Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c

ilustraciones (algunas a color), diagramas

Autores:
Chivatá Avila, Jaime Alexander
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86491
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86491
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Trastornos del neurodesarrollo
Neurociencia cognitiva
Infección por el virus Zika
Neurodevelopmental disorders
Cognitive neuroscience
Zika virus infection
Virus del tumor murino
Mouse mammary tumor virus
Modelo de infección
desordenes del neurodesarrollo (NDDs)
Expresión diferencial
Enriquecimiento funcional
Transcriptómica
Infection model
Neurodevelopmental disorders (NDDs)
Differential expression
Functional enrichment
Transcriptomics
Transcriptómica
Transcriptome
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_593016cb329b85b6f6d7e5d7ab6c884d
oai_identifier_str oai:repositorio.unal.edu.co:unal/86491
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c
dc.title.translated.eng.fl_str_mv Identification of genes associated with neurobehavioral changes due to zika virus infection in BALB/c mice
title Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c
spellingShingle Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c
540 - Química y ciencias afines
Trastornos del neurodesarrollo
Neurociencia cognitiva
Infección por el virus Zika
Neurodevelopmental disorders
Cognitive neuroscience
Zika virus infection
Virus del tumor murino
Mouse mammary tumor virus
Modelo de infección
desordenes del neurodesarrollo (NDDs)
Expresión diferencial
Enriquecimiento funcional
Transcriptómica
Infection model
Neurodevelopmental disorders (NDDs)
Differential expression
Functional enrichment
Transcriptomics
Transcriptómica
Transcriptome
title_short Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c
title_full Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c
title_fullStr Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c
title_full_unstemmed Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c
title_sort Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c
dc.creator.fl_str_mv Chivatá Avila, Jaime Alexander
dc.contributor.advisor.spa.fl_str_mv Álvarez Diaz, Diego Alejandro
Lozano Moreno, José Manuel
dc.contributor.author.spa.fl_str_mv Chivatá Avila, Jaime Alexander
dc.contributor.researchgroup.spa.fl_str_mv Genómica de Microorganismos Emergentes
dc.contributor.cvlac.spa.fl_str_mv Chivatá Avila, Jaime Alexander [0001692043]
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Trastornos del neurodesarrollo
Neurociencia cognitiva
Infección por el virus Zika
Neurodevelopmental disorders
Cognitive neuroscience
Zika virus infection
Virus del tumor murino
Mouse mammary tumor virus
Modelo de infección
desordenes del neurodesarrollo (NDDs)
Expresión diferencial
Enriquecimiento funcional
Transcriptómica
Infection model
Neurodevelopmental disorders (NDDs)
Differential expression
Functional enrichment
Transcriptomics
Transcriptómica
Transcriptome
dc.subject.decs.spa.fl_str_mv Trastornos del neurodesarrollo
Neurociencia cognitiva
Infección por el virus Zika
dc.subject.decs.eng.fl_str_mv Neurodevelopmental disorders
Cognitive neuroscience
Zika virus infection
dc.subject.lemb.spa.fl_str_mv Virus del tumor murino
dc.subject.lemb.eng.fl_str_mv Mouse mammary tumor virus
dc.subject.proposal.spa.fl_str_mv Modelo de infección
desordenes del neurodesarrollo (NDDs)
Expresión diferencial
Enriquecimiento funcional
Transcriptómica
dc.subject.proposal.eng.fl_str_mv Infection model
Neurodevelopmental disorders (NDDs)
Differential expression
Functional enrichment
Transcriptomics
dc.subject.wikidata.spa.fl_str_mv Transcriptómica
dc.subject.wikidata.eng.fl_str_mv Transcriptome
description ilustraciones (algunas a color), diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T21:18:41Z
dc.date.available.none.fl_str_mv 2024-07-16T21:18:41Z
dc.date.issued.none.fl_str_mv 2024-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86491
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86491
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv E. B. Hayes, “Zika virus outside Africa,” Emerging Infectious Diseases, vol. 15, no. 9. Centers for Disease Control and Prevention, pp. 1347–1350, Sep. 2009, doi: 10.3201/eid1509.090442.
M. Hennessey, M. Fischer, and J. E. Staples, “Zika Virus Spreads to New Areas — Region of the Americas, May 2015–January 2016,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 3, pp. 1–4, Jan. 2019, doi: 10.15585/MMWR.MM6503E1ER.
P. Pielnaa et al., “Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development,” Virology, vol. 543, pp. 34–42, Apr. 2020, doi: 10.1016/J.VIROL.2020.01.015.
PAHO/WHO, “PLISA Plataforma de Información en Salud para las Américas. Zika - Reporte de Casos Acumulados,” 2023. https://www3.paho.org/data/index.php/es/temas/zika-weekly-es/ (accessed Dec. 14, 2023).
S. Gasco and M. Á. Muñoz-Fernández, “A review on the current knowledge on zikv infection and the interest of organoids and nanotechnology on development of effective therapies against zika infection,” International Journal of Molecular Sciences, vol. 22, no. 1. MDPI AG, pp. 1–13, Jan. 01, 2020, doi: 10.3390/ijms22010035
G. W. . Dick, “Zika virus (II). Pathogenicity and physical properties,” Trans. R. Soc. Trop. Med. Hyg., vol. 46, no. 5, pp. 521–534, Sep. 1952, doi: 10.1016/0035-9203(52)90043-6.
F. Noorbakhsh et al., “Zika Virus Infection, Basic and Clinical Aspects: A Review Article,” Iran. J. Public Health, vol. 48, no. 1, pp. 20–31, May 2019, doi: 10.18502/ijph.v48i1.779.
M. E. Rice et al., “ Vital Signs: Zika-Associated Birth Defects and Neurodevelopmental Abnormalities Possibly Associated with Congenital Zika Virus Infection — U.S. Territories and Freely Associated States, 2018 ,” MMWR. Morb. Mortal. Wkly. Rep., vol. 67, no. 31, p. 858, Aug. 2018, doi: 10.15585/mmwr.mm6731e1
S. Cauchemez et al., “Association between Zika virus and microcephaly in French Polynesia, 2013-15: A retrospective study,” Lancet, vol. 387, no. 10033, pp. 2125–2132, May 2016, doi: 10.1016/S0140-6736(16)00651-6/ATTACHMENT/068A34FA-E44F-414A-9486-1BD82EC6E75A/MMC1.PDF.
K. Nielsen-Saines et al., “Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children.,” Nat. Med., vol. 25, no. 8, p. 1213, Aug. 2019, doi: 10.1038/S41591-019-0496-1.
V. van der Linden et al., “Description of 13 Infants Born During October 2015–January 2016 With Congenital Zika Virus Infection Without Microcephaly at Birth — Brazil,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 47, pp. 1343–1348, Dec. 2019, doi: 10.15585/MMWR.MM6547E2.
S. B. Mulkey et al., “Neurodevelopmental Abnormalities in Children with in Utero Zika Virus Exposure Without Congenital Zika Syndrome,” JAMA Pediatr., vol. 174, no. 3, pp. 269–276, Mar. 2020, doi: 10.1001/JAMAPEDIATRICS.2019.5204.
A. Grant et al., “Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling,” Cell Host Microbe, vol. 19, no. 6, pp. 882–890, Jun. 2016, doi: 10.1016/J.CHOM.2016.05.009.
J. J. Miner et al., “Zika virus infection in mice causes pan-uveitis with shedding of virus in tears,” Cell Rep., vol. 16, no. 12, p. 3208, Sep. 2016, doi: 10.1016/J.CELREP.2016.08.079.
L. J. Yockey et al., “Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection,” Cell, vol. 166, no. 5, p. 1247, Aug. 2016, doi: 10.1016/J.CELL.2016.08.004.
H. Li et al., “Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation,” Cell Stem Cell, vol. 19, no. 5, p. 593, Nov. 2016, doi: 10.1016/J.STEM.2016.08.005.
H. M. Lazear et al., “A Mouse Model of Zika Virus Pathogenesis,” Cell Host Microbe, vol. 19, no. 5, pp. 720–730, May 2016, doi: 10.1016/J.CHOM.2016.03.010.
K. Laiton-Donato et al., “Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation,” Microbiol. Resour. Announc., vol. 8, no. 46, pp. 2–4, 2019, doi: 10.1128/mra.01719-18.
A. C. Rengifo et al., “Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus,” Viruses, vol. 15, no. 8, p. 1632, Aug. 2023, doi: 10.3390/V15081632/S1.
C. P. Figueiredo et al., “Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice,” Nat. Commun. 2019 101, vol. 10, no. 1, pp. 1–16, Sep. 2019, doi: 10.1038/s41467-019-11866-7.
A. M. Paul et al., “Congenital Zika Virus Infection in Immunocompetent Mice Causes Postnatal Growth Impediment and Neurobehavioral Deficits,” Front. Microbiol., vol. 9, no. AUG, p. 2028, Aug. 2018, doi: 10.3389/fmicb.2018.02028.
M. Marín-Padilla, “Development of the human cerebral cortex. A cytoarchitectonic theory,” Rev. Neurol., vol. 29, no. 3, pp. 208–216, Aug. 1999, doi: 10.33588/rn.2903.99148.
J. Silbereis et al., “Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates,” Mol. Cell. Neurosci., vol. 44, no. 4, pp. 362–373, Aug. 2010, doi: 10.1016/J.MCN.2010.05.001.
B. Martynoga, D. Drechsel, and F. Guillemot, “Molecular Control of Neurogenesis: A View from the Mammalian Cerebral Cortex,” Cold Spring Harb. Perspect. Biol., vol. 4, no. 10, Oct. 2012, doi: 10.1101/CSHPERSPECT.A008359.
B. D. Semple, K. Blomgren, K. Gimlin, D. M. Ferriero, and L. J. Noble-Haeusslein, “Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species,” Prog. Neurobiol., vol. 0, p. 1, Jul. 2013, doi: 10.1016/J.PNEUROBIO.2013.04.001.
J. M. Delgado-García, “Modelos experimentales en ratones silvestres y transgénicos para el estudio de funciones motoras y cognitivas,” Rev. Neurol., vol. 41, no. S01, p. S163, 2005, doi: 10.33588/rn.41s01.2005374.
M. R. Duffy et al., “Zika Virus Outbreak on Yap Island, Federated States of Micronesia,” https://doi.org/10.1056/NEJMoa0805715, vol. 360, no. 24, pp. 2536–2543, Jun. 2009, doi: 10.1056/NEJMOA0805715.
C. Y. P. Lee and L. F. P. Ng, “Zika virus: from an obscurity to a priority,” Microbes Infect., vol. 20, no. 11–12, pp. 635–645, Dec. 2018, doi: 10.1016/J.MICINF.2018.02.009.
J. Mlakar et al., “Zika Virus Associated with Microcephaly,” N. Engl. J. Med., vol. 374, no. 10, pp. 951–958, Mar. 2016, doi: 10.1056/nejmoa1600651.
PAHO/WHO, “Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas, 2015 - 2018 Cumulative cases,” Washington, D.C, Jan. 2018. Accessed: Jun. 05, 2022. [Online]. Available: https://www3.paho.org/hq/index.php?option=com_docman&view=download&category_slug=cumulative-cases-pdf-8865&alias=43296-zika-cumulative-cases-4-january-2018-296&Itemid=270&lang=en.
INS-SIVIGILA, “Vigilancia integrada de arbovirus, Colombia 2021- 2022,” Bogotá, 2022. doi: 10.33610/23576189.2022.12.
