Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas

Ilustraciones

Autores:
Orrego Pérez, Andrés
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83835
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83835
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Redes neuronales
Péptidos
GAN
Antimicrobial peptides
Deep learning
Sequence generation
GAN
Péptidos antimicrobianos
Aprendizaje profundo
Generación de secuencias
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_594932a1200d8c95c3621998e6500dc2
oai_identifier_str oai:repositorio.unal.edu.co:unal/83835
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
dc.title.translated.eng.fl_str_mv Deep Learning Model for automatic generation of synthetic antimicrobials peptides with specific functionalities
title Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
spellingShingle Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Redes neuronales
Péptidos
GAN
Antimicrobial peptides
Deep learning
Sequence generation
GAN
Péptidos antimicrobianos
Aprendizaje profundo
Generación de secuencias
title_short Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
title_full Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
title_fullStr Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
title_full_unstemmed Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
title_sort Modelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicas
dc.creator.fl_str_mv Orrego Pérez, Andrés
dc.contributor.advisor.none.fl_str_mv Mera Banguero, Carlos Andres
Branch Bedoya, John Willian
Orduz Peralta, Sergio
dc.contributor.author.none.fl_str_mv Orrego Pérez, Andrés
dc.contributor.researchgroup.spa.fl_str_mv Biología Funcional
Gidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial
dc.contributor.orcid.spa.fl_str_mv 0000-0002-5143-0276
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001737101
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=K6Tz_4QAAAAJ&hl=es
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Redes neuronales
Péptidos
GAN
Antimicrobial peptides
Deep learning
Sequence generation
GAN
Péptidos antimicrobianos
Aprendizaje profundo
Generación de secuencias
dc.subject.armarc.none.fl_str_mv Redes neuronales
dc.subject.lemb.none.fl_str_mv Péptidos
dc.subject.proposal.eng.fl_str_mv GAN
Antimicrobial peptides
Deep learning
Sequence generation
dc.subject.proposal.spa.fl_str_mv GAN
Péptidos antimicrobianos
Aprendizaje profundo
Generación de secuencias
description Ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-19T19:12:22Z
dc.date.available.none.fl_str_mv 2023-05-19T19:12:22Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83835
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83835
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv DR. Daza, “Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria,” Inf ormaciónTerapeutica del Sistema Nacional de Salud, vol. 22, no. 3, 1998.
F. Del Castillo Martin, “Neumococo resistente a la penicilina. Un grave problema de salud publica,” Anales Espanoles de Pediatria, vol. 45, no. 3. 1996.
World Health Organization, “Resistencia a los antimicrobianos,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance (accessed Dec. 20, 2021).
J. Oromí Durich, “Resistencia bacteriana a los antibióticos. Medicina Integral,” Medicina Integral, vol. 36, no. 10, 2000.
Interagency Coordination Group on Antimicrobial Resistance, “No podemos esperar: asegurar el futuro contra las infecciones farmacorresistentes,” 2019.
World Health Organization, “2019 Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.,” 2019.
J. O’Neill, “Antimicrobial Resistance : Tackling a crisis for the health and wealth of nations, Review on Antimicrobial Resistance, Chaired by Jim O’Neill, December 2014,” Review on Antimicrobial Resistance, no. December, 2016.
WHO, “Proyecto de plan de acción mundial sobre la resistencia a los antimicrobianos. Informe de la Secretaría.,” Resistencia a los antimicrobianos, 2015.
A. K. Marr, W. J. Gooderham, and R. E. Hancock, “Antibacterial peptides for therapeutic use: obstacles and realistic outlook,” Current Opinion in Pharmacology, vol. 6, no. 5. 2006. doi: 10.1016/j.coph.2006.04.006.
C. D. Fjell, J. A. Hiss, R. E. W. Hancock, and G. Schneider, “Designing antimicrobial peptides: Form follows function,” Nature Reviews Drug Discovery, vol. 11, no. 1. 2012. doi: 10.1038/nrd3591.
A. Talevi and L. E. Bruno-Blanch, “Screening virtual: Una herramienta eficaz para el desarrollo de nuevos fármacos en Latinoamérica,” Latin American Journal of Pharmacy, vol. 28, no. 1. 2009.
J. Yan et al., “Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning,” Mol Ther Nucleic Acids, vol. 20, 2020, doi: 10.1016/j.omtn.2020.05.006.
D. Veltri, U. Kamath, and A. Shehu, “Deep learning improves antimicrobial peptide recognition,” Bioinformatics, vol. 34, no. 16, 2018, doi: 10.1093/bioinformatics/bty179.
M. Kozić et al., “Predicting the Minimal Inhibitory Concentration for Antimicrobial Peptides with Rana-Box Domain,” J Chem Inf Model, vol. 55, no. 10, 2015, doi: 10.1021/acs.jcim.5b00161.
