Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical

ilustraciones, fotografías a color

Autores:
Sanchez Castillo, Leslie Vanessa
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83338
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83338
https://repositorio.unal.edu.co/
Palabra clave:
Regenerative Medicine
Métodos
Methods
Medicina regenerativa
Célula estromal mesenquimal
Transfección
Terapía génica
Centrifugación
Mesenchymal Stromal Cell
Gene delivery
Transfection
Centrifugation
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_58e4f9f9f0d061d7401686a76d9eb642
oai_identifier_str oai:repositorio.unal.edu.co:unal/83338
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical
dc.title.translated.eng.fl_str_mv The effect of centrifugal force on the mechanism of Wharton’s Jelly Mesenchymal Stem Cells transfection
title Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical
spellingShingle Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical
Regenerative Medicine
Métodos
Methods
Medicina regenerativa
Célula estromal mesenquimal
Transfección
Terapía génica
Centrifugación
Mesenchymal Stromal Cell
Gene delivery
Transfection
Centrifugation
title_short Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical
title_full Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical
title_fullStr Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical
title_full_unstemmed Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical
title_sort Evaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilical
dc.creator.fl_str_mv Sanchez Castillo, Leslie Vanessa
dc.contributor.advisor.none.fl_str_mv Godoy Silva, Rubén Darío
Ramos Murillo, Ana Isabel
dc.contributor.author.none.fl_str_mv Sanchez Castillo, Leslie Vanessa
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.decs.spa.fl_str_mv Regenerative Medicine
Métodos
topic Regenerative Medicine
Métodos
Methods
Medicina regenerativa
Célula estromal mesenquimal
Transfección
Terapía génica
Centrifugación
Mesenchymal Stromal Cell
Gene delivery
Transfection
Centrifugation
dc.subject.decs.eng.fl_str_mv Methods
dc.subject.lemb.spa.fl_str_mv Medicina regenerativa
dc.subject.proposal.spa.fl_str_mv Célula estromal mesenquimal
Transfección
Terapía génica
Centrifugación
dc.subject.proposal.eng.fl_str_mv Mesenchymal Stromal Cell
Gene delivery
Transfection
Centrifugation
description ilustraciones, fotografías a color
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-02-06T20:59:28Z
dc.date.available.none.fl_str_mv 2023-02-06T20:59:28Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83338
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83338
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv E. W. Mien-Chie Hung, Leaf Huang, Nonviral Vectors for Gene Therapy, vol. 88. 2014.
Y. Xiang, N. N. L. Oo, J. P. Lee, Z. Li, and X. J. Loh, “Recent development of synthetic nonviral systems for sustained gene delivery,” Drug Discov. Today, vol. 22, no. 9, pp. 1318–1335, 2017.
T. M. Martin and A. K. Pannier, “Chapter 4 Molecular Mechanisms of Nonviral Gene Delivery,” pp. 1–7.
T. Gonzalez-Fernandez et al., “Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector,” Acta Biomater., vol. 55, pp. 226–238, 2017.
A. Vats, R. C. Bielby, N. S. Tolley, R. Nerem, and J. M. Polak, “Stem cells,” Lancet, vol. 366, no. 9485. pp. 592–602, 2005.
C. S. Potten, R. B. Clarke, and A. G. Renehan, Tissue Stem Cells, vol. 1, no. 3560. 2006.
T. H. E. Basics and O. N. Stem, Stem Cells and the Future fo Regenerative Medicine. 2003.
J. A. T. John R. Masters, Bernhard O. Palsson, Embryonic Stem Cells, vol. 37, no. 1. 2007.
K. Turksen, Mesenchymal Stromal Cells. Human Press- Springer Science + Business Media, 2013.
G. Line, Stem Cells Handbook. 2001.
J. Itskovitz-Eldor et al., “Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers.,” Mol. Med., vol. 6, no. 2, pp. 88–95, 2000.
M. Amit et al., “Clonally Derived Human Embryonic Stem Cell Lines Maintain Pluripotency and Proliferative Potential for Prolonged Periods of Culture,” Dev. Biol., vol. 227, no. 2, pp. 271–278, 2000.
B. C. Heng, T. Cao, and E. H. Lee, “Directing Stem Cell Differentiation into the Chondrogenic Lineage In Vitro,” Stem Cells, vol. 22, no. 7, pp. 1152–1167, 2004.