INS-SIVIGILA, “Boletín epidemiologico semanal. Semana epidemiologica 48 26 de nov. al 2 de dic de 2023,” Inf. epidemiológico Nac., pp. 1–36, 2023, doi: 10.33610/01229907.v22n7.
D. A. Freitas et al., “Congenital Zika syndrome: A systematic review,” PLoS One, vol. 15, no. 12, Dec. 2020, doi: 10.1371/JOURNAL.PONE.0242367.
A. Q. C. Araujo, M. T. T. Silva, and A. P. Q. C. Araujo, “Zika virus-associated neurological disorders: a review,” Brain, vol. 139, no. 8, pp. 2122–2130, Aug. 2016, doi: 10.1093/BRAIN/AWW158.
M. L. Ospina et al., “Zika Virus Disease and Pregnancy Outcomes in Colombia,” N. Engl. J. Med., vol. 383, no. 6, pp. 537–545, Aug. 2020, doi: 10.1056/nejmoa1911023.
M. A. Johansson, L. Mier-y-Teran-Romero, J. Reefhuis, S. M. Gilboa, and S. L. Hills, “Zika and the Risk of Microcephaly,” N. Engl. J. Med., vol. 375, no. 1, pp. 1–4, Jul. 2016, doi: 10.1056/NEJMP1605367/SUPPL_FILE/NEJMP1605367_DISCLOSURES.PDF.
M. R. Reynolds et al., “Vital Signs: Update on Zika Virus–Associated Birth Defects and Evaluation of All U.S. Infants with Congenital Zika Virus Exposure — U.S. Zika Pregnancy Registry, 2016,” Morb. Mortal. Wkly. Rep., vol. 66, no. 13, p. 366, Apr. 2017, doi: 10.15585/MMWR.MM6613E1.
S. Reid, H. Thompson, and K. T. Thakur, “Nervous System Infections and the Global Traveler,” Semin. Neurol., vol. 38, no. 02, pp. 247–262, May 2018, doi: 10.1055/S-0038-1649335.
M. E. L. Moreira et al., “Neurodevelopment in Infants Exposed to Zika Virus In Utero,” N. Engl. J. Med., vol. 379, no. 24, p. 2377, Dec. 2018, doi: 10.1056/NEJMC1800098.
P. M. Peçanha et al., “Neurodevelopment of children exposed intra-uterus by Zika virus: A case series,” PLoS One, vol. 15, no. 2, p. e0229434, 2020, doi: 10.1371/JOURNAL.PONE.0229434.
F. Azouz, K. Arora, K. Krause, V. R. Nerurkar, and M. Kumar, “Integrated MicroRNA and mRNA profiling in zika virus-infected neurons,” Viruses, vol. 11, no. 2, Feb. 2019, doi: 10.3390/v11020162.
PAHO/WHO, “Boletin Anual Arbovirosis 2022,” 2023. https://www3.paho.org/data/index.php/es/temas/indicadores-dengue/boletin-anual-arbovirosis-2022.html (accessed Dec. 13, 2023).
J. Dang et al., “Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3,” Cell Stem Cell, vol. 19, no. 2, pp. 258–265, Aug. 2016, doi: 10.1016/J.STEM.2016.04.014/ATTACHMENT/A03E1AAA-801A-486C-82C2-329BBC28B849/MMC3.XLSX.
P. P. Garcez et al., “Zika virus: Zika virus impairs growth in human neurospheres and brain organoids,” Science (80-. )., vol. 352, no. 6287, pp. 816–818, May 2016, doi: 10.1126/SCIENCE.AAF6116/SUPPL_FILE/PAPV2.PDF.
H. Tang et al., “Zika virus infects human cortical neural progenitors and attenuates their growth,” Cell Stem Cell, vol. 18, no. 5, pp. 587–590, May 2016, doi: 10.1016/J.STEM.2016.02.016/ATTACHMENT/BFC7BD43-6F4D-42A6-B218-D53B655255B0/MMC2.XLSX.
Q. Shao et al., “Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage,” Development, vol. 143, no. 22, pp. 4127–4136, Nov. 2016, doi: 10.1242/DEV.143768.
K.-Y. Wu et al., “Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice,” Cell Res. 2016 266, vol. 26, no. 6, pp. 645–654, May 2016, doi: 10.1038/cr.2016.58.
R. M. J. Deacon, “Measuring Motor Coordination in Mice,” J. Vis. Exp., no. 75, p. 2609, 2013, doi: 10.3791/2609.
R. M. J. Deacon and J. N. P. Rawlins, “T-maze alternation in the rodent,” Nat. Protoc., vol. 1, no. 1, pp. 7–12, 2006, doi: 10.1038/nprot.2006.2.
K. J. L. Osmon, M. Vyas, E. Woodley, P. Thompson, and J. S. Walia, “Battery of Behavioral Tests Assessing General Locomotion, Muscular Strength, and Coordination in Mice,” J. Vis. Exp., vol. 2018, no. 131, p. 55491, Jan. 2018, doi: 10.3791/55491
J. Rivera et al., “Inmunorreacción de la infección por el virus de Zika en retina de ratones,” Biomédica, 2019. https://revistabiomedica.org/index.php/biomedica/article/view/4402/4241 (accessed May 02, 2022).
J. Barbeito-Andrés et al., “Congenital Zika syndrome is associated with maternal protein malnutrition,” Sci. Adv., vol. 6, no. 2, Jan. 2020, doi: 10.1126/SCIADV.AAW6284.
P. P. Garcez et al., “Zika virus disrupts molecular fingerprinting of human neurospheres,” Sci. Rep., vol. 7, Jan. 2017, doi: 10.1038/SREP40780.
N. Liscovitch and G. Chechik, “Specialization of Gene Expression during Mouse Brain Development,” PLOS Comput. Biol., vol. 9, no. 9, p. e1003185, Sep. 2013, doi: 10.1371/JOURNAL.PCBI.1003185.
S. Dutta and P. Sengupta, “Men and mice: Relating their ages,” Life Sci., vol. 152, pp. 244–248, May 2016, doi: 10.1016/J.LFS.2015.10.025.
H. J. Kang et al., “Spatiotemporal transcriptome of the human brain,” Nature, vol. 478, no. 7370, p. 483, Oct. 2011, doi: 10.1038/NATURE10523.
D. Paul and R. Bartenschlager, “Flaviviridae Replication Organelles: Oh, What a Tangled Web We Weave,” Annu. Rev. Virol., vol. 2, pp. 289–310, Nov. 2015, doi: 10.1146/annurev-virology-100114-055007.
R. Hamel et al., “Biology of Zika Virus Infection in Human Skin Cells,” J. Virol., vol. 89, no. 17, pp. 8880–8896, Sep. 2015, doi: 10.1128/jvi.00354-15.
B. H. Song, S. I. Yun, M. Woolley, and Y. M. Lee, “Zika virus: History, epidemiology, transmission, and clinical presentation,” J. Neuroimmunol., vol. 308, pp. 50–64, 2017, doi: 10.1016/j.jneuroim.2017.03.001.
R. Basu and E. Tumban, “Zika Virus on a Spreading Spree: what we now know that was unknown in the 1950’s,” Virol. J., vol. 13, no. 1, pp. 1–9, Oct. 2016, doi: 10.1186/S12985-016-0623-2/FIGURES/5.
A. D. Haddow et al., “Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage,” PLoS Negl. Trop. Dis., vol. 6, no. 2, p. e1477, Feb. 2012, doi: 10.1371/JOURNAL.PNTD.0001477.
A. R. Salehuddin et al., “Zika virus infection and its emerging trends in Southeast Asia,” Asian Pac. J. Trop. Med., vol. 10, no. 3, pp. 211–219, Mar. 2017, doi: 10.1016/J.APJTM.2017.03.002.
G. Carteaux et al., “Zika Virus Associated with Meningoencephalitis,” https://doi.org/10.1056/NEJMc1602964, vol. 374, no. 16, pp. 1595–1596, Apr. 2016, doi: 10.1056/NEJMC1602964.
P. Brasil et al., “Zika Virus Infection in Pregnant Women in Rio de Janeiro,” N. Engl. J. Med., vol. 375, no. 24, pp. 2321–2334, Dec. 2016, doi: 10.1056/NEJMOA1602412/SUPPL_FILE/NEJMOA1602412_DISCLOSURES.PDF.
L. S. Muñoz, M. A. Garcia, E. Gordon-Lipkin, B. Parra, and C. A. Pardo, “Emerging Viral Infections and Their Impact on the Global Burden of Neurological Disease,” Semin Neurol, vol. 38, pp. 163–175, 2018, doi: 10.1055/s-0038-1647247.
M. Martínez-Sellés, “Editorial commentary: Cardiovascular events after Zika virus infection,” Trends Cardiovasc. Med., vol. 32, no. 1, pp. 59–60, Jan. 2022, doi: 10.1016/J.TCM.2020.11.008.
G. W. A. Dick, S. F. Kitchen, and A. J. Haddow, “Zika Virus (I). Isolations and serological specificity,” Trans. R. Soc. Trop. Med. Hyg., vol. 46, no. 5, pp. 509–520, Sep. 1952, doi: 10.1016/0035-9203(52)90042-4.
F. N. MacNamara, “Zika virus : A report on three cases of human infection during an epidemic of jaundice in Nigeria,” Trans. R. Soc. Trop. Med. Hyg., vol. 48, no. 2, pp. 139–145, Mar. 1954, doi: 10.1016/0035-9203(54)90006-1.
G. Morris, T. Barichello, B. Stubbs, C. A. Köhler, A. F. Carvalho, and M. Maes, “Zika Virus as an Emerging Neuropathogen: Mechanisms of Neurovirulence and Neuro-Immune Interactions,” Mol. Neurobiol. 2017 555, vol. 55, no. 5, pp. 4160–4184, Jun. 2017, doi: 10.1007/S12035-017-0635-Y.
V. M. Cao-Lormeau et al., “Zika Virus, French Polynesia, South Pacific, 2013,” Emerg. Infect. Dis., vol. 20, no. 6, p. 1085, 2014, doi: 10.3201/EID2006.140138.
L. Watrin, F. Ghawché, P. Larre, J. P. Neau, S. Mathis, and E. Fournier, “Guillain-Barré Syndrome (42 Cases) Occurring during a Zika Virus Outbreak in French Polynesia,” Med. (United States), vol. 95, no. 14, Apr. 2016, doi: 10.1097/MD.0000000000003257.
T. V. B. de Araújo et al., “Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study,” Lancet Infect. Dis., vol. 16, no. 12, pp. 1356–1363, Dec. 2016, doi: 10.1016/S1473-3099(16)30318-8/ATTACHMENT/8D50372D-779F-483B-8F44-F24C67C1E0C9/MMC1.PDF.
W. K. de Oliveira, G. V. A. de França, E. H. Carmo, B. B. Duncan, R. de Souza Kuchenbecker, and M. I. Schmidt, “Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis,” Lancet, vol. 390, no. 10097, pp. 861–870, Aug. 2017, doi: 10.1016/S0140-6736(17)31368-5/ATTACHMENT/B71BC16F-F814-4987-B44B-F8C6D3988903/MMC1.PDF.
W. Kleber de Oliveira et al., “Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy - Brazil, 2015,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 9, pp. 242–247, Mar. 2016, doi: 10.15585/MMWR.MM6509E2.