E. G. Sevillano, “¿Cuánto cuesta fabricar un medicamento?,” EL PAÍS, 2015.
A. Orrego Pérez, J. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Sistema de Inteligencia Artificial para la Predicción o Generación Automática de péptidos Bioactivos,” Universidad Nacional de Colombia, 2020.
A. Orrego Pérez, C. A. Mera Banguero, S. Orduz Peralta, and J. W. Branch Bedoya, “Red Generativa Antagónica para la Generación de Péptidos Antimicrobianos Sintéticos,” 2021.
A. T. Müller, J. A. Hiss, and G. Schneider, “Recurrent Neural Network Model for Constructive Peptide Design,” J Chem Inf Model, vol. 58, no. 2, pp. 472–479, 2018, doi: 10.1021/acs.jcim.7b00414.
J. R. Mxkee. Trudy Mckee, Bioquimica (las bases moleculares de la vida), vol. 53, no. 9. 2013.
P. Gutiérrez and S. Orduz, “PÉPTIDOS ANTIMICROBIANOS: ESTRUCTURA, FUNCIÓN Y APLICACIONES,” Actual Biol, vol. 25, no. 78, 2003.
A. A. Bahar and D. Ren, “Antimicrobial Peptides,” Pharmaceuticals , vol. 6, no. 12. 2013. doi: 10.3390/ph6121543.
I. J. Goodfellow et al., “Generative Adversarial Networks,” Jun. 2014, Accessed: Dec. 14, 2021. [Online]. Available: https://arxiv.org/abs/1406.2661
T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 43, no. 12, pp. 4217–4228, 2021, doi: 10.1109/TPAMI.2020.2970919.
C. Donahue, J. McAuley, and M. Puckette, “Adversarial Audio Synthesis,” Feb. 2018.
A. Clark, J. Donahue, and K. Simonyan, “Adversarial Video Generation on Complex Datasets,” Jul. 2019.
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks,” Nov. 2016.
Z. Xu, M. Wilber, C. Fang, A. Hertzmann, and H. Jin, “Learning from Multi-domain Artistic Images for Arbitrary Style Transfer,” May 2018.
H. Zhang et al., “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks,” Dec. 2016.
I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Networks,” Dec. 2016.
M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks,” in 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” Jan. 2017.
L. Metz, J. Sohl-Dickstein, B. Poole, and D. Pfau, “Unrolled generative adversarial networks,” in 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.
K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing training of generative adversarial networks through regularization,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-Decem, pp. 2019–2029.
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved Techniques for Training GANs,” Jun. 2016.
M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” Nov. 2014, Accessed: Dec. 16, 2021. [Online]. Available: https://arxiv.org/abs/1411.1784
Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the Latent Space of GANs for Semantic Face Editing,” Jul. 2019.
J. Langr and V. Bok, GANs in action, vol. 53, no. 9. 2019.
S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural Comput, vol. 9, pp. 1735–1780, Dec. 1997, doi: 10.1162/neco.1997.9.8.1735.
F. Chollet, Deep Learning with Python, 1st ed. USA: Manning Publications Co., 2017.
Aurélien Géron, Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems. 2019.
K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” in EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 2014. doi: 10.3115/v1/d14-1179.
M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, 1997, doi: 10.1109/78.650093.
F. Grisoni, C. S. Neuhaus, G. Gabernet, A. T. Müller, J. A. Hiss, and G. Schneider, “Designing Anticancer Peptides by Constructive Machine Learning,” ChemMedChem, vol. 13, no. 13, pp. 1300–1302, 2018, doi: 10.1002/cmdc.201800204.
Renaud Samuel and Mansbach Rachael, “Latent Spaces for Antimicrobial Peptide Design,” ChemRxiv, Sep. 2022.
C. Wang, S. Garlick, and M. Zloh, “Deep learning for novel antimicrobial peptide design,” Biomolecules, vol. 11, no. 3, pp. 1–17, 2021, doi: 10.3390/biom11030471.
P. Das et al., “Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations,” Nat Biomed Eng, vol. 5, no. 6, 2021, doi: 10.1038/s41551-021-00689-x.
A. Rossetto and W. Zhou, “GANDALF: Peptide Generation for Drug Design using Sequential and Structural Generative Adversarial Networks,” in Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2020, 2020. doi: 10.1145/3388440.3412487.
P. Das et al., “PepCVAE: Semi-Supervised Targeted Design of Antimicrobial Peptide Sequences,” Oct. 2018, Accessed: Dec. 14, 2021. [Online]. Available: https://arxiv.org/abs/1810.07743
K. Hasegawa, Y. Moriwaki, T. Terada, C. Wei, and K. Shimizu, “Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides,” J Bioinform Comput Biol, vol. 20, no. 6, 2022, doi: 10.1142/S0219720022500263.
S. N. Dean, J. A. E. Alvarez, D. Zabetakis, S. A. Walper, and A. P. Malanoski, “PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction,” Front Microbiol, vol. 12, 2021, doi: 10.3389/fmicb.2021.725727.