B. Mollon, R. Kandel, J. Chahal, and J. Theodoropoulos, “The clinical status of cartilage tissue regeneration in humans,” Osteoarthritis and Cartilage, vol. 21, no. 12. pp. 1824–1833, 2013.
H. Zreiqat, C. Dunstan, and V. Rosen, A Tissue Regeneration Approach to Bone and Cartilage Repair. 2015.
R. S. Tuan, G. Boland, and R. Tuli, “Adult mesenchymal stem cells and cell-based tissue engineering.,” Arthritis Res. Ther., vol. 5, no. 1, pp. 32–45, 2003
R. A. Somoza, J. F. Welter, D. Correa, and A. I. Caplan, “Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations,” Tissue Eng. Part B Rev., vol. 20, no. 6, pp. 596–608, 2014.
W. K. Aicher, H. Bühring, M. Hart, B. Rolauffs, A. Badke, and G. Klein, “Regeneration of cartilage and bone by de fi ned subsets of mesenchymal stromal cells — Potential and pitfalls ☆,” Adv. Drug Deliv. Rev., vol. 63, no. 4–5, pp. 342–351, 2011.
S. G. Almalki and D. K. Agrawal, “Key transcription factors in the differentiation of mesenchymal stem cells,” Differentiation, vol. 92, no. 1–2. Elsevier, pp. 41–51, 2016.
J. S. Park, S. Suryaprakash, Y. H. Lao, and K. W. Leong, “Engineering mesenchymal stem cells for regenerative medicine and drug delivery,” Methods, vol. 84. Elsevier Inc., pp. 3–16, 2015.
T. Nagamura-Inoue, “Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility,” World J. Stem Cells, vol. 6, no. 2, p. 195, 2014.
S. Raisin, E. Belamie, and M. Morille, “Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage,” Biomaterials, vol. 104. Elsevier Ltd, pp. 223–237, 2016.
B. Weyand, Mesenchymal Stem Cells - Basics and Clinical Application II, vol. 130. 2013.
S. Viswanathan et al., “Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature,” Cytotherapy, vol. 21, no. 10, pp. 1019–1024, 2019.
M. Dominici et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.
C. J. Malemud and E. Alsberg, Mesenchymal Stem Cells and Immunomodulation. Cleveland, OH, USA: Human Press- Springer Nature, 2016.
A. Hassouna, M. M. Abd Elgwad, and H. Fahmy, “Stromal Stem Cells: Nature, Biology and Potential Therapeutic Applications,” Stromal Cells - Struct. Funct. Ther. Implic., 2019.
N. F. Symposium, Tissue Engineering of Cartilage and Bone, vol. 249. 2003.
P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008
N. Watson et al., “Discarded Wharton jelly of the human umbilical cord: A viable source for mesenchymal stromal cells,” Cytotherapy, vol. 17, no. 1. Elsevier Inc, pp. 18–24, 2015.
I. Kalaszczynska and K. Ferdyn, “Wharton’s jelly derived mesenchymal stem cells: Future of regenerative medicine? Recent findings and clinical significance,” BioMed Research International, vol. 2015. pp. 1–11, 2015.
A. K. Batsali, M.-C. Kastrinaki, H. A. Papadaki, and C. Pontikoglou, “Mesenchymal Stem Cells Derived from Wharton's Jelly of the Umbilical Cord: Biological Properties and Emerging Clinical Applications,” Curr. Stem Cell Res. Ther., vol. 8, no. 2, pp. 144–155, 2013.
D. Ding, Y. Chang, W. Shyu, and S. Lin, “Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy,” Cell Transplant., vol. 24, no. 3, pp. 339–347, 2015.
A. I. Ramos-Murillo et al., “Efficient non-viral gene modification of mesenchymal stromal cells from umbilical cord wharton’s jelly with polyethylenimine,” Pharmaceutics, vol. 12, no. 9, pp. 1–19, 2020.
A. Musiał-Wysocka, M. Kot, M. Sułkowski, B. Badyra, and M. Majka, “Molecular and functional verification of wharton’s jelly mesenchymal stem cells (WJ-MSCs) pluripotency,” Int. J. Mol. Sci., vol. 20, no. 8, pp. 1–14, 2019.
J. M. Hare et al., “Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial,” JAMA - J. Am. Med. Assoc., vol. 308, no. 22, pp. 2369–2379, 2012.
K. Kim, W. C. W. Chen, Y. Heo, and Y. Wang, “Polycations and their biomedical applications,” Prog. Polym. Sci., vol. 60, pp. 18–50, 2016.