F. Marinho et al., “Microcefalia en Brasil: prevalencia y caracterización de casos a partir del Sistema de Informaciones sobre Nacidos Vivos (Sinasc), 2000-2015,” Epidemiol. e Serviços Saúde, vol. 25, no. 4, pp. 701–712, Sep. 2016, doi: 10.5123/S1679-49742016000400004.
A. S. Oliveira Melo, G. Malinger, R. Ximenes, P. O. Szejnfeld, S. Alves Sampaio, and A. M. Bispo De Filippis, “Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg?,” Ultrasound Obstet. Gynecol., vol. 47, no. 1, pp. 6–7, Jan. 2016, doi: 10.1002/UOG.15831.
M. Yeasmin, M. M. A. Molla, H. M. A. Al Masud, and K. M. Saif-Ur-Rahman, “Safety and immunogenicity of Zika virus vaccine: A systematic review of clinical trials,” Rev. Med. Virol., vol. 33, no. 1, p. 33, Jan. 2023, doi: 10.1002/RMV.2385.
P. M. S. Castanha and E. T. A. Marques, “Vaccine development during global epidemics: the Zika experience,” Lancet Infect. Dis., vol. 20, no. 9, pp. 998–999, Sep. 2020, doi: 10.1016/S1473-3099(20)30360-1.
E. Marbán-Castro, A. Goncé, V. Fumadó, L. Romero-Acevedo, and A. Bardají, “Zika virus infection in pregnant women and their children: A review,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 265, pp. 162–168, Oct. 2021, doi: 10.1016/J.EJOGRB.2021.07.012.
A. Higuera and J. D. Ramírez, “Molecular epidemiology of dengue, yellow fever, Zika and Chikungunya arboviruses: An update,” Acta Trop., vol. 190, pp. 99–111, 2019, doi: 10.1016/j.actatropica.2018.11.010
C. V. Portilla Cabrera and J. J. Selvaraj, “Geographic shifts in the bioclimatic suitability for Aedes aegypti under climate change scenarios in Colombia,” Heliyon, vol. 6, no. 1, Jan. 2020, doi: 10.1016/j.heliyon.2019.e03101.
F. C. Coelho et al., “Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of sexual transmission from men to women,” Int. J. Infect. Dis., vol. 51, pp. 128–132, Oct. 2016, doi: 10.1016/J.IJID.2016.08.023/ATTACHMENT/9A00DB06-6A12-458F-89A7-C4655720F143/MMC1.DOCX.
O. Pacheco et al., “Zika Virus Disease in Colombia — Preliminary Report,” N. Engl. J. Med., vol. 383, no. 6, p. e44, Aug. 2020, doi: 10.1056/NEJMOA1604037/SUPPL_FILE/NEJMOA1604037_DISCLOSURES.PDF.
S. Masmejan et al., “Zika Virus,” Pathog. 2020, Vol. 9, Page 898, vol. 9, no. 11, p. 898, Oct. 2020, doi: 10.3390/PATHOGENS9110898.
L. Pomar, D. Musso, G. Malinger, M. Vouga, A. Panchaud, and D. Baud, “Zika virus during pregnancy: From maternal exposure to congenital Zika virus syndrome,” Prenat. Diagn., vol. 39, no. 6, pp. 420–430, May 2019, doi: 10.1002/PD.5446.
S. A. Rasmussen and D. J. Jamieson, “Teratogen update: Zika virus and pregnancy,” Birth Defects Res., vol. 112, no. 15, pp. 1139–1149, Sep. 2020, doi: 10.1002/BDR2.1781.
A. Benavides-Lara et al., “Zika Virus–Associated Birth Defects, Costa Rica, 2016–2018,” Emerg. Infect. Dis., vol. 27, no. 2, p. 360, Feb. 2021, doi: 10.3201/EID2702.202047.
B. Hoen et al., “Pregnancy Outcomes after ZIKV Infection in French Territories in the Americas,” N. Engl. J. Med., vol. 378, no. 11, pp. 985–994, Mar. 2018, doi: 10.1056/NEJMOA1709481/SUPPL_FILE/NEJMOA1709481_DISCLOSURES.PDF.
S. H. Leisher et al., “Systematic review: fetal death reporting and risk in Zika-affected pregnancies,” Trop. Med. Int. Heal., vol. 26, no. 2, pp. 133–145, Feb. 2021, doi: 10.1111/TMI.13522.
D. Musso, A. I. Ko, and D. Baud, “Zika Virus Infection — After the Pandemic,” N. Engl. J. Med., vol. 381, no. 15, pp. 1444–1457, Oct. 2019, doi: 10.1056/NEJMRA1808246/SUPPL_FILE/NEJMRA1808246_DISCLOSURES.PDF.
D. Tappe et al., “Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase,” Med. Microbiol. Immunol., vol. 205, no. 3, p. 269, Jun. 2016, doi: 10.1007/S00430-015-0445-7.
C. B. Coyne and H. M. Lazear, “Zika virus — reigniting the TORCH,” Nat. Rev. Microbiol. 2016 1411, vol. 14, no. 11, pp. 707–715, Aug. 2016, doi: 10.1038/nrmicro.2016.125.
E. M. Venceslau, J. P. Guida, E. Amaral, J. L. P. Modena, and M. L. Costa, “Characterization of Placental Infection by Zika Virus in Humans: A Review of the Literature,” Rev. Bras. Ginecol. e Obs., vol. 42, no. 9, pp. 577–585, Oct. 2020, doi: 10.1055/S-0040-1712126.
I. Filges et al., “Strømme Syndrome Is a Ciliary Disorder Caused by Mutations in CENPF,” Hum. Mutat., vol. 37, no. 4, pp. 359–363, Apr. 2016, doi: 10.1002/HUMU.22960.
A. M. Waters et al., “The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes,” J. Med. Genet., vol. 52, no. 3, pp. 147–156, Mar. 2015, doi: 10.1136/JMEDGENET-2014-102691/-/DC1.
M. Venere, Y. G. Han, R. Bell, J. S. Song, A. Alvarez-Buylla, and R. Blelloch, “Sox1 marks an activated neural stem/progenitor cell in the hippocampus,” Development,vol. 139, no. 21, pp. 3938–3949, Nov. 2012, doi: 10.1242/DEV.081133.
S. J. Arnold et al., “The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone,” Genes Dev., vol. 22, no. 18, pp. 2479–2484, Sep. 2008, doi: 10.1101/GAD.475408.
L. Baala et al., “Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis,” Nat. Genet. 2007 394, vol. 39, no. 4, pp. 454–456, Mar. 2007, doi: 10.1038/ng1993.
M. Van der Meer, A. Rolls, V. Baumans, B. Olivier, and L. F. M. Van Zutphen, “Use of score sheets for welfare assessment of transgenic mice,” http://dx.doi.org/10.1258/0023677011911859, vol. 35, no. 4, pp. 379–389, Oct. 2001, doi: 10.1258/0023677011911859.
D. F. Kohn et al., “Guidelines for the Assessment and Management of Pain in Rodents and Rabbits.”
E. A. Cepeda Prado, “Diferencias en la expresión de marcadores neuronales y no neuronales en cerebros de dos cepas de ratón adulto,” Pontificia Universidad Javeriana, Bogotá, 2003.
K. A. Hamel and M. Cvetanovic, “Cerebellar Regional Dissection for Molecular Analysis,” J. Vis. Exp., vol. 2020, no. 166, pp. 1–13, Dec. 2020, doi: 10.3791/61922.
G. M. J. Beaudoin et al., “Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex,” Nat. Protoc. 2012 79, vol. 7, no. 9, pp. 1741–1754, Aug. 2012, doi: 10.1038/nprot.2012.099.
D. A. Álvarez-Díaz et al., “An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses,” Infect. Genet. Evol., vol. 93, p. 104967, Sep. 2021, doi: 10.1016/J.MEEGID.2021.104967.
F. Hoffmann and La Roche, “Creating Standard Curves with Genomic DNA or Plasmid DNA Templates for Use in Quantitative PCR,” 2003. [Online]. Available: https://assets.thermofisher.com/TFS-Assets/LSG/Application-Notes/cms_042486.pdf.
K. C. Montgomery, “Exploratory behavior and its relation to spontaneous alternation in a series of maze exposures,” J. Comp. Physiol. Psychol., vol. 45, no. 1, pp. 50–57, Feb. 1952, doi: 10.1037/H0053570.
R. d’Isa, G. Comi, and L. Leocani, “Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze,” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–13, Oct. 2021, doi: 10.1038/s41598-021-00402-7.
R. Lalonde, “The neurobiological basis of spontaneous alternation,” Neurosci. Biobehav. Rev., vol. 26, no. 1, pp. 91–104, Jan. 2002, doi: 10.1016/S0149-7634(01)00041-0.
J. Jurado-Arjona, A. Rodríguez-Matellán, J. Ávila, and F. Hernández, “GSK3β overexpression driven by GFAP promoter improves rotarod performance,” Brain Res., vol. 1712, pp. 47–54, Jun. 2019, doi: 10.1016/J.BRAINRES.2019.01.040.
E. D’Angelo, “Physiology of the cerebellum,” Handb. Clin. Neurol., vol. 154, pp. 85–108, Jan. 2018, doi: 10.1016/B978-0-444-63956-1.00006-0.
International Mouse Phenotyping Consorcium, “Rotarod Protocol,” Rotarod HMGU_ROT_001. https://www.mousephenotype.org/impress/ProcedureInfo?action=list&procID=168 (accessed Jan. 12, 2024).
M. L. Seibenhener and M. C. Wooten, “Use of the Open Field Maze to Measure Locomotor and Anxiety-like Behavior in Mice,” J. Vis. Exp., no. 96, p. 52434, Feb. 2015, doi: 10.3791/52434.
L. R. Watson J, BakerT, Bell S, Gann A, Levine, Biologia Molecular del gen, 5 edición. Editorial Médica Panamericana, 2008.
V. Schultz et al., “Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS Cultures,” Viruses, vol. 13, no. 1, Jan. 2021, doi: 10.3390/V13010091.
S. L. Cumberworth et al., “Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected,” Acta Neuropathol. Commun., vol. 5, no. 1, p. 50, Jun. 2017, doi: 10.1186/S40478-017-0450-8/FIGURES/2.
J. L. Salzer and B. Zalc, “Myelination,” Curr. Biol., vol. 26, no. 20, pp. R971–R975, Oct. 2016, doi: 10.1016/j.cub.2016.07.074.
M. García-Montes and I. Crespo, “La mielinización como un factor modulador de los circuitos de memoria,” Rev. Neurol., vol. 76, no. 3, p. 101, 2023, doi: 10.33588/RN.7603.2022325.
M. C. Ford et al., “Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing,” Nat. Commun., vol. 6, Aug. 2015, doi: 10.1038/NCOMMS9073.
S. Moore et al., “A role of oligodendrocytes in information processing,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi: 10.1038/S41467-020-19152-7.
M. Mercado et al., “Discordant Clinical Outcomes in a Monozygotic Dichorionic-Diamniotic Twin Pregnancy with Probable Zika Virus Exposure. Case Report,” Trop. Med. Infect. Dis. 2020, Vol. 5, Page 188, vol. 5, no. 4, p. 188, Dec. 2020, doi: 10.3390/TROPICALMED5040188.
N. Arora, Y. Sadovsky, T. S. Dermody, and C. B. Coyne, “Microbial Vertical Transmission during Human Pregnancy,” Cell Host Microbe, vol. 21, no. 5, pp. 561–567, 2017, doi: 10.1016/j.chom.2017.04.007.