A. Vélez, C. Mera, S. Orduz, and J. W. Branch, “Synthetic antimicrobial peptides generation using recurrent neural networks | Generación de péptidos antimicrobianos mediante redes neuronales recurrentes,” DYNA (Colombia), vol. 88, no. 216, pp. 210–219, 2021, doi: 10.15446/dyna.v88n221.88799.
C. M. van Oort, J. B. Ferrell, J. M. Remington, S. Wshah, and J. Li, “AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides,” J Chem Inf Model, vol. 61, no. 5, pp. 2198–2207, 2021, doi: 10.1021/acs.jcim.0c01441.
J. B. Ferrell et al., “A Generative Approach Toward Precision Antimicrobial Peptide Design,” bioRxiv, p. 2020.10.02.324087, Jan. 2020, doi: 10.1101/2020.10.02.324087.
P. Szymczak et al., “HydrAMP: a deep generative model for antimicrobial peptide discovery,” bioRxiv, p. 2022.01.27.478054, Jan. 2022, doi: 10.1101/2022.01.27.478054.
A. Capecchi, X. Cai, H. Personne, T. Köhler, C. van Delden, and J. L. Reymond, “Machine learning designs non-hemolytic antimicrobial peptides,” Chem Sci, vol. 12, no. 26, 2021, doi: 10.1039/d1sc01713f.
D. Nagarajan et al., “Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria,” J. Biol. Chem., vol. 293, p. 3492, 2018.
M. Ghorbani, S. Prasad, B. R. Brooks, and J. B. Klauda, “Deep attention based variational autoencoder for antimicrobial peptide discovery,” bioRxiv, p. 2022.07.08.499340, Jan. 2022, doi: 10.1101/2022.07.08.499340.
M. Pirtskhalava et al., “DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics,” Nucleic Acids Res, vol. 49, no. D1, 2021, doi: 10.1093/nar/gkaa991.
A. Bateman, “UniProt: A worldwide hub of protein knowledge,” Nucleic Acids Res, vol. 47, no. D1, 2019, doi: 10.1093/nar/gky1049.
H. T. Lee, C. C. Lee, J. R. Yang, J. Z. C. Lai, K. Y. Chang, and O. Ray, “A large-scale structural classification of Antimicrobial peptides,” BioMed Research International, vol. 2015. 2015. doi: 10.1155/2015/475062.
G. Wang, X. Li, and Z. Wang, “APD3: The antimicrobial peptide database as a tool for research and education,” Nucleic Acids Res, vol. 44, no. D1, 2016, doi: 10.1093/nar/gkv1278.
X. Zhao, H. Wu, H. Lu, G. Li, and Q. Huang, “LAMP: A Database Linking Antimicrobial Peptides,” PLoS One, vol. 8, no. 6, 2013, doi: 10.1371/journal.pone.0066557.
S. N. Dean and S. A. Walper, “Variational autoencoder for generation of antimicrobial peptides,” ACS Omega, vol. 5, no. 33, pp. 20746–20754, 2020, doi: 10.1021/acsomega.0c00442.
F. Chollet and others, “Keras.” 2015.
A. Paszke et al., “Automatic differentiation in PyTorch,” 2017.
Martín~Abadi et al., “ TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” 2015. [Online]. Available: https://www.tensorflow.org/
R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like Environment for Machine Learning,” in BigLearn, NIPS Workshop, 2011.
S. Chen and H. U. Kim, “Designing Novel Functional Peptides by Manipulating a Temperature in the Softmax Function Coupled with Variational Autoencoder,” in Proceedings -2019 IEEE International Conference on Big Data, Big Data 2019, 2019. doi: 10.1109/BigData47090.2019.9006253.
A. Tucs, D. P. Tran, A. Yumoto, Y. Ito, T. Uzawa, and K. Tsuda, “Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks,” ACS Omega, vol. 5, no. 36, pp. 22847–22851, 2020, doi: 10.1021/acsomega.0c02088.
T.-T. Lin et al., “Discovering Novel Antimicrobial Peptides in Generative Adversarial Network,” bioRxiv, 2021.
A. Orrego Pérez et al., “PepMultiTools,” 2019. https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/herramientas/pepmultitools.html
C. M. Van Oort, J. B. Ferrell, J. M. Remington, S. Wshah, and J. Li, “AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides,” J Chem Inf Model, vol. 61, no. 5, pp. 2198–2207, 2021, doi: 10.1021/acs.jcim.0c01441.
A. Gupta and J. Zou, “Feedback GAN for DNA optimizes protein functions,” Nat Mach Intell, vol. 1, no. 2, pp. 105–111, 2019, doi: 10.1038/s42256-019-0017-4.
A. Tucs, D. P. Tran, A. Yumoto, Y. Ito, T. Uzawa, and K. Tsuda, “Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks,” ACS Omega, vol. 5, no. 36, pp. 22847–22851, 2020, doi: 10.1021/acsomega.0c02088.