C. Zhang, P. Yadava, and J. Hughes, “Polyethylenimine strategies for plasmid delivery to brain-derived cells,” Methods, vol. 33, no. 2, pp. 144–150, 2004.
Z. Zhou et al., “Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration,” Adv. Drug Deliv. Rev., vol. 115, pp. 115–154, 2017.
A. P. Pandey and K. K. Sawant, “Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery,” Mater. Sci. Eng. C, vol. 68, pp. 904–918, 2016.
U. Lungwitz, M. Breunig, T. Blunk, and A. Göpferich, “Polyethylenimine-based non-viral gene delivery systems,” Eur. J. Pharm. Biopharm., vol. 60, no. 2, pp. 247–266, 2005.
M. Morille, C. Passirani, A. Vonarbourg, A. Clavreul, and J. P. Benoit, “Progress in developing cationic vectors for non-viral systemic gene therapy against cancer,” Biomaterials, vol. 29, no. 24–25, pp. 3477–3496, 2008.
A. A. Eltoukhy, M. C. V, J. Jn, R. Langer, and D. H. Koch, “Development of Polymer and Lipid Materials for Enhanced Delivery of Nucleic Acids and Proteins,” 2013.
R. Narain, Polymers and Nanomaterials for Gene Therapy. 2016.
Y. Ju, H. Guo, M. Edman, and S. F. Hamm-Alvarez, “Application of advances in endocytosis and membrane trafficking to drug delivery,” Adv. Drug Deliv. Rev., vol. 157, pp. 118–141, 2020.
J. J. Rennick, A. P. R. Johnston, and R. G. Parton, “Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics,” Nat. Nanotechnol., vol. 16, no. 3, pp. 266–276, 2021.
K. Takei and V. Haucke, “Clathrin-mediated endocytosis: Membrane factors pull the trigger,” Trends Cell Biol., vol. 11, no. 9, pp. 385–391, 2001.
S. Xiang et al., “Uptake mechanisms of non-viral gene delivery,” J. Control. Release, vol. 158, no. 3, pp. 371–378, 2012.
M. Thomas and A. M. Klibanov, “Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells,” Proc. Natl. Acad. Sci., vol. 99, no. 23, pp. 14640–14645, 2002.
H. Hillaireau and P. Couvreur, “Nanocarriers’ entry into the cell: Relevance to drug delivery,” Cell. Mol. Life Sci., vol. 66, no. 17, pp. 2873–2896, 2009.
D. Pezzoli, E. Giupponi, D. Mantovani, and G. Candiani, “Size matters for in vitro gene delivery: Investigating the relationships among complexation protocol, transfection medium, size and sedimentation,” Sci. Rep., vol. 7, no. March, pp. 1–11, 2017.
M. A. Mintzer and E. E. Simanek, “Nonviral Vectors for Gene Delivery,” no. 979, pp. 259–302, 2009.
W. F. Lai and W. T. Wong, “Design of Polymeric Gene Carriers for Effective Intracellular Delivery,” Trends Biotechnol., vol. 36, no. 7, pp. 713–728, 2018.
S. Brunner, T. Sauer, S. Carotta, M. Cotten, M. Saltik, and E. Wagner, “Cell cycle dependence of gene transfer by lipoplex polyplex and recombinant adenovirus,” Gene Ther., vol. 7, no. 5, pp. 401–407, 2000.
K. Kunath, A. Von Harpe, D. Fischer, and H. Petersen, “L ow-molecular-weight polyethylenimine as a non-viral vector for DNA delivery : comparison of physicochemical properties , transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine,” vol. 89, pp. 113–125, 2003.
C. Y. Ming Hsu and H. Uluda Ğ, “A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine,” Nat. Protoc., vol. 7, no. 5, pp. 935–945, 2012
G. Massimiliano, Mesenchymal Stem Cells Methods and Protocols, Second. UK: Human Press- Springer Science + Business Media, 2016.
R. Namgung, J. Kim, K. Singha, C. H. Kim, and W. J. Kim, “Synergistic effect of low cytotoxic linear polyethylenimine and multiarm polyethylene glycol: Study of physicochemical properties and in vitro gene transfection,” Mol. Pharm., vol. 6, no. 6, pp. 1826–1835, 2009.
D. Luo and W. M. Saltzman, “Enhancement of transfection by physical concentration of DNA at the cell surface,” Nat. Biotechnol., vol. 18, no. 8, pp. 893–895, 2000.
C. Y. Ming Hsu and H. Uluda Ğ, “A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine,” Nat. Protoc., vol. 7, no. 5, pp. 935–945, 2012.