I. K. Sariyer et al., “Suppression of Zika Virus Infection in the Brain by the Antiretroviral Drug Rilpivirine,” Mol. Ther., vol. 27, no. 12, p. 2067, Dec. 2019, doi: 10.1016/J.YMTHE.2019.10.006.
G. Hageman and J. Nihom, “Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases,” Eur. J. Paediatr. Neurol., vol. 42, pp. 1–14, Jan. 2023, doi: 10.1016/J.EJPN.2022.11.002.
D. Degrandi et al., “Extensive Characterization of IFN-Induced GTPases mGBP1 to mGBP10 Involved in Host Defense,” J. Immunol., vol. 179, no. 11, pp. 7729–7740, Dec. 2007, doi: 10.4049/JIMMUNOL.179.11.7729.
M. Miyashita, H. Oshiumi, M. Matsumoto, and T. Seya, “DDX60, a DEXD/H Box Helicase, Is a Novel Antiviral Factor Promoting RIG-I-Like Receptor-Mediated Signaling,” Mol. Cell. Biol., vol. 31, no. 18, p. 3802, Sep. 2011, doi: 10.1128/MCB.01368-10.
D. Szappanos et al., “The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity,” PLoS Pathog., vol. 14, no. 11, Nov. 2018, doi: 10.1371/JOURNAL.PPAT.1007397.
S. Kakuta, S. Shibata, and Y. Iwakura, “Genomic Structure of the Mouse 2’,5’-Oligoadenylate Synthetase Gene Family,” https://home.liebertpub.com/jir, vol. 22, no. 9, pp. 981–993, Jul. 2004, doi: 10.1089/10799900260286696.
O. Haller and G. Kochs, “Interferon-Induced Mx Proteins: Dynamin-Like GTPases with Antiviral Activity,” Traffic, vol. 3, no. 10, pp. 710–717, Oct. 2002, doi: 10.1034/J.1600-0854.2002.31003.X.
G. A. Taylor, “IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens,” Cell. Microbiol., vol. 9, no. 5, pp. 1099–1107, May 2007, doi: 10.1111/J.1462-5822.2007.00916.X.
A. S. da Costa, T. V. A. Fernandes, M. L. Bello, and T. L. F. de Souza, “Evaluation of potential MHC-I allele-specific epitopes in Zika virus proteins and the effects of mutations on peptide-MHC-I interaction studied using in silico approaches,” Comput. Biol. Chem., vol. 92, p. 107459, Jun. 2021, doi: 10.1016/J.COMPBIOLCHEM.2021.107459.
L. J. Hernández-Sarmiento, J. F. Valdés-López, and S. Urcuqui-Inchima, “American-Asian- and African lineages of Zika virus induce differential pro-inflammatory and Interleukin 27-dependent antiviral responses in human monocytes,” Virus Res., vol. 325, p. 199040, Feb. 2023, doi: 10.1016/J.VIRUSRES.2023.199040.
V. V. Costa et al., “N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection,” MBio, vol. 8, no. 2, Mar. 2017, doi: 10.1128/MBIO.00350-17.
P. Simon, R. Dupuis, and J. Costentin, “Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions,” Behav. Brain Res., vol. 61, no. 1, pp. 59–64, Mar. 1994, doi: 10.1016/0166-4328(94)90008-6.
N. S. Canteras, L. B. Resstel, L. J. Bertoglio, A. de Pádua Carobrez, and F. S. Guimarães, “Neuroanatomy of anxiety,” Curr. Top. Behav. Neurosci., vol. 2, pp. 77–96, 2010, doi: 10.1007/7854_2009_7/COVER.
H. Kasai, H. Ucar, Y. Morimoto, F. Eto, and H. Okazaki, “Mechanical transmission at spine synapses: Short-term potentiation and working memory,” Curr. Opin. Neurobiol., vol. 80, p. 102706, Jun. 2023, doi: 10.1016/J.CONB.2023.102706.
R. D. Terry et al., “Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment,” Ann. Neurol., vol. 30, no. 4, pp. 572–580, Oct. 1991, doi: 10.1002/ANA.410300410.
J. Kim and D. A. Hoffman, “Potassium Channels: Newly Found Players in Synaptic Plasticity,” Neuroscientist, vol. 14, no. 3, p. 276, Jun. 2008, doi: 10.1177/1073858408315041.
H. Ucar et al., “Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis,” Nat. 2021 6007890, vol. 600, no. 7890, pp. 686–689, Nov. 2021, doi: 10.1038/s41586-021-04125-7.
S. B. Chidambaram et al., “Dendritic spines: Revisiting the physiological role,” Prog. Neuro-Psychopharmacology Biol. Psychiatry, vol. 92, pp. 161–193, Jun. 2019, doi: 10.1016/J.PNPBP.2019.01.005.
R. Roesler, M. B. Parent, R. T. LaLumiere, and C. K. McIntyre, “Amygdala-hippocampal interactions in synaptic plasticity and memory formation,” Neurobiol. Learn. Mem., vol. 184, Oct. 2021, doi: 10.1016/J.NLM.2021.107490.
W. Xin and J. R. Chan, “Myelin plasticity: sculpting circuits in learning and memory,” Nat. Rev. Neurosci., vol. 21, no. 12, pp. 682–694, Dec. 2020, doi: 10.1038/S41583-020-00379-8.
J. C. Magee and C. Grienberger, “Synaptic Plasticity Forms and Functions,” https://doi.org/10.1146/annurev-neuro-090919-022842, vol. 43, pp. 95–117, Jul. 2020, doi: 10.1146/ANNUREV-NEURO-090919-022842.
L. Rossi et al., “Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency,” Genes (Basel)., vol. 12, no. 8, Aug. 2021, doi: 10.3390/GENES12081201.
A. Vezyroglou et al., “The Phenotypic Continuum of ATP1A3-Related Disorders,” Neurology, vol. 99, no. 14, p. e1511, Oct. 2022, doi: 10.1212/WNL.0000000000200927.
A. Brashear, K. J. Sweadner, J. F. Cook, K. J. Swoboda, and L. Ozelius, “ATP1A3-Related Neurologic Disorders,” GeneReviews®, Feb. 2018, Accessed: Jan. 17, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1115/.
P. J. Menon et al., “Scoping Review on ADCY5‐Related Movement Disorders,” Mov. Disord. Clin. Pract., vol. 10, no. 7, p. 1048, Jul. 2023, doi: 10.1002/MDC3.13796.
F. M. Hisama, J. Friedman, W. H. Raskind, and T. D. Bird, “ADCY5 Dyskinesia,” GeneReviews®, Jul. 2020, Accessed: Jan. 17, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK263441/.
A. Ferrini, D. Steel, K. Barwick, and M. A. Kurian, “An Update on the Phenotype, Genotype and Neurobiology of ADCY5-Related Disease,” Mov. Disord., vol. 36, no. 5, pp. 1104–1114, May 2021, doi: 10.1002/MDS.28495.
S. Lee et al., “Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis,” Neuron, vol. 91, no. 1, p. 41, Jul. 2016, doi: 10.1016/J.NEURON.2016.05.021.
J. Zhang, Y. Shang, S. Kamiya, S. J. Kotowski, K. Nakamura, and E. J. Huang, “Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating Parkin Protein Turnover,” J. Neurosci., vol. 40, no. 3, p. 557, Jan. 2020, doi: 10.1523/JNEUROSCI.2017-19.2019.
M. Garza and A. L. Piquet, “Update in Autoimmune Movement Disorders: Newly Described Antigen Targets in Autoimmune and Paraneoplastic Cerebellar Ataxia,” Front. Neurol., vol. 12, p. 683048, Aug. 2021, doi: 10.3389/FNEUR.2021.683048.
S. Mohammadi, M. Dolatshahi, and F. Rahmani, “Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors,” J. Endocrinol. Invest., vol. 44, no. 1, pp. 1–13, Jan. 2021, doi: 10.1007/S40618-020-01314-5/METRICS.
X. Qin, J. Chen, and T. Zhou, “22q11.2 deletion syndrome and schizophrenia,” Acta Biochim. Biophys. Sin. (Shanghai)., vol. 52, no. 11, pp. 1181–1190, Nov. 2020, doi: 10.1093/ABBS/GMAA113.
A. Nishi and T. Shuto, “Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders,” Expert Opin. Ther. Targets, vol. 21, no. 3, pp. 259–272, Mar. 2017, doi: 10.1080/14728222.2017.1279149.
J. A. Girault and A. C. Nairn, “DARPP-32 40 years later,” Adv. Pharmacol., vol. 90, pp. 67–87, Jan. 2021, doi: 10.1016/BS.APHA.2020.09.004.
Z. Zhang et al., “Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders,” Front. Endocrinol. (Lausanne)., vol. 13, p. 1067529, Nov. 2022, doi: 10.3389/FENDO.2022.1067529/FULL.
J. C. Lui and J. Baron, “CNP-related Short and Tall Stature: A Close-knit Family of Growth Disorders,” J. Endocr. Soc., vol. 6, no. 6, pp. 1–2, Jun. 2022, doi: 10.1210/JENDSO/BVAC064.
Z. Mi and S. H. Graham, “Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury,” Ageing Res. Rev., vol. 86, p. 101856, Apr. 2023, doi: 10.1016/J.ARR.2023.101856.
M. H. Kim, J. M. Gunnersen, and S. S. Tan, “Localized expression of the seizure-related gene SEZ-6 in developing and adult forebrains,” Mech. Dev., vol. 118, no. 1–2, pp. 171–174, Oct. 2002, doi: 10.1016/S0925-4773(02)00238-1.
Z. L. Yu et al., “Febrile seizures are associated with mutation of seizure-related (SEZ) 6, a brain-specific gene,” J. Neurosci. Res., vol. 85, no. 1, pp. 166–172, Jan. 2007, doi: 10.1002/JNR.21103.
K. M. Munro, A. Nash, M. Pigoni, S. F. Lichtenthaler, and J. M. Gunnersen, “Functions of the Alzheimer’s Disease Protease BACE1 at the Synapse in the Central Nervous System,” J. Mol. Neurosci., vol. 60, no. 3, p. 305, Nov. 2016, doi: 10.1007/S12031-016-0800-1.