M. Lu and T. Gibson, “Development of Predictive Tools for Anti-Cancer Peptide Candidates using Generative Machine Learning Models,” The Journal of Young Investigators, May 2021.
D. Wang, Z. Wen, L. Li, and H. Zhou, “Generating Antimicrobial Peptides from Latent Secondary Structure Space.” 2022. [Online]. Available: https://openreview.net/forum?id=ajOSNLwqssu
J. Mao et al., “Application of a deep generative model produces novel and diverse functional peptides against microbial resistance,” Comput Struct Biotechnol J, vol. 21, pp. 463–471, 2023, doi: https://doi.org/10.1016/j.csbj.2022.12.029.
J. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Sistema de inteligencia artificial para la predicción y generación automática de péptidos bioactivos”.
J. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Prototipo de una Máquina de Inteligencia Artificial para la Predicción de la Actividad Antimicrobiana a Partir del Análisis de Proteomas,” 2020.
E. Asgari and M. R. K. Mofrad, “ProtVec: A Continuous Distributed Representation of Biological Sequences,” Mar. 2015, doi: 10.1371/journal.pone.0141287.
P. J. A. Cock et al., “Biopython: Freely available Python tools for computational molecular biology and bioinformatics,” Bioinformatics, vol. 25, no. 11, 2009, doi: 10.1093/bioinformatics/btp163.
D. S. Cao, Y. Z. Liang, J. Yan, G. S. Tan, Q. S. Xu, and S. Liu, “PyDPI: Freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies,” J Chem Inf Model, vol. 53, no. 11, 2013, doi: 10.1021/ci400127q.
A. T. Müller, G. Gabernet, J. A. Hiss, and G. Schneider, “modlAMP: Python for antimicrobial peptides,” Bioinformatics, vol. 33, no. 17, 2017, doi: 10.1093/bioinformatics/btx285.
S. Ramírez Montaño, “FastAPI,” 2023.
J. Amat Rodrigo, “Comparación de distribuciones con python: test Kolmogorov–Smirnov.” https://www.cienciadedatos.net/documentos/pystats08-comparacion-distribuciones-test-kolmogorov-smirnov-python.html (accessed May 24, 2022).
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two time-scale update rule converge to a local Nash equilibrium,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-December.
D. C. Dowson and B. v. Landau, “The Fréchet distance between multivariate normal distributions,” J Multivar Anal, vol. 12, no. 3, 1982, doi: 10.1016/0047-259X(82)90077-X.
F. H. Waghu, R. S. Barai, P. Gurung, and S. Idicula-Thomas, “CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides,” Nucleic Acids Res, vol. 44, no. D1, pp. D1094–D1097, 2016, doi: 10.1093/nar/gkv1051.
C. R. Chung, T. R. Kuo, L. C. Wu, T. Y. Lee, and J. T. Horng, “Characterization and identification of antimicrobial peptides with different functional activities,” Brief Bioinform, vol. 21, no. 3, 2020, doi: 10.1093/bib/bbz043.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 65 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Analítica
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83835/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83835/4/Modelo%20de%20Aprendizaje%20Profundo%20para%20la%20Generaci%c3%b3n%20Autom%c3%a1tica%20de%20P%c3%a9ptidos%20Antimicrobianos%20Sint%c3%a9ticos%20con%20Funcionalidades%20Espec%c3%adficas.pdf
https://repositorio.unal.edu.co/bitstream/unal/83835/5/Modelo%20de%20Aprendizaje%20Profundo%20para%20la%20Generaci%c3%b3n%20Autom%c3%a1tica%20de%20P%c3%a9ptidos%20Antimicrobianos%20Sint%c3%a9ticos%20con%20Funcionalidades%20Espec%c3%adficas.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
3e30c525de8fba0f0545cdb6e87654b2
180f93aa8d83864e04d98f2bc5192184
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089314112372736
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mera Banguero, Carlos Andres6389e3503770a49b50672c151957265fBranch Bedoya, John Willian112eaa0bbeeaeb0d3d14dfe15d672a15600Orduz Peralta, Sergiobfc3c74726167d38ddd831c691a9e32f600Orrego Pérez, Andrése449eb91df1f9b6150c0dc286d820343Biología FuncionalGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial0000-0002-5143-0276https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001737101https://scholar.google.com/citations?user=K6Tz_4QAAAAJ&hl=es2023-05-19T19:12:22Z2023-05-19T19:12:22Z2023https://repositorio.unal.edu.co/handle/unal/83835Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLa resistencia a los antibióticos se ha convertido en uno de los mayores problemas de salud a nivel mundial en los últimos años, provocando afectaciones directas contra la salud y la economía. Un tipo especial de proteínas cortas, denominadas péptidos antimicrobianos, está tomando gran relevancia en la investigación para combatir esta problemática, principalmente por sus bondades