304mFredriksen, S. B., Rognmo, A. U., & Fernø, M. A. (2018). Pore-scale mechanisms during low salinity waterflooding: Oil mobilization by diffusion and osmosis. Journal of Petroleum Science and Engineering, 163, 650–660. https://doi.org/10.1016/j.petrol.2017.10.022Gandomkar, A., & Rahimpour, M. R. (2015). Investigation of Low-Salinity Waterflooding in Secondary and Tertiary Enhanced Oil Recovery in Limestone Reservoirs. Energy and Fuels, 29(12), 7781–7792. https://doi.org/10.1021/acs.energyfuels.5b01236Garcia-Olvera, G., & Alvarado, V. (2016). The Potential of Sulfate as Optimizer of Crude Oil-Water Interfacial Rheology to Increase Oil Recovery During Smart Water Injection in Carbonates. SPE Improved Oil Recovery Conference, 9–12. https://doi.org/10.2118/179544-MSHaagh, M. E. J., Siretanu, I., Duits, M. H. G., & Mugele, F. (2017). Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations. Langmuir, 33(14), 3349–3357. https://doi.org/10.1021/acs.langmuir.6b04470Hadia, N. J., Hansen, T., Tweheyo, M. T., & Torsæter, O. (2012). Influence of crude oil components on recovery by high and low salinity waterflooding. Energy and Fuels, 26(7), 4328–4335. https://doi.org/10.1021/ef3003119Han, Y., Zhou, C., Yu, J., Li, C., Hu, F., Xu, H., & Yuan, C. (2019). Experimental investigation on the effect of wettability on rock-electricity response in sandstone reservoirs. Fuel, 239(August 2018), 1246–1257. https://doi.org/10.1016/j.fuel.2018.11.072Hua, Z., Li, M., Ni, X., Wang, H., Yang, Z., & Lin, M. (2016). Effect of injection brine composition on wettability and oil recovery in sandstone reservoirs. Fuel, 182, 687–695. https://doi.org/10.1016/j.fuel.2016.06.009Isah, A., Arif, M., Hassan, A., Mahmoud, M., & Iglauer, S. (2022). Fluid–rock interactions and its implications on EOR: Critical analysis, experimental techniques and knowledge gaps. In Energy Reports (Vol. 8, pp. 6355–6395). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2022.04.071Joonaki, E., Hassanpouryouzband, A., Burgass, R., & Tohidi, B. (2017). Effect of Water Chemistry on Asphaltene Stabilised Water in Oil Emulsions - A New Search for Low Salinity Water Injection Mechanism. July. https://doi.org/10.3997/2214-4609.201701297Kakati, A., Kumar, G., & Sangwai, J. S. (2020). Oil Recovery Efficiency and Mechanism of Low Salinity-Enhanced Oil Recovery for Light Crude Oil with a Low Acid Number. ACS Omega, 5(3), 1506–1518. https://doi.org/10.1021/acsomega.9b03229Kakati, A., & Sangwai, J. S. (2017). Effect of monovalent and divalent salts on the interfacial tension of pure hydrocarbon-brine systems relevant for low salinity water flooding. Journal of Petroleum Science and Engineering, 157, 1106–1114. https://doi.org/10.1016/j.petrol.2017.08.017Lager, A., Webb, K. J., Collins, I. R., & Richmond, D. M. (2008). LoSal Enhanced Oil Recovery: Evidence of Enhanced Oil Recovery at the Reservoir Scale. SPE Symposium on Improved Oil Recovery, SPE 113976. https://doi.org/10.2118/113976-MSLashkarbolooki, M., Ayatollahi, S., & Riazi, M. (2014). Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system. Energy and Fuels, 28(11), 6820–6829. https://doi.org/10.1021/ef5015692Ligthelm, D. J., Gronsveld, J., Hofman, J., Brussee, N., Marcelis, F., & van der Linde, H. (2009). Novel Waterflooding Strategy By Manipulation Of Injection Brine Composition. EUROPEC/EAGE Conference and Exhibition, 3, 1–2. https://doi.org/10.2118/119835-MSMahzari, P., & Sohrabi, M. (2015). Impact of Micro-Dispersion Formation on Effectiveness of Low Salinity Waterflooding. April. https://doi.org/10.3997/2214-4609.201412103Manrique, E., Delgadillo, C., Maya, G., & Gelvis, J. (2020). EOR Screening Methods Assisted by Digital Rock Analysis: A Step Forward. Society of Petroleum Engineers, 199107-MS(Latin America and Caribbean Pet. Eng. Conf. (LACPEC)), Bogota July 27-31, 2020.Maya, G., Cardona, L., Rueda, M., & Cortés, F. (2020). Effect of ionic strength in low salinity water injection processes. CTyF - Ciencia, Tecnologia y Futuro, 10(2), 17–26. https://doi.org/10.29047/01225383.269McGuire, P. L., Chatham, J. R., Paskvan, F. K., Sommer, D. M., & Carini, F. H. (2005). Low Salinity Oil Recovery: An Exciting New EOR Opportunity for Alaska´s North Slope. SPE Western Regional Meeting, 1–15. https://doi.org/10.2118/93903-MSMehana, M., Fahes, M., Kang, Q., & Viswanathan, H. (2020). Molecular simulation of double layer expansion mechanism during low-salinity waterflooding. Journal of Molecular Liquids, 318. https://doi.org/10.1016/j.molliq.2020.114079Mokhtari, R., Ayatollahi, S., & Fatemi, M. (2019). Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding. Journal of Petroleum Science and Engineering, 182. https://doi.org/10.1016/j.petrol.2019.106194Morrow, N., & Buckley, J. (2011). Improved Oil Recovery by Low-Salinity Waterflooding. Journal of Petroleum Technology, 63(05), 106–112. https://doi.org/10.2118/129421-JPTMorrow, N. R., & Carlisle, C. (2012). Low Salinity Waterflooding Fundamentals and Case Studies.Nasralla, R. A., Bataweel, M. A., & Nasr-El-Din, H. A. (2013). Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock. Journal of Canadian Petroleum Technology, 52(2), 144–154. https://doi.org/10.2118/146322-PANasralla, R. A., Mahani, H., van der Linde, H. A., Marcelis, F. H. M., Masalmeh, S. K., Sergienko, E., Brussee, N. J., Pieterse, S. G. J., & Basu, S. (2018). Low salinity waterflooding for a carbonate reservoir: Experimental evaluation and numerical interpretation. Journal of Petroleum Science and Engineering, 164, 640–654. https://doi.org/10.1016/j.petrol.2018.01.028Nasralla, R. A., & Nasr-El-Din, H. A. (2011). Coreflood Study of Low Salinity Water Injection in Sandstone Reservoirs. SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, May, 15–18. https://doi.org/10.2118/149077-MSNguele, R., Sasaki, K., Al-Salim, H. S., Sugai, Y., & Nakano, M. (2015). Wettability alteration in berea sandstone cores by contact angle measurements. 21st Formation Evaluation Symposium of Japan, 1–6.Piñerez Torrijos, I. D., Puntervold, T., Strand, S., Austad, T., Abdullah, H. I., & Olsen, K. (2016). Experimental Study of the Response Time of the Low-Salinity Enhanced Oil Recovery Effect during Secondary and Tertiary Low-Salinity Waterflooding. Energy and Fuels, 30(6), 4733–4739. https://doi.org/10.1021/acs.energyfuels.6b00641Piñerez Torrijos, I. D., Puntervold, T., Strand, S., Austad, T., Bleivik, T. H., & Abdullah, H. I. (2018). An experimental study of the low salinity Smart Water - Polymer hybrid EOR effect in sandstone material. Journal of Petroleum Science and Engineering, 164(January), 219–229. https://doi.org/10.1016/j.petrol.2018.01.031Pooryousefy, E., Xie, Q., Chen, Y., Sari, A., & Saeedi, A. (2018). Drivers of low salinity effect in sandstone reservoirs. Journal of Molecular Liquids, 250, 396–403. https://doi.org/10.1016/j.molliq.2017.11.170Raphaug, M., Soerland, G. H., & Urkedal, H. (2010). Investigation of Low Salinity Water Flooding By NMR and Cryoesem. International Symposium of the Society of Core Analysts, 1–12.Rashid, S., Mousapour, M. S., Ayatollahi, S., Vossoughi, M., & Beigy, A. H. (2015). Wettability alteration in carbonates during ‘Smart Waterflood’: Underling mechanisms and the effect of individual ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 142–153. https://doi.org/10.1016/j.colsurfa.2015.09.067RezaeiDoust, A., Puntervold, T., & Austad, T. (2011). Chemical verification of the EOR mechanism by using low saline/smart water in sandstone. Energy and Fuels, 25(5), 2151–2162. https://doi.org/10.1021/ef200215yRezaeidoust, A., Puntervold, T., Strand, S., & Austad, T. (2009). Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms. Energy and Fuels, 23(9), 4479–4485. https://doi.org/10.1021/ef900185qRobertson, E. P. (2007). Low-Salinity Waterflooding to Improve Oil Recovery-Historical Field Evidence. SPE Annual Technical Conference and Exhibition. https://doi.org/10.4161/cc.8.18.9614Romero, M. I., Gamage, P., Jiang, H., Chopping, C., & Thyne, G. (2013). Study of low-salinity waterflooding for single- and two-phase experiments in Berea sandstone cores. Journal of Petroleum Science and Engineering, 110, 149–154. https://doi.org/10.1016/j.petrol.2013.08.050Shaker Shiran, B., & Skauge, A. (2012). Wettability and Oil Recovery by Low Salinity Injection. SPE EOR Conference at Oil and Gas West Asia, 1957, 1–2. https://doi.org/10.2118/155651-MSShaker Shiran, B., & Skauge, A. (2013). Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding. Energy and Fuels, 27(3), 1223–1235. https://doi.org/10.1021/ef301538eSoraya, B., Malick, C., Philippe, C., Bertin, H. J., & Hamon, G. (2009). Oil Recovery by Low-Salinity Brine Injection: Laboratory Results on Outcrop and Reservoir Cores. SPE Annual Technical Conference and Exhibition, 2005. https://doi.org/10.2118/124277-MSStrand, S., Puntervold, T., & Austad, T. (2016). Water based EOR from clastic oil reservoirs by wettability alteration: A review of chemical aspects. Journal of Petroleum Science and Engineering, 146, 1079–1091. https://doi.org/10.1016/j.petrol.2016.08.012Tabrizy, V. A., Hamouda, A. A., & Denoyel, R. (2011). Influence of magnesium and sulfate ions on wettability alteration of calcite, quartz, and kaolinite: Surface energy analysis. Energy and Fuels, 25(4), 1667–1680. https://doi.org/10.1021/ef200039mTakeya, M., Shimokawara, M., Elakneswaran, Y., Nawa, T., & Takahashi, S. (2019). Predicting the electrokinetic properties of the crude oil/brine interface for enhanced oil recovery in low salinity water flooding. Fuel, 235, 822–831. https://doi.org/10.1016/j.fuel.2018.08.079Tang, G. Q., & Morrow, N. R. (1997). Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding. SPE Reservoir Engineering, 12(04), 269–276. https://doi.org/10.2118/36680-PATang, G. Q., & Morrow, N. R. (1999). Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. Journal of Petroleum Science and Engineering, 24(2–4), 99–111. https://doi.org/10.1016/S0920-4105(99)00034-0Valocchi, A. J., Street, R. L., & Roberts, P. v. (1981). Transport of Ion-Exchanging Solutes in Groundwater: Chromatographic Theory and Field Simulation. In WATER RESOURCES RESEARCH (Vol. 17, Issue 5).Xie, Q., Liu, F., Chen, Y., Yang, H., Saeedi, A., & Hossain, M. M. (2019). Effect of electrical double layer and ion exchange on low salinity EOR in a pH controlled system. Journal of Petroleum Science and Engineering, 174(June 2018), 418–424. https://doi.org/10.1016/j.petrol.2018.11.050Yang, J., Dong, Z., Yang, Z., Lin, M., Zhang, J., & Chen, C. (2016). Wettability Alteration During Low Salinity Waterflooding: Effect Oil Composition and Divalent Cations. 12th Middle East Geosciences Conference & Exhibition, 41835.Yu, M., Zeinijahromi, A., Bedrikovetsky, P., Genolet, L., Behr, A., Kowollik, P., & Hussain, F. (2019). Effects of fines migration on oil displacement by low-salinity water. Journal of Petroleum Science and Engineering, 175, 665–680. https://doi.org/10.1016/j.petrol.2018.12.005Zhang, Y., Xie, X., & Morrow, N. (2007). Waterflood Performance by Injection of Brine With Different Salinity for Reservoir Cores. SPE Annual Technical Conference and Exhibition, SPE 109849, 1217–1228. https://doi.org/10.2523/109849-MSMinCiencias - Fondo Francisco José de CaldasUniversidad Nacional de ColombiaEcopetrol S.A.InvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84028/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL71782146.2023.pdf71782146.2023.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf8093672https://repositorio.unal.edu.co/bitstream/unal/84028/2/71782146.2023.pdffc9e0d97c39836a7475257ee279569c8MD52THUMBNAIL71782146.2023.pdf.jpg71782146.2023.pdf.jpgGenerated Thumbnailimage/jpeg5868https://repositorio.unal.edu.co/bitstream/unal/84028/3/71782146.2023.pdf.jpg78f0362dc361beb7edaa5ed476d4e544MD53unal/84028oai:repositorio.unal.edu.co:unal/840282023-08-09 23:04:36.092Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=