G. Benítez-King, L. Ortiz-López, S. Morales-Mulia, G. Jiménez-Rubio, G. Ramírez-Rodríguez, and I. Meza, “Phosphorylation-Dephosphorylation Imbalance of Cytoskeletal Associated Proteins in Neurodegenerative Diseases,” Recent Pat. CNS Drug Discov., vol. 1, no. 2, pp. 219–230, 2006, doi: 10.2174/157488906777452776.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 89 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86491/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86491/2/1014260488.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86491/3/1014260488.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
3a18c216ed5e83b705ff3ca481e34e17
012a9b8ecb01f7a29bf5924f8df2e7a2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886298761297920
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Álvarez Diaz, Diego Alejandrod0a756464256e51f82e12994d9061a7dLozano Moreno, José Manueldcbd854266c63b771557dc4006002e04600Chivatá Avila, Jaime Alexanderfe36cbb53722d31f10016f047caee3d6Genómica de Microorganismos EmergentesChivatá Avila, Jaime Alexander [0001692043]2024-07-16T21:18:41Z2024-07-16T21:18:41Z2024-01https://repositorio.unal.edu.co/handle/unal/86491Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (algunas a color), diagramasEl virus Zika (ZIKV) es un arbovirus causante del “Síndrome de zika congénito”, asociado con diversos desórdenes del neurodesarrollo (NDDs) donde la microcefalia es una de las manifestaciones más severas. Existen NDDs más leves que pueden pasar desapercibidos en neonatos, como trastornos del espectro autista, retrasos en el desarrollo neuropsicomotor y del lenguaje que resultan en dificultades sociales y académicas. Los modelos murinos de infección por ZIKV reproducen defectos motores y cognitivos reportados en humanos los cuales pueden evaluarse mediante dispositivos comportamentales para su posterior contraste con perfiles de expresión genética, útiles en la caracterización de NDDs por ZIKV. Este estudio se enfocó en identificar genes asociados a cambios comportamentales por la infección con virus Zika en ratones BALB/c juveniles. Se inocularon por vía subcutánea con ZIKV (MH544701.2) ratones con dosis de 6.8x103 PFU al 1 día post-natal (DPN). La presencia del virus en cerebelo y corteza se verificó y cuantificó a los 10 y 30 días post-nfección (DPI) mediante RT-qPCR, los potenciales déficits neuroconductuales se evaluaron a los 30 DPI mediante las pruebas de laberinto en T, rotarod y campo abierto para posteriormente secuenciar y obtener listas genes diferencialmente expresados (DEG) así como categorías funcionales mediante análisis de enriquecimiento de conjunto de genes (GSEA). Se obtuvo un modelo de infección por ZIKV con capacidad de infectar para infectar cerebro, permitir la sobrevida más allá del 30 DPI y causar alteraciones comportamentales leves relacionadas con la actividad cognitiva, pero no con la motora o motivacional, asociada a una fuerte subregulación de genes relacionados con la sinapsis y con funciones estructurales en axones, dendritas y recubrimiento de mielina. En conjunto, estos datos proporcionan nueva información sobre los genes y las posibles vías moleculares que se ven alteradas en un proceso de infección leve y sugiere genes candidatos para futuras investigaciones. (Texto tomado de la fuente)The Zika virus (ZIKV) is an arbovirus responsible for the "Congenital Zika Syndrome," associated with various neurodevelopmental disorders (NDDs), where microcephaly is one of the most severe manifestations. Milder NDDs, including autism spectrum disorders and delays in neuropsychomotor and language development, may go unnoticed in neonates, resulting in social and academic challenges. Murine models of ZIKV infection replicate motor and cognitive defects reported in humans, assessable through behavioural devices for subsequent comparison with gene expression profiles, valuable in characterizing ZIKV-induced NDDs. This study aimed to identify genes associated with behavioral changes in Zika virus infection in juvenile BALB/c mice. Mice were subcutaneously inoculated with ZIKV (MH544701.2) at 1 day postnatal (DPN) with a dose of 6.8x103 PFU. Virus presence in cerebellum and cortex was verified and quantified at 10 and 30 days post-infection (DPI) using RT-qPCR. Potential neurobehavioral deficits were evaluated at 30 DPI through T-maze, rotarod, and open-field tests, followed by sequencing to obtain lists of differentially expressed genes (DEGs) and functional categories through gene set enrichment analysis (GSEA). A ZIKV infection model was established with the ability to infect the brain, allow survival beyond 30 DPI, and induce mild behavioral alterations related to cognitive activity but not motor or motivational aspects. This was associated with a strong downregulation of genes related to synapses and structural functions in axons, dendrites, and myelin sheaths. Overall, these data provide new insights into genes and potential molecular pathways altered in a mild infection process, suggesting candidate genes for future investigations. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - BioquímicaBiología celular y patogénesis de los agentes emergentes y reemergentes causantes de enfermedades transmisibles.89 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesTrastornos del neurodesarrolloNeurociencia cognitivaInfección por el virus ZikaNeurodevelopmental disordersCognitive neuroscienceZika virus infectionVirus del tumor murinoMouse mammary tumor virusModelo de infeccióndesordenes del neurodesarrollo (NDDs)Expresión diferencialEnriquecimiento funcionalTranscriptómicaInfection modelNeurodevelopmental disorders (NDDs)Differential expressionFunctional enrichmentTranscriptomicsTranscriptómicaTranscriptomeIdentificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/cIdentification of genes associated with neurobehavioral changes due to zika virus infection in BALB/c miceTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TME. B. Hayes, “Zika virus outside Africa,” Emerging Infectious Diseases, vol. 15, no. 9. Centers for Disease Control and Prevention, pp. 1347–1350, Sep. 2009, doi: 10.3201/eid1509.090442.M. Hennessey, M. Fischer, and J. E. Staples, “Zika Virus Spreads to New Areas — Region of the Americas, May 2015–January 2016,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 3, pp. 1–4, Jan. 2019, doi: 10.15585/MMWR.MM6503E1ER.P. Pielnaa et al., “Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development,” Virology, vol. 543, pp. 34–42, Apr. 2020, doi: 10.1016/J.VIROL.2020.01.015.PAHO/WHO, “PLISA Plataforma de Información en Salud para las Américas. Zika - Reporte de Casos Acumulados,” 2023. https://www3.paho.org/data/index.php/es/temas/zika-weekly-es/ (accessed Dec. 14, 2023).S. Gasco and M. Á. Muñoz-Fernández, “A review on the current knowledge on zikv infection and the interest of organoids and nanotechnology on development of effective therapies against zika infection,” International Journal of Molecular Sciences, vol. 22, no. 1. MDPI AG, pp. 1–13, Jan. 01, 2020, doi: 10.3390/ijms22010035G. W. . Dick, “Zika virus (II). Pathogenicity and physical properties,” Trans. R. Soc. Trop. Med. Hyg., vol. 46, no. 5, pp. 521–534, Sep. 1952, doi: 10.1016/0035-9203(52)90043-6.F. Noorbakhsh et al., “Zika Virus Infection, Basic and Clinical Aspects: A Review Article,” Iran. J. Public Health, vol. 48, no. 1, pp. 20–31, May 2019, doi: 10.18502/ijph.v48i1.779.M. E. Rice et al., “ Vital Signs: Zika-Associated Birth Defects and Neurodevelopmental Abnormalities Possibly Associated with Congenital Zika Virus Infection — U.S. Territories and Freely Associated States, 2018 ,” MMWR. Morb. Mortal. Wkly. Rep., vol. 67, no. 31, p. 858, Aug. 2018, doi: 10.15585/mmwr.mm6731e1S. Cauchemez et al., “Association between Zika virus and microcephaly in French Polynesia, 2013-15: A retrospective study,” Lancet, vol. 387, no. 10033, pp. 2125–2132, May 2016, doi: 10.1016/S0140-6736(16)00651-6/ATTACHMENT/068A34FA-E44F-414A-9486-1BD82EC6E75A/MMC1.PDF.K. Nielsen-Saines et al., “Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children.,” Nat. Med., vol. 25, no. 8, p. 1213, Aug. 2019, doi: 10.1038/S41591-019-0496-1.V. van der Linden et al., “Description of 13 Infants Born During October 2015–January 2016 With Congenital Zika Virus Infection Without Microcephaly at Birth — Brazil,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 47, pp. 1343–1348, Dec. 2019, doi: 10.15585/MMWR.MM6547E2.S. B. Mulkey et al., “Neurodevelopmental Abnormalities in Children with in Utero Zika Virus Exposure Without Congenital Zika Syndrome,” JAMA Pediatr., vol. 174, no. 3, pp. 269–276, Mar. 2020, doi: 10.1001/JAMAPEDIATRICS.2019.5204.A. Grant et al., “Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling,” Cell Host Microbe, vol. 19, no. 6, pp. 882–890, Jun. 2016, doi: 10.1016/J.CHOM.2016.05.009.J. J. Miner et al., “Zika virus infection in mice causes pan-uveitis with shedding of virus in tears,” Cell Rep., vol. 16, no. 12, p. 3208, Sep. 2016, doi: 10.1016/J.CELREP.2016.08.079.L. J. Yockey et al., “Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection,” Cell, vol. 166, no. 5, p. 1247, Aug. 2016, doi: 10.1016/J.CELL.2016.08.004.H. Li et al., “Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation,” Cell Stem Cell, vol. 19, no. 5, p. 593, Nov. 2016, doi: 10.1016/J.STEM.2016.08.005.H. M. Lazear et al., “A Mouse Model of Zika Virus Pathogenesis,” Cell Host Microbe, vol. 19, no. 5, pp. 720–730, May 2016, doi: 10.1016/J.CHOM.2016.03.010.K. Laiton-Donato et al., “Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation,” Microbiol. Resour. Announc., vol. 8, no. 46, pp. 2–4, 2019, doi: 10.1128/mra.01719-18.A. C. Rengifo et al., “Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus,” Viruses, vol. 15, no. 8, p. 1632, Aug. 2023, doi: 10.3390/V15081632/S1.C. P. Figueiredo et al., “Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice,” Nat. Commun. 