antibióticas. Existen diferentes métodos para la búsqueda de nuevos péptidos antimicrobianos, entre ellos está el uso de técnicas de aprendizaje automático que permiten reducir los costos y el tiempo de búsqueda, comparadas con las técnicas tradicionales de bioprospección. En esa línea, en este trabajo se propone un método para la generación de secuencias sintéticas de péptidos antimicrobianos con funcionalidades específicas utilizando una red neuronal con una arquitectura GAN condicional y celdas recurrentes. Este método es evaluado a partir de una estrategia de validación propuesta que se enfoca en medir la calidad y diversidad de las secuencias sintéticas generadas. Los modelos obtenidos fueron comparados con algunas referencias del estado del arte y los resultados mostraron que las secuencias generadas por los modelos propuestos tienen alto potencial antimicrobiano, son diversas, estructuralmente distintas a las secuencias de entrenamiento, pero similares a nivel de su composición de aminoácidos. Adicionalmente, los modelos propuestos pueden generar, a petición del usuario, secuencias con las siguientes funcionalidades específicas: antimicrobiano, antibacteriano, anti gramnegativo, anti grampositivo, antifúngico, antiviral, y anticáncer. (Tomado de la fuente)Antibiotic resistance has become one of the biggest health problems worldwide in recent years, causing direct effects on health and the economy. A particular type of short protein, called antimicrobial peptides, is gaining great relevance in research to combat this problem, mainly due to its antibiotic benefits. There are different methods for searching for new antimicrobial peptide sequences, including machine learning techniques that reduce costs and search time compared to traditional bioprospecting techniques. In that line, this work proposes a method for generating synthetic sequences of antimicrobial peptides with specific functionalities using a neural network with a conditional GAN architecture and recurrent cells. This method is evaluated based on a proposed validation strategy that measures the quality and diversity of the generated synthetic sequences. The obtained models were compared with some state-of-the-art references. The results showed that the sequences generated by the proposed models have high antimicrobial potential and are diverse, structurally different from the training sequences, but similar at their amino acid composition level. Additionally, the proposed models can generate, at the user's request, sequences with the following specific functionalities: antimicrobial, antibacterial, anti-gram-negative, anti-gram-positive, antifungal, antiviral, and anticancer.MaestríaMagíster en Ingeniería - AnalíticaInteligencia ArtificialÁrea Curricular de Ingeniería de Sistemas e Informática65 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresRedes neuronalesPéptidosGANAntimicrobial peptidesDeep learningSequence generationGANPéptidos antimicrobianosAprendizaje profundoGeneración de secuenciasModelo de aprendizaje profundo para la generación automática de péptidos antimicrobianos sintéticos con funcionalidades específicasDeep Learning Model for automatic generation of synthetic antimicrobials peptides with specific functionalitiesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaDR. Daza, “Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria,” Inf ormaciónTerapeutica del Sistema Nacional de Salud, vol. 22, no. 3, 1998.F. Del Castillo Martin, “Neumococo resistente a la penicilina. Un grave problema de salud publica,” Anales Espanoles de Pediatria, vol. 45, no. 3. 1996.World Health Organization, “Resistencia a los antimicrobianos,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance (accessed Dec. 20, 2021).J. Oromí Durich, “Resistencia bacteriana a los antibióticos. Medicina Integral,” Medicina Integral, vol. 36, no. 10, 2000.Interagency Coordination Group on Antimicrobial Resistance, “No podemos esperar: asegurar el futuro contra las infecciones farmacorresistentes,” 2019.World Health Organization, “2019 Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.,” 2019.J. O’Neill, “Antimicrobial Resistance : Tackling a crisis for the health and wealth of nations, Review on Antimicrobial Resistance, Chaired by Jim O’Neill, December 2014,” Review on Antimicrobial Resistance, no. December, 2016.WHO, “Proyecto de plan de acción mundial sobre la resistencia a los antimicrobianos. Informe de la Secretaría.,” Resistencia a los antimicrobianos, 2015.A. K. Marr, W. J. Gooderham, and R. E. Hancock, “Antibacterial peptides for therapeutic use: obstacles and realistic outlook,” Current Opinion in Pharmacology, vol. 6, no. 5. 2006. doi: 10.1016/j.coph.2006.04.006.C. D. Fjell, J. A. Hiss, R. E. W. Hancock, and G. Schneider, “Designing antimicrobial peptides: Form follows function,” Nature Reviews Drug Discovery, vol. 11, no. 1. 2012. doi: 10.1038/nrd3591.A. Talevi and L. E. Bruno-Blanch, “Screening virtual: Una herramienta eficaz para el desarrollo de nuevos fármacos en Latinoamérica,” Latin American Journal of Pharmacy, vol. 28, no. 1. 2009.J. Yan et al., “Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning,” Mol Ther Nucleic Acids, vol. 20, 2020, doi: 10.1016/j.omtn.2020.05.006.D. Veltri, U. Kamath, and A. Shehu, “Deep learning improves antimicrobial peptide recognition,” Bioinformatics, vol. 34, no. 16, 2018, doi: 10.1093/bioinformatics/bty179.M. Kozić et al., “Predicting the Minimal Inhibitory Concentration for Antimicrobial Peptides with Rana-Box Domain,” J Chem Inf Model, vol. 55, no. 10, 2015, doi: 10.1021/acs.jcim.5b00161.E. G. Sevillano, “¿Cuánto cuesta fabricar un medicamento?,” EL PAÍS, 2015.A. Orrego Pérez, J. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Sistema de Inteligencia Artificial para la Predicción o Generación Automática de péptidos Bioactivos,” Universidad Nacional de Colombia, 2020.A. Orrego Pérez, C. A. Mera Banguero, S. Orduz Peralta, and J. W. Branch Bedoya, “Red Generativa Antagónica para la Generación de Péptidos Antimicrobianos Sintéticos,” 2021.A. T. Müller, J. A. Hiss, and G. Schneider, “Recurrent Neural Network Model for Constructive Peptide Design,” J Chem Inf Model, vol. 58, no. 2, pp. 472–479, 2018, doi: 10.1021/acs.jcim.7b00414.J. R. Mxkee. Trudy Mckee, Bioquimica (las bases moleculares de la vida), vol. 53, no. 9. 2013.P. Gutiérrez and S. Orduz, “PÉPTIDOS ANTIMICROBIANOS: ESTRUCTURA, FUNCIÓN Y APLICACIONES,” Actual Biol, vol. 25, no. 78, 2003.A. A. Bahar and D. Ren, “Antimicrobial Peptides,” Pharmaceuticals , vol. 6, no. 12. 2013. doi: 10.3390/ph6121543.I. J. Goodfellow et al., “Generative Adversarial Networks,” Jun. 2014, Accessed: Dec. 14, 2021. [Online]. Available: https://arxiv.org/abs/1406.2661T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 43, no. 12, pp. 4217–4228, 2021, doi: 10.1109/TPAMI.2020.2970919.C. Donahue, J. McAuley, and M. Puckette, “Adversarial Audio Synthesis,” Feb. 2018.A. Clark, J. Donahue, and K. Simonyan, “Adversarial Video Generation on Complex Datasets,” Jul. 2019.P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks,” Nov. 2016.Z. Xu, M. Wilber, C. Fang, A. Hertzmann, and H. Jin, “Learning from Multi-domain Artistic Images for Arbitrary Style Transfer,” May 2018.H. Zhang et al., “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks,” Dec. 2016.I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Networks,” Dec. 2016.M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks,” in 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” Jan. 2017.L. Metz, J. Sohl-Dickstein, B. Poole, and D. Pfau, “Unrolled generative adversarial networks,” in 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing training of generative adversarial networks through regularization,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-Decem, pp. 2019–2029.T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved Techniques for Training GANs,” Jun. 2016.M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” Nov. 2014, Accessed: Dec. 16, 2021. [Online]. Available: https://arxiv.org/abs/1411.1784Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the Latent Space of GANs for Semantic Face Editing,” Jul. 2019.J. Langr and V. Bok, GANs in action, vol. 53, no. 9. 2019.S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural Comput, vol. 9, pp. 1735–1780, Dec. 1997, doi: 10.1162/neco.1997.9.8.1735.F. Chollet, Deep Learning with Python, 1st ed. USA: Manning Publications Co., 2017.Aurélien Géron, Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems. 2019.K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” in EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 2014. doi: 10.3115/v1/d14-1179.M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, 1997, doi: 10.1109/78.650093.F. Grisoni, C. S. Neuhaus, G. Gabernet, A. T. Müller, J. A. Hiss, and G. Schneider, “Designing Anticancer Peptides by Constructive Machine Learning,” ChemMedChem, vol. 13, no. 13, pp. 1300–1302, 2018, doi: 10.1002/cmdc.201800204.Renaud Samuel and Mansbach Rachael, “Latent Spaces for Antimicrobial Peptide Design,” ChemRxiv, Sep. 2022.C. Wang, S. Garlick, and M. Zloh, “Deep learning for novel antimicrobial peptide design,” Biomolecules, vol. 11, no. 3, pp. 