2019 101, vol. 10, no. 1, pp. 1–16, Sep. 2019, doi: 10.1038/s41467-019-11866-7.A. M. Paul et al., “Congenital Zika Virus Infection in Immunocompetent Mice Causes Postnatal Growth Impediment and Neurobehavioral Deficits,” Front. Microbiol., vol. 9, no. AUG, p. 2028, Aug. 2018, doi: 10.3389/fmicb.2018.02028.M. Marín-Padilla, “Development of the human cerebral cortex. A cytoarchitectonic theory,” Rev. Neurol., vol. 29, no. 3, pp. 208–216, Aug. 1999, doi: 10.33588/rn.2903.99148.J. Silbereis et al., “Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates,” Mol. Cell. Neurosci., vol. 44, no. 4, pp. 362–373, Aug. 2010, doi: 10.1016/J.MCN.2010.05.001.B. Martynoga, D. Drechsel, and F. Guillemot, “Molecular Control of Neurogenesis: A View from the Mammalian Cerebral Cortex,” Cold Spring Harb. Perspect. Biol., vol. 4, no. 10, Oct. 2012, doi: 10.1101/CSHPERSPECT.A008359.B. D. Semple, K. Blomgren, K. Gimlin, D. M. Ferriero, and L. J. Noble-Haeusslein, “Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species,” Prog. Neurobiol., vol. 0, p. 1, Jul. 2013, doi: 10.1016/J.PNEUROBIO.2013.04.001.J. M. Delgado-García, “Modelos experimentales en ratones silvestres y transgénicos para el estudio de funciones motoras y cognitivas,” Rev. Neurol., vol. 41, no. S01, p. S163, 2005, doi: 10.33588/rn.41s01.2005374.M. R. Duffy et al., “Zika Virus Outbreak on Yap Island, Federated States of Micronesia,” https://doi.org/10.1056/NEJMoa0805715, vol. 360, no. 24, pp. 2536–2543, Jun. 2009, doi: 10.1056/NEJMOA0805715.C. Y. P. Lee and L. F. P. Ng, “Zika virus: from an obscurity to a priority,” Microbes Infect., vol. 20, no. 11–12, pp. 635–645, Dec. 2018, doi: 10.1016/J.MICINF.2018.02.009.J. Mlakar et al., “Zika Virus Associated with Microcephaly,” N. Engl. J. Med., vol. 374, no. 10, pp. 951–958, Mar. 2016, doi: 10.1056/nejmoa1600651.PAHO/WHO, “Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas, 2015 - 2018 Cumulative cases,” Washington, D.C, Jan. 2018. Accessed: Jun. 05, 2022. [Online]. Available: https://www3.paho.org/hq/index.php?option=com_docman&view=download&category_slug=cumulative-cases-pdf-8865&alias=43296-zika-cumulative-cases-4-january-2018-296&Itemid=270&lang=en.INS-SIVIGILA, “Vigilancia integrada de arbovirus, Colombia 2021- 2022,” Bogotá, 2022. doi: 10.33610/23576189.2022.12.INS-SIVIGILA, “Boletín epidemiologico semanal. Semana epidemiologica 48 26 de nov. al 2 de dic de 2023,” Inf. epidemiológico Nac., pp. 1–36, 2023, doi: 10.33610/01229907.v22n7.D. A. Freitas et al., “Congenital Zika syndrome: A systematic review,” PLoS One, vol. 15, no. 12, Dec. 2020, doi: 10.1371/JOURNAL.PONE.0242367.A. Q. C. Araujo, M. T. T. Silva, and A. P. Q. C. Araujo, “Zika virus-associated neurological disorders: a review,” Brain, vol. 139, no. 8, pp. 2122–2130, Aug. 2016, doi: 10.1093/BRAIN/AWW158.M. L. Ospina et al., “Zika Virus Disease and Pregnancy Outcomes in Colombia,” N. Engl. J. Med., vol. 383, no. 6, pp. 537–545, Aug. 2020, doi: 10.1056/nejmoa1911023.M. A. Johansson, L. Mier-y-Teran-Romero, J. Reefhuis, S. M. Gilboa, and S. L. Hills, “Zika and the Risk of Microcephaly,” N. Engl. J. Med., vol. 375, no. 1, pp. 1–4, Jul. 2016, doi: 10.1056/NEJMP1605367/SUPPL_FILE/NEJMP1605367_DISCLOSURES.PDF.M. R. Reynolds et al., “Vital Signs: Update on Zika Virus–Associated Birth Defects and Evaluation of All U.S. Infants with Congenital Zika Virus Exposure — U.S. Zika Pregnancy Registry, 2016,” Morb. Mortal. Wkly. Rep., vol. 66, no. 13, p. 366, Apr. 2017, doi: 10.15585/MMWR.MM6613E1.S. Reid, H. Thompson, and K. T. Thakur, “Nervous System Infections and the Global Traveler,” Semin. Neurol., vol. 38, no. 02, pp. 247–262, May 2018, doi: 10.1055/S-0038-1649335.M. E. L. Moreira et al., “Neurodevelopment in Infants Exposed to Zika Virus In Utero,” N. Engl. J. Med., vol. 379, no. 24, p. 2377, Dec. 2018, doi: 10.1056/NEJMC1800098.P. M. Peçanha et al., “Neurodevelopment of children exposed intra-uterus by Zika virus: A case series,” PLoS One, vol. 15, no. 2, p. e0229434, 2020, doi: 10.1371/JOURNAL.PONE.0229434.F. Azouz, K. Arora, K. Krause, V. R. Nerurkar, and M. Kumar, “Integrated MicroRNA and mRNA profiling in zika virus-infected neurons,” Viruses, vol. 11, no. 2, Feb. 2019, doi: 10.3390/v11020162.PAHO/WHO, “Boletin Anual Arbovirosis 2022,” 2023. https://www3.paho.org/data/index.php/es/temas/indicadores-dengue/boletin-anual-arbovirosis-2022.html (accessed Dec. 13, 2023).J. Dang et al., “Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3,” Cell Stem Cell, vol. 19, no. 2, pp. 258–265, Aug. 2016, doi: 10.1016/J.STEM.2016.04.014/ATTACHMENT/A03E1AAA-801A-486C-82C2-329BBC28B849/MMC3.XLSX.P. P. Garcez et al., “Zika virus: Zika virus impairs growth in human neurospheres and brain organoids,” Science (80-. )., vol. 352, no. 6287, pp. 816–818, May 2016, doi: 10.1126/SCIENCE.AAF6116/SUPPL_FILE/PAPV2.PDF.H. Tang et al., “Zika virus infects human cortical neural progenitors and attenuates their growth,” Cell Stem Cell, vol. 18, no. 5, pp. 587–590, May 2016, doi: 10.1016/J.STEM.2016.02.016/ATTACHMENT/BFC7BD43-6F4D-42A6-B218-D53B655255B0/MMC2.XLSX.Q. Shao et al., “Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage,” Development, vol. 143, no. 22, pp. 4127–4136, Nov. 2016, doi: 10.1242/DEV.143768.K.-Y. Wu et al., “Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice,” Cell Res. 2016 266, vol. 26, no. 6, pp. 645–654, May 2016, doi: 10.1038/cr.2016.58.R. M. J. Deacon, “Measuring Motor Coordination in Mice,” J. Vis. Exp., no. 75, p. 2609, 2013, doi: 10.3791/2609.R. M. J. Deacon and J. N. P. Rawlins, “T-maze alternation in the rodent,” Nat. Protoc., vol. 1, no. 1, pp. 7–12, 2006, doi: 10.1038/nprot.2006.2.K. J. L. Osmon, M. Vyas, E. Woodley, P. Thompson, and J. S. Walia, “Battery of Behavioral Tests Assessing General Locomotion, Muscular Strength, and Coordination in Mice,” J. Vis. Exp., vol. 2018, no. 131, p. 55491, Jan. 2018, doi: 10.3791/55491J. Rivera et al., “Inmunorreacción de la infección por el virus de Zika en retina de ratones,” Biomédica, 2019. https://revistabiomedica.org/index.php/biomedica/article/view/4402/4241 (accessed May 02, 2022).J. Barbeito-Andrés et al., “Congenital Zika syndrome is associated with maternal protein malnutrition,” Sci. Adv., vol. 6, no. 2, Jan. 2020, doi: 10.1126/SCIADV.AAW6284.P. P. Garcez et al., “Zika virus disrupts molecular fingerprinting of human neurospheres,” Sci. Rep., vol. 7, Jan. 2017, doi: 10.1038/SREP40780.N. Liscovitch and G. Chechik, “Specialization of Gene Expression during Mouse Brain Development,” PLOS Comput. Biol., vol. 9, no. 9, p. e1003185, Sep. 2013, doi: 10.1371/JOURNAL.PCBI.1003185.S. Dutta and P. Sengupta, “Men and mice: Relating their ages,” Life Sci., vol. 152, pp. 244–248, May 2016, doi: 10.1016/J.LFS.2015.10.025.H. J. Kang et al., “Spatiotemporal transcriptome of the human brain,” Nature, vol. 478, no. 7370, p. 483, Oct. 2011, doi: 10.1038/NATURE10523.D. Paul and R. Bartenschlager, “Flaviviridae Replication Organelles: Oh, What a Tangled Web We Weave,” Annu. Rev. Virol., vol. 2, pp. 289–310, Nov. 2015, doi: 10.1146/annurev-virology-100114-055007.R. Hamel et al., “Biology of Zika Virus Infection in Human Skin Cells,” J. Virol., vol. 89, no. 17, pp. 8880–8896, Sep. 2015, doi: 10.1128/jvi.00354-15.B. H. Song, S. I. Yun, M. Woolley, and Y. M. Lee, “Zika virus: History, epidemiology, transmission, and clinical presentation,” J. Neuroimmunol., vol. 308, pp. 50–64, 2017, doi: 10.1016/j.jneuroim.2017.03.001.R. Basu and E. Tumban, “Zika Virus on a Spreading Spree: what we now know that was unknown in the 1950’s,” Virol. J., vol. 13, no. 1, pp. 1–9, Oct. 2016, doi: 10.1186/S12985-016-0623-2/FIGURES/5.A. D. Haddow et al., “Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage,” PLoS Negl. Trop. Dis., vol. 6, no. 2, p. e1477, Feb. 2012, doi: 10.1371/JOURNAL.PNTD.0001477.A. R. Salehuddin et al., “Zika virus infection and its emerging trends in Southeast Asia,” Asian Pac. J. Trop. Med., vol. 10, no. 3, pp. 211–219, Mar. 2017, doi: 10.1016/J.APJTM.2017.03.002.G. Carteaux et al., “Zika Virus Associated with Meningoencephalitis,” https://doi.org/10.1056/NEJMc1602964, vol. 374, no. 16, pp. 1595–1596, Apr. 2016, doi: 10.1056/NEJMC1602964.P. Brasil et al., “Zika Virus Infection in Pregnant Women in Rio de Janeiro,” N. Engl. J. Med., vol. 375, no. 24, pp. 2321–2334, Dec. 2016, doi: 10.1056/NEJMOA1602412/SUPPL_FILE/NEJMOA1602412_DISCLOSURES.PDF.L. S. Muñoz, M. A. Garcia, E. Gordon-Lipkin, B. Parra, and C. A. Pardo, “Emerging Viral Infections and Their Impact on the Global Burden of Neurological Disease,” Semin Neurol, vol. 38, pp. 163–175, 2018, doi: 10.1055/s-0038-1647247.M. Martínez-Sellés, “Editorial commentary: Cardiovascular events after Zika virus infection,” Trends Cardiovasc. Med., vol. 32, no. 1, pp. 59–60, Jan. 2022, doi: 10.1016/J.TCM.2020.11.008.G. W. A. Dick, S. F. Kitchen, and A. J. Haddow, “Zika Virus (I). Isolations and serological specificity,” Trans. R. Soc. Trop. Med. Hyg., vol. 46, no. 5, pp. 509–520, Sep. 1952, doi: 10.1016/0035-9203(52)90042-4.F. N. MacNamara, “Zika virus : A report on three cases of human infection during an epidemic of jaundice in Nigeria,” Trans. R. Soc. Trop. Med. Hyg., vol. 48, no. 2, pp. 139–145, Mar. 1954, doi: 10.1016/0035-9203(54)90006-1.G. Morris, T. Barichello, B. Stubbs, C. A. Köhler, A. F. Carvalho, and M. Maes, “Zika Virus as an Emerging Neuropathogen: Mechanisms of Neurovirulence and Neuro-Immune Interactions,” Mol. Neurobiol. 2017 555, vol. 55, no. 5, pp. 4160–4184, Jun. 2017, doi: 10.1007/S12035-017-0635-Y.V. M. Cao-Lormeau et al., “Zika Virus, French Polynesia, South Pacific, 2013,” Emerg. Infect. Dis., vol. 20, no. 6, p. 1085, 2014, doi: 10.3201/EID2006.140138.L. Watrin, F. Ghawché, P. Larre, J. P. Neau, S. Mathis, and E. Fournier, “Guillain-Barré Syndrome (42 Cases) Occurring during a Zika Virus Outbreak in French Polynesia,” Med. (United States), vol. 95, no. 14, Apr. 2016, doi: 10.1097/MD.0000000000003257.T. V. B. de Araújo et al., “Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study,” Lancet Infect. Dis., vol. 16, no. 12, pp. 1356–1363, Dec. 2016, doi: 10.1016/S1473-3099(16)30318-8/ATTACHMENT/8D50372D-779F-483B-8F44-F24C67C1E0C9/MMC1.PDF.W. K. de Oliveira, G. V. A. de França, E. H. Carmo, B. B. Duncan, R. de Souza Kuchenbecker, and M. I. Schmidt, “Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis,” Lancet, vol. 390, no. 10097, pp. 861–870, Aug. 2017, doi: 10.1016/S0140-6736(17)31368-5/ATTACHMENT/B71BC16F-F814-4987-B44B-F8C6D3988903/MMC1.PDF.W. Kleber de Oliveira et al., “Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy - Brazil, 2015,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 9, pp. 242–247, Mar. 2016, doi: 10.15585/MMWR.MM6509E2.F. Marinho et al., “Microcefalia en Brasil: prevalencia y caracterización de casos a partir del Sistema de Informaciones sobre Nacidos Vivos (Sinasc), 2000-2015,” Epidemiol. e Serviços Saúde, vol. 25, no. 4, pp. 701–712, Sep. 2016, doi: 10.5123/S1679-49742016000400004.A. S. Oliveira Melo, G. Malinger, R. Ximenes, P. O. Szejnfeld, S. Alves Sampaio, and A. M. Bispo De Filippis, “Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg?,” Ultrasound Obstet. Gynecol., vol. 47, no. 1, pp. 6–7, Jan. 2016, doi: 10.1002/UOG.15831.M. Yeasmin, M. M. A. Molla, H. M. A. Al Masud, and K. M. Saif-Ur-Rahman, “Safety and immunogenicity of Zika virus vaccine: A systematic review of clinical trials,” Rev. Med. Virol., vol. 33, no. 1, p. 33, Jan. 2023, doi: 10.1002/RMV.2385.P. M. S. Castanha and E. T. A. Marques, “Vaccine development during global epidemics: the Zika experience,” Lancet Infect. Dis., vol. 20, no. 9, pp. 998–999, Sep. 2020, doi: 10.1016/S1473-3099(20)30360-1.E. Marbán-Castro, A. Goncé, V. Fumadó, L. Romero-Acevedo, and A. Bardají, “Zika virus infection in pregnant women and their children: A review,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 265, pp. 162–168, Oct. 2021, doi: 10.1016/J.EJOGRB.2021.07.012.A. Higuera and J. D. Ramírez, “Molecular epidemiology of dengue, yellow fever, Zika and Chikungunya arboviruses: An update,” Acta Trop., vol. 190, pp. 99–111, 2019, doi: 10.1016/j.actatropica.2018.11.010C. V. Portilla Cabrera and J. J. Selvaraj, “Geographic shifts in the bioclimatic suitability for Aedes aegypti under climate change scenarios in Colombia,” Heliyon, vol. 6, no. 1, Jan. 2020, doi: 10.1016/j.heliyon.2019.e03101.F. C. Coelho et al., “Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of sexual transmission from men to women,” Int. J. Infect. Dis., vol. 51, pp. 128–132, Oct. 2016, doi: 10.1016/J.IJID.2016.08.023/ATTACHMENT/9A00DB06-6A12-458F-89A7-C4655720F143/MMC1.DOCX.O. Pacheco et al., “Zika Virus Disease in Colombia — Preliminary Report,” N. Engl. J. Med., vol. 383, no. 6, p. e44, Aug. 2020, doi: 10.1056/NEJMOA1604037/SUPPL_FILE/NEJMOA1604037_DISCLOSURES.PDF.S. Masmejan et al., “Zika Virus,” Pathog. 2020, Vol. 9, Page 898, vol. 9, no. 11, p. 898, Oct. 2020, doi: 10.3390/PATHOGENS9110898.L. Pomar, D. Musso, G. Malinger, M. Vouga, A. Panchaud, and D. Baud, “Zika virus during pregnancy: From maternal exposure to congenital Zika virus syndrome,” Prenat. Diagn., vol. 39, no. 6, pp. 420–430, May 2019, doi: 10.1002/PD.5446.S. A. Rasmussen and D. J. Jamieson, “Teratogen update: Zika virus and pregnancy,” Birth Defects Res., vol. 112, no. 15, pp. 1139–1149, Sep. 2020, doi: 10.1002/BDR2.1781.A. Benavides-Lara et al., “Zika Virus–Associated Birth Defects, Costa Rica, 2016–2018,” Emerg. Infect. Dis., vol. 27, no. 2, p. 360, Feb. 2021, doi: 10.3201/EID2702.202047.B. Hoen et al., “Pregnancy Outcomes after ZIKV Infection in French Territories in the Americas,” N. Engl. J. Med., vol. 378, no. 11, pp. 985–994, Mar. 2018, doi: 10.1056/NEJMOA1709481/SUPPL_FILE/NEJMOA1709481_DISCLOSURES.PDF.S. H. Leisher et al., “Systematic review: fetal death reporting and risk in Zika-affected pregnancies,” Trop. Med. Int. Heal., vol. 26, no. 2, pp. 133–145, Feb. 2021, doi: 10.1111/TMI.13522.D. Musso, A. I. Ko, and D. Baud, “Zika Virus Infection — After the Pandemic,” N. Engl. J. Med., vol. 381, no. 15, pp. 1444–1457, Oct. 2019, doi: 10.1056/NEJMRA1808246/SUPPL_FILE/NEJMRA1808246_DISCLOSURES.PDF.D. Tappe et al., “Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase,” Med. Microbiol. Immunol., vol. 205, no. 3, p. 269, Jun. 2016, doi: 10.1007/S00430-015-0445-7.C. B. Coyne and H. M. Lazear, “Zika virus — reigniting the TORCH,” Nat. Rev. Microbiol. 2016 1411, vol. 14, no. 11, pp. 707–715, Aug. 2016, doi: 10.1038/nrmicro.2016.125.E. M. Venceslau, J. P. Guida, E. Amaral, J. L. P. Modena, and M. L. Costa, “Characterization of Placental Infection by Zika Virus in Humans: A Review of the Literature,” Rev. Bras. Ginecol. e Obs., vol. 42, no. 9, pp. 577–585, Oct. 2020, doi: 10.1055/S-0040-1712126.I. Filges et al., “Strømme Syndrome Is a Ciliary Disorder Caused by Mutations in CENPF,” Hum. Mutat., vol. 37, no. 4, pp. 359–363, Apr. 2016, doi: 10.1002/HUMU.22960.A. M. Waters et al., “The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes,” J. Med. Genet., vol. 52, no. 3, pp. 147–156, Mar. 2015, doi: 10.1136/JMEDGENET-2014-102691/-/DC1.M. Venere, Y. G. Han, R. Bell, J. S. Song, A. Alvarez-Buylla, and R. Blelloch, “Sox1 marks an activated neural stem/progenitor cell in the hippocampus,” Development,vol. 139, no. 21, pp. 3938–3949, Nov. 2012, doi: 10.1242/DEV.081133.S. J. Arnold et al., “The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone,” Genes Dev., vol. 22, no. 18, pp. 2479–2484, Sep. 2008, doi: 10.1101/GAD.475408.L. Baala et al., “Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis,” Nat. Genet. 2007 394, vol. 39, no. 4, pp. 454–456, Mar. 2007, doi: 10.1038/ng1993.M. Van der Meer, A. Rolls, V. Baumans, B. Olivier, and L. F. M. Van Zutphen, “Use of score sheets for welfare assessment of transgenic mice,” http://dx.doi.org/10.1258/0023677011911859, vol. 35, no. 4, pp. 379–389, Oct. 2001, doi: 10.1258/0023677011911859.D. F. Kohn et al., “Guidelines for the Assessment and Management of Pain in Rodents and Rabbits.”E. A. Cepeda Prado, “Diferencias en la expresión de marcadores neuronales y no neuronales en cerebros de dos cepas de ratón adulto,” Pontificia Universidad Javeriana, Bogotá, 2003.K. A. Hamel and M. Cvetanovic, “Cerebellar Regional Dissection for Molecular Analysis,” J. Vis. Exp., vol. 2020, no. 166, pp. 1–13, Dec. 2020, doi: 10.3791/61922.G. M. J. Beaudoin et al., “Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex,” Nat. Protoc. 2012 79, vol. 7, no. 9, pp. 1741–1754, Aug. 2012, doi: 10.1038/nprot.2012.099.D. A. Álvarez-Díaz et al., “An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses,” Infect. Genet. Evol., vol. 93, p. 104967, Sep. 2021, doi: 10.1016/J.MEEGID.2021.104967.F. Hoffmann and La Roche, “Creating Standard Curves with Genomic DNA or Plasmid DNA Templates for Use in Quantitative PCR,” 2003. [Online]. Available: https://assets.thermofisher.com/TFS-Assets/LSG/Application-Notes/cms_042486.pdf.K. C. Montgomery, “Exploratory behavior and its relation to spontaneous alternation in a series of maze exposures,” J. Comp. Physiol. Psychol., vol. 45, no. 1, pp. 50–57, Feb. 1952, doi: 10.1037/H0053570.R. d’Isa, G. Comi, and L. Leocani, “Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze,” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–13, Oct. 2021, doi: 10.1038/s41598-021-00402-7.R. Lalonde, “The neurobiological basis of spontaneous alternation,” Neurosci. Biobehav. Rev., vol. 26, no. 1, pp. 91–104, Jan. 2002, doi: 10.1016/S0149-7634(01)00041-0.J. Jurado-Arjona, A. Rodríguez-Matellán, J. Ávila, and F. Hernández, “GSK3β overexpression driven by GFAP promoter improves rotarod performance,” Brain Res., vol. 1712, pp. 47–54, Jun. 2019, doi: 10.1016/J.BRAINRES.2019.01.040.E. D’Angelo, “Physiology of the cerebellum,” Handb. Clin. Neurol., vol. 154, pp. 85–108, Jan. 2018, doi: 10.1016/B978-0-444-63956-1.00006-0.International Mouse Phenotyping Consorcium, “Rotarod Protocol,” Rotarod HMGU_ROT_001. https://www.mousephenotype.org/impress/ProcedureInfo?action=list&procID=168 (accessed Jan. 12, 2024).M. L. Seibenhener and M. C. Wooten, “Use of the Open Field Maze to Measure Locomotor and Anxiety-like Behavior in Mice,” J. Vis. Exp., no. 96, p. 52434, Feb. 2015, doi: 10.3791/52434.L. R. Watson J, BakerT, Bell S, Gann A, Levine, Biologia Molecular del gen, 5 edición. Editorial Médica Panamericana, 2008.V. Schultz et al., “Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS Cultures,” Viruses, vol. 13, no. 1, Jan. 2021, doi: 10.3390/V13010091.S. L. Cumberworth et al., “Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected,” Acta Neuropathol. Commun., vol. 5, no. 1, p. 50, Jun. 2017, doi: 10.1186/S40478-017-0450-8/FIGURES/2.J. L. Salzer and B. Zalc, “Myelination,” Curr. Biol., vol. 26, no. 20, pp. R971–R975, Oct. 2016, doi: 10.1016/j.cub.2016.07.074.M. García-Montes and I. Crespo, “La mielinización como un factor modulador de los circuitos de memoria,” Rev. Neurol., vol. 76, no. 3, p. 101, 2023, doi: 10.33588/RN.7603.2022325.M. C. Ford