1–17, 2021, doi: 10.3390/biom11030471.P. Das et al., “Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations,” Nat Biomed Eng, vol. 5, no. 6, 2021, doi: 10.1038/s41551-021-00689-x.A. Rossetto and W. Zhou, “GANDALF: Peptide Generation for Drug Design using Sequential and Structural Generative Adversarial Networks,” in Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2020, 2020. doi: 10.1145/3388440.3412487.P. Das et al., “PepCVAE: Semi-Supervised Targeted Design of Antimicrobial Peptide Sequences,” Oct. 2018, Accessed: Dec. 14, 2021. [Online]. Available: https://arxiv.org/abs/1810.07743K. Hasegawa, Y. Moriwaki, T. Terada, C. Wei, and K. Shimizu, “Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides,” J Bioinform Comput Biol, vol. 20, no. 6, 2022, doi: 10.1142/S0219720022500263.S. N. Dean, J. A. E. Alvarez, D. Zabetakis, S. A. Walper, and A. P. Malanoski, “PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction,” Front Microbiol, vol. 12, 2021, doi: 10.3389/fmicb.2021.725727.A. Vélez, C. Mera, S. Orduz, and J. W. Branch, “Synthetic antimicrobial peptides generation using recurrent neural networks | Generación de péptidos antimicrobianos mediante redes neuronales recurrentes,” DYNA (Colombia), vol. 88, no. 216, pp. 210–219, 2021, doi: 10.15446/dyna.v88n221.88799.C. M. van Oort, J. B. Ferrell, J. M. Remington, S. Wshah, and J. Li, “AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides,” J Chem Inf Model, vol. 61, no. 5, pp. 2198–2207, 2021, doi: 10.1021/acs.jcim.0c01441.J. B. Ferrell et al., “A Generative Approach Toward Precision Antimicrobial Peptide Design,” bioRxiv, p. 2020.10.02.324087, Jan. 2020, doi: 10.1101/2020.10.02.324087.P. Szymczak et al., “HydrAMP: a deep generative model for antimicrobial peptide discovery,” bioRxiv, p. 2022.01.27.478054, Jan. 2022, doi: 10.1101/2022.01.27.478054.A. Capecchi, X. Cai, H. Personne, T. Köhler, C. van Delden, and J. L. Reymond, “Machine learning designs non-hemolytic antimicrobial peptides,” Chem Sci, vol. 12, no. 26, 2021, doi: 10.1039/d1sc01713f.D. Nagarajan et al., “Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria,” J. Biol. Chem., vol. 293, p. 3492, 2018.M. Ghorbani, S. Prasad, B. R. Brooks, and J. B. Klauda, “Deep attention based variational autoencoder for antimicrobial peptide discovery,” bioRxiv, p. 2022.07.08.499340, Jan. 2022, doi: 10.1101/2022.07.08.499340.M. Pirtskhalava et al., “DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics,” Nucleic Acids Res, vol. 49, no. D1, 2021, doi: 10.1093/nar/gkaa991.A. Bateman, “UniProt: A worldwide hub of protein knowledge,” Nucleic Acids Res, vol. 47, no. D1, 2019, doi: 10.1093/nar/gky1049.H. T. Lee, C. C. Lee, J. R. Yang, J. Z. C. Lai, K. Y. Chang, and O. Ray, “A large-scale structural classification of Antimicrobial peptides,” BioMed Research International, vol. 2015. 2015. doi: 10.1155/2015/475062.G. Wang, X. Li, and Z. Wang, “APD3: The antimicrobial peptide database as a tool for research and education,” Nucleic Acids Res, vol. 44, no. D1, 2016, doi: 10.1093/nar/gkv1278.X. Zhao, H. Wu, H. Lu, G. Li, and Q. Huang, “LAMP: A Database Linking Antimicrobial Peptides,” PLoS One, vol. 8, no. 6, 2013, doi: 10.1371/journal.pone.0066557.S. N. Dean and S. A. Walper, “Variational autoencoder for generation of antimicrobial peptides,” ACS Omega, vol. 5, no. 33, pp. 20746–20754, 2020, doi: 10.1021/acsomega.0c00442.F. Chollet and others, “Keras.” 2015.A. Paszke et al., “Automatic differentiation in PyTorch,” 2017.Martín~Abadi et al., “ TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” 2015. [Online]. Available: https://www.tensorflow.org/R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like Environment for Machine Learning,” in BigLearn, NIPS Workshop, 2011.S. Chen and H. U. Kim, “Designing Novel Functional Peptides by Manipulating a Temperature in the Softmax Function Coupled with Variational Autoencoder,” in Proceedings -2019 IEEE International Conference on Big Data, Big Data 2019, 2019. doi: 10.1109/BigData47090.2019.9006253.A. Tucs, D. P. Tran, A. Yumoto, Y. Ito, T. Uzawa, and K. Tsuda, “Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks,” ACS Omega, vol. 5, no. 36, pp. 22847–22851, 2020, doi: 10.1021/acsomega.0c02088.T.