et al., “Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing,” Nat. Commun., vol. 6, Aug. 2015, doi: 10.1038/NCOMMS9073.S. Moore et al., “A role of oligodendrocytes in information processing,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi: 10.1038/S41467-020-19152-7.M. Mercado et al., “Discordant Clinical Outcomes in a Monozygotic Dichorionic-Diamniotic Twin Pregnancy with Probable Zika Virus Exposure. Case Report,” Trop. Med. Infect. Dis. 2020, Vol. 5, Page 188, vol. 5, no. 4, p. 188, Dec. 2020, doi: 10.3390/TROPICALMED5040188.N. Arora, Y. Sadovsky, T. S. Dermody, and C. B. Coyne, “Microbial Vertical Transmission during Human Pregnancy,” Cell Host Microbe, vol. 21, no. 5, pp. 561–567, 2017, doi: 10.1016/j.chom.2017.04.007.I. K. Sariyer et al., “Suppression of Zika Virus Infection in the Brain by the Antiretroviral Drug Rilpivirine,” Mol. Ther., vol. 27, no. 12, p. 2067, Dec. 2019, doi: 10.1016/J.YMTHE.2019.10.006.G. Hageman and J. Nihom, “Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases,” Eur. J. Paediatr. Neurol., vol. 42, pp. 1–14, Jan. 2023, doi: 10.1016/J.EJPN.2022.11.002.D. Degrandi et al., “Extensive Characterization of IFN-Induced GTPases mGBP1 to mGBP10 Involved in Host Defense,” J. Immunol., vol. 179, no. 11, pp. 7729–7740, Dec. 2007, doi: 10.4049/JIMMUNOL.179.11.7729.M. Miyashita, H. Oshiumi, M. Matsumoto, and T. Seya, “DDX60, a DEXD/H Box Helicase, Is a Novel Antiviral Factor Promoting RIG-I-Like Receptor-Mediated Signaling,” Mol. Cell. Biol., vol. 31, no. 18, p. 3802, Sep. 2011, doi: 10.1128/MCB.01368-10.D. Szappanos et al., “The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity,” PLoS Pathog., vol. 14, no. 11, Nov. 2018, doi: 10.1371/JOURNAL.PPAT.1007397.S. Kakuta, S. Shibata, and Y. Iwakura, “Genomic Structure of the Mouse 2’,5’-Oligoadenylate Synthetase Gene Family,” https://home.liebertpub.com/jir, vol. 22, no. 9, pp. 981–993, Jul. 2004, doi: 10.1089/10799900260286696.O. Haller and G. Kochs, “Interferon-Induced Mx Proteins: Dynamin-Like GTPases with Antiviral Activity,” Traffic, vol. 3, no. 10, pp. 710–717, Oct. 2002, doi: 10.1034/J.1600-0854.2002.31003.X.G. A. Taylor, “IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens,” Cell. Microbiol., vol. 9, no. 5, pp. 1099–1107, May 2007, doi: 10.1111/J.1462-5822.2007.00916.X.A. S. da Costa, T. V. A. Fernandes, M. L. Bello, and T. L. F. de Souza, “Evaluation of potential MHC-I allele-specific epitopes in Zika virus proteins and the effects of mutations on peptide-MHC-I interaction studied using in silico approaches,” Comput. Biol. Chem., vol. 92, p. 107459, Jun. 2021, doi: 10.1016/J.COMPBIOLCHEM.2021.107459.L. J. Hernández-Sarmiento, J. F. Valdés-López, and S. Urcuqui-Inchima, “American-Asian- and African lineages of Zika virus induce differential pro-inflammatory and Interleukin 27-dependent antiviral responses in human monocytes,” Virus Res., vol. 325, p. 199040, Feb. 2023, doi: 10.1016/J.VIRUSRES.2023.199040.V. V. Costa et al., “N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection,” MBio, vol. 8, no. 2, Mar. 2017, doi: 10.1128/MBIO.00350-17.P. Simon, R. Dupuis, and J. Costentin, “Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions,” Behav. Brain Res., vol. 61, no. 1, pp. 59–64, Mar. 1994, doi: 10.1016/0166-4328(94)90008-6.N. S. Canteras, L. B. Resstel, L. J. Bertoglio, A. de Pádua Carobrez, and F. S. Guimarães, “Neuroanatomy of anxiety,” Curr. Top. Behav. Neurosci., vol. 2, pp. 77–96, 2010, doi: 10.1007/7854_2009_7/COVER.H. Kasai, H. Ucar, Y. Morimoto, F. Eto, and H. Okazaki, “Mechanical transmission at spine synapses: Short-term potentiation and working memory,” Curr. Opin. Neurobiol., vol. 80, p. 102706, Jun. 2023, doi: 10.1016/J.CONB.2023.102706.R. D. Terry et al., “Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment,” Ann. Neurol., vol. 30, no. 4, pp. 572–580, Oct. 1991, doi: 10.1002/ANA.410300410.J. Kim and D. A. Hoffman, “Potassium Channels: Newly Found Players in Synaptic Plasticity,” Neuroscientist, vol. 14, no. 3, p. 276, Jun. 2008, doi: 10.1177/1073858408315041.H. Ucar et al., “Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis,” Nat. 2021 6007890, vol. 600, no. 7890, pp. 686–689, Nov. 2021, doi: 10.1038/s41586-021-04125-7.S. B. Chidambaram et al., “Dendritic spines: Revisiting the physiological role,” Prog. Neuro-Psychopharmacology Biol. Psychiatry, vol. 92, pp. 161–193, Jun. 2019, doi: 10.1016/J.PNPBP.2019.01.005.R. Roesler, M. B. Parent, R. T. LaLumiere, and C. K. McIntyre, “Amygdala-hippocampal interactions in synaptic plasticity and memory formation,” Neurobiol. Learn. Mem., vol. 184, Oct. 2021, doi: 10.1016/J.NLM.2021.107490.W. Xin and J. R. Chan, “Myelin plasticity: sculpting circuits in learning and memory,” Nat. Rev. Neurosci., vol. 21, no. 12, pp. 682–694, Dec. 2020, doi: 10.1038/S41583-020-00379-8.J. C. Magee and C. Grienberger, “Synaptic Plasticity Forms and Functions,” https://doi.org/10.1146/annurev-neuro-090919-022842, vol. 43, pp. 95–117, Jul. 2020, doi: 10.1146/ANNUREV-NEURO-090919-022842.L. Rossi et al., “Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency,” Genes (Basel)., vol. 12, no. 8, Aug. 2021, doi: 10.3390/GENES12081201.A. Vezyroglou et al., “The Phenotypic Continuum of ATP1A3-Related Disorders,” Neurology, vol. 99, no. 14, p. e1511, Oct. 2022, doi: 10.1212/WNL.0000000000200927.A. Brashear, K. J. Sweadner, J. F. Cook, K. J. Swoboda, and L. Ozelius, “ATP1A3-Related Neurologic Disorders,” GeneReviews®, Feb. 2018, Accessed: Jan. 17, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1115/.P. J. Menon et al., “Scoping Review on ADCY5‐Related Movement Disorders,” Mov. Disord. Clin. Pract., vol. 10, no. 7, p. 1048, Jul. 2023, doi: 10.1002/MDC3.13796.F. M. Hisama, J. Friedman, W. H. Raskind, and T. D. Bird, “ADCY5 Dyskinesia,” GeneReviews®, Jul. 2020, Accessed: Jan. 17, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK263441/.A. Ferrini, D. Steel, K. Barwick, and M. A. Kurian, “An Update on the Phenotype, Genotype and Neurobiology of ADCY5-Related Disease,” Mov. Disord., vol. 36, no. 5, pp. 1104–1114, May 2021, doi: 10.1002/MDS.28495.S. Lee et al., “Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis,” Neuron, vol. 91, no. 1, p. 41, Jul. 2016, doi: 10.1016/J.NEURON.2016.05.021.J. Zhang, Y. Shang, S. Kamiya, S. J. Kotowski, K. Nakamura, and E. J. Huang, “Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating Parkin Protein Turnover,” J. Neurosci., vol. 40, no. 3, p. 557, Jan. 2020, doi: 10.1523/JNEUROSCI.2017-19.2019.M. Garza and A. L. Piquet, “Update in Autoimmune Movement Disorders: Newly Described Antigen Targets in Autoimmune and Paraneoplastic Cerebellar Ataxia,” Front. Neurol., vol. 12, p. 683048, Aug. 2021, doi: 10.3389/FNEUR.2021.683048.S. Mohammadi, M. Dolatshahi, and F. Rahmani, “Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors,” J. Endocrinol. Invest., vol. 44, no. 1, pp. 1–13, Jan. 2021, doi: 10.1007/S40618-020-01314-5/METRICS.X. Qin, J. Chen, and T. Zhou, “22q11.2 deletion syndrome and schizophrenia,” Acta Biochim. Biophys. Sin. (Shanghai)., vol. 52, no. 11, pp. 1181–1190, Nov. 2020, doi: 10.1093/ABBS/GMAA113.A. Nishi and T. Shuto, “Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders,” Expert Opin. Ther. Targets, vol. 21, no. 3, pp. 259–272, Mar. 2017, doi: 10.1080/14728222.2017.1279149.J. A. Girault and A. C. Nairn, “DARPP-32 40 years later,” Adv. Pharmacol., vol. 90, pp. 67–87, Jan. 2021, doi: 10.1016/BS.APHA.2020.09.004.Z. Zhang et al., “Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders,” Front. Endocrinol. (Lausanne)., vol. 13, p. 1067529, Nov. 2022, doi: 10.3389/FENDO.2022.1067529/FULL.J. C. Lui and J. Baron, “CNP-related Short and Tall Stature: A Close-knit Family of Growth Disorders,” J. Endocr. Soc., vol. 6, no. 6, pp. 1–2, Jun. 2022, doi: 10.1210/JENDSO/BVAC064.Z. Mi and S. H. Graham, “Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury,” Ageing Res. Rev., vol. 86, p. 101856, Apr. 2023, doi: 10.1016/J.ARR.2023.101856.M. H. Kim, J. M. Gunnersen, and S. S. Tan, “Localized expression of the seizure-related gene SEZ-6 in developing and adult forebrains,” Mech. Dev., vol. 118, no. 1–2, pp. 171–174, Oct. 2002, doi: 10.1016/S0925-4773(02)00238-1.Z. L. Yu et al., “Febrile seizures are associated with mutation of seizure-related (SEZ) 6, a brain-specific gene,” J. Neurosci. Res., vol. 85, no. 1, pp. 166–172, Jan. 2007, doi: 10.1002/JNR.21103.K. M. Munro, A. Nash, M. Pigoni, S. F. Lichtenthaler, and J. M. Gunnersen, “Functions of the Alzheimer’s Disease Protease BACE1 at the Synapse in the Central Nervous System,” J. Mol. Neurosci., vol. 60, no. 3, p. 305, Nov. 2016, doi: 10.1007/S12031-016-0800-1.G. Benítez-King, L. Ortiz-López, S. Morales-Mulia, G. Jiménez-Rubio, G. Ramírez-Rodríguez, and I. Meza, “Phosphorylation-Dephosphorylation Imbalance of Cytoskeletal Associated Proteins in Neurodegenerative Diseases,” Recent Pat. CNS Drug Discov., vol. 1, no. 2, pp. 219–230, 2006, doi: 10.2174/157488906777452776.Instituto Nacional de SaludInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86491/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1014260488.2024.pdf1014260488.2024.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf2505328https://repositorio.unal.edu.co/bitstream/unal/86491/2/1014260488.2024.pdf3a18c216ed5e83b705ff3ca481e34e17MD52THUMBNAIL1014260488.2024.pdf.jpg1014260488.2024.pdf.jpgGenerated Thumbnailimage/jpeg5314https://repositorio.unal.edu.co/bitstream/unal/86491/3/1014260488.2024.pdf.jpg012a9b8ecb01f7a29bf5924f8df2e7a2MD53unal/86491oai:repositorio.unal.edu.co:unal/864912024-07-16 23:05:11.86Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=