-T. Lin et al., “Discovering Novel Antimicrobial Peptides in Generative Adversarial Network,” bioRxiv, 2021.A. Orrego Pérez et al., “PepMultiTools,” 2019. https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/herramientas/pepmultitools.htmlC. M. Van Oort, J. B. Ferrell, J. M. Remington, S. Wshah, and J. Li, “AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides,” J Chem Inf Model, vol. 61, no. 5, pp. 2198–2207, 2021, doi: 10.1021/acs.jcim.0c01441.A. Gupta and J. Zou, “Feedback GAN for DNA optimizes protein functions,” Nat Mach Intell, vol. 1, no. 2, pp. 105–111, 2019, doi: 10.1038/s42256-019-0017-4.A. Tucs, D. P. Tran, A. Yumoto, Y. Ito, T. Uzawa, and K. Tsuda, “Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks,” ACS Omega, vol. 5, no. 36, pp. 22847–22851, 2020, doi: 10.1021/acsomega.0c02088.M. Lu and T. Gibson, “Development of Predictive Tools for Anti-Cancer Peptide Candidates using Generative Machine Learning Models,” The Journal of Young Investigators, May 2021.D. Wang, Z. Wen, L. Li, and H. Zhou, “Generating Antimicrobial Peptides from Latent Secondary Structure Space.” 2022. [Online]. Available: https://openreview.net/forum?id=ajOSNLwqssuJ. Mao et al., “Application of a deep generative model produces novel and diverse functional peptides against microbial resistance,” Comput Struct Biotechnol J, vol. 21, pp. 463–471, 2023, doi: https://doi.org/10.1016/j.csbj.2022.12.029.J. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Sistema de inteligencia artificial para la predicción y generación automática de péptidos bioactivos”.J. W. Branch Bedoya, C. A. Mera Banguero, and S. Orduz Peralta, “Prototipo de una Máquina de Inteligencia Artificial para la Predicción de la Actividad Antimicrobiana a Partir del Análisis de Proteomas,” 2020.E. Asgari and M. R. K. Mofrad, “ProtVec: A Continuous Distributed Representation of Biological Sequences,” Mar. 2015, doi: 10.1371/journal.pone.0141287.P. J. A. Cock et al., “Biopython: Freely available Python tools for computational molecular biology and bioinformatics,” Bioinformatics, vol. 25, no. 11, 2009, doi: 10.1093/bioinformatics/btp163.D. S. Cao, Y. Z. Liang, J. Yan, G. S. Tan, Q. S. Xu, and S. Liu, “PyDPI: Freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies,” J Chem Inf Model, vol. 53, no. 11, 2013, doi: 10.1021/ci400127q.A. T. Müller, G. Gabernet, J. A. Hiss, and G. Schneider, “modlAMP: Python for antimicrobial peptides,” Bioinformatics, vol. 33, no. 17, 2017, doi: 10.1093/bioinformatics/btx285.S. Ramírez Montaño, “FastAPI,” 2023.J. Amat Rodrigo, “Comparación de distribuciones con python: test Kolmogorov–Smirnov.” https://www.cienciadedatos.net/documentos/pystats08-comparacion-distribuciones-test-kolmogorov-smirnov-python.html (accessed May 24, 2022).M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two time-scale update rule converge to a local Nash equilibrium,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-December.D. C. Dowson and B. v. Landau, “The Fréchet distance between multivariate normal distributions,” J Multivar Anal, vol. 12, no. 3, 1982, doi: 10.1016/0047-259X(82)90077-X.F. H. Waghu, R. S. Barai, P. Gurung, and S. Idicula-Thomas, “CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides,” Nucleic Acids Res, vol. 44, no. D1, pp. D1094–D1097, 2016, doi: 10.1093/nar/gkv1051.C. R. Chung, T. R. Kuo, L. C. Wu, T. Y. Lee, and J. T. Horng, “Characterization and identification of antimicrobial peptides with different functional activities,” Brief Bioinform, vol. 21, no. 3, 2020, doi: 10.1093/bib/bbz043.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83835/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINALModelo de Aprendizaje Profundo para la Generación Automática de Péptidos Antimicrobianos Sintéticos con Funcionalidades Específicas.pdfModelo de Aprendizaje Profundo para la Generación Automática de Péptidos Antimicrobianos Sintéticos con Funcionalidades Específicas.pdfTesis de maestría en Ingeniería - Análiticaapplication/pdf1780832https://repositorio.unal.edu.co/bitstream/unal/83835/4/Modelo%20de%20Aprendizaje%20Profundo%20para%20la%20Generaci%c3%b3n%20Autom%c3%a1tica%20de%20P%c3%a9ptidos%20Antimicrobianos%20Sint%c3%a9ticos%20con%20Funcionalidades%20Espec%c3%adficas.pdf3e30c525de8fba0f0545cdb6e87654b2MD54THUMBNAILModelo de Aprendizaje Profundo para la Generación Automática de Péptidos Antimicrobianos Sintéticos con Funcionalidades Específicas.pdf.jpgModelo de Aprendizaje Profundo para la Generación Automática de Péptidos Antimicrobianos Sintéticos con Funcionalidades Específicas.pdf.jpgGenerated Thumbnailimage/jpeg4761https://repositorio.unal.edu.co/bitstream/unal/83835/5/Modelo%20de%20Aprendizaje%20Profundo%20para%20la%20Generaci%c3%b3n%20Autom%c3%a1tica%20de%20P%c3%a9ptidos%20Antimicrobianos%20Sint%c3%a9ticos%20con%20Funcionalidades%20Espec%c3%adficas.pdf.jpg180f93aa8d83864e04d98f2bc5192184MD55unal/83835oai:repositorio.unal.edu.co:unal/838352023-08-04 23:04:50.923Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=