W. Wang et al., “Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients,” J. Cell. Mol. Med., vol. 15, no. 9, pp. 1989–1998, 2011.
A. Kichler, C. Leborgne, E. Coeytaux, and O. Danos, “Polyethylenimine-mediated gene delivery: A mechanistic study,” J. Gene Med., vol. 3, no. 2, pp. 135–144, 2001
O. Boussif et al., “A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine,” Proc. Natl. Acad. Sci. U. S. A., vol. 92, no. 16, pp. 7297–7301, 1995.
J. H. Lai, E. & van Zanten, “Monitoring DNA/Poly-L-Lysine Polyplex Formation with Time-Resolved Multiangle Laser Light Scattering.” pp. 864–873, 2001.
D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, “Design and development of polymers for gene delivery,” Nat. Rev. Drug Discov., vol. 4, no. 7, pp. 581–593, 2005.
I. I. Katkov and P. Mazur, “Factors affecting yield and survival of cells when suspensions are subjected to centrifugation: Influence of centrifugal acceleration, time of centrifugation, and length of the suspension column in quasi-homogeneous centrifugal fields,” Cell Biochem. Biophys., vol. 31, no. 3, pp. 231–245, 1999.
B. Shi et al., “Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems,” Biomacromolecules, vol. 18, no. 8, pp. 2231–2246, 2017.
U. Lächelt and E. Wagner, “Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond),” Chem. Rev., vol. 115, no. 19, pp. 11043–11078, 2015.
T. F. Martens, K. Remaut, J. Demeester, S. C. De Smedt, and K. Braeckmans, “Intracellular delivery of nanomaterials: How to catch endosomal escape in the act,” Nano Today, vol. 9, no. 3, pp. 344–364, 2014.
W. J. King, N. A. Kouris, S. Choi, B. M. Ogle, and W. L. Murphy, “Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications,” Cell Tissue Res., vol. 347, no. 3, pp. 689–699, 2012.
S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk, “A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy,” Mol. Ther., vol. 11, no. 6, pp. 990–995, 2005
C. L. Gebhart and A. V. Kabanov, “Evaluation of polyplexes as gene transfer agents,” J. Control. Release, vol. 73, no. 2–3, pp. 401–416, 2001
A. R. Klemm, D. Young, and J. B. Lloyd, “Effects of polyethyleneimine on endocytosis and lysosome stability,” Biochem. Pharmacol., vol. 56, no. 1, pp. 41–46, 1998.
M. Hanzlíková et al., “Mechanisms of polyethylenimine-mediated DNA delivery: Free carrier helps to overcome the barrier of cell-surface glycosaminoglycans,” J. Gene Med., vol. 13, no. 7–8, pp. 402–409, 2011.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 69 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83338/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83338/4/1015439363.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83338/5/1015439363.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
bfcdd7d12b488d8ec591018d830c696c
1d415ff922b30549303c24be4e505cbe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089824660881408
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Godoy Silva, Rubén Darío019810b6b9f5c2a275ca1c832cf9cda7Ramos Murillo, Ana Isabel07faac545bd989147026349b9a5bd50aSanchez Castillo, Leslie Vanessacc66a496bde45d2f37137dac48ac3125Grupo de Investigación en Procesos Químicos y Bioquímicos2023-02-06T20:59:28Z2023-02-06T20:59:28Z2022https://repositorio.unal.edu.co/handle/unal/83338Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a colorUna célula estromal mesenquimal humana (hCEM) es una célula madre adulta caracterizada por su capacidad de autorrenovación y diferenciación. También presentan varias ventajas tales como propiedades inmunomoduladoras que las hacen promisoria fuente en medicina regenerativa. Por lo tanto, el uso de estas células como portadoras de genes ha sido uno de los principales focos de varios estudios. En los últimos años, los vectores no virales todavía presentan algunas limitaciones, siendo la m[as importante las bajas eficiencias de transfección en las CEM. Se ha teorizado que esta baja eficiencia es causada por múltiples factores relacionados con las propiedades de las nanopartículas, incluyendo el tamaño, la carga, la degradación, el escape endosomal y el transporte del cergo al núcleo. Además, se ha demostrado que el tipo de célula y la fase del ciclo celular son una incidencia importante en la entrega de genes. En resumen, la transfección depende directamente de la naturaleza química del material (vector) que cubre el gen y su interacción no específica con todas las vías dentro de la célula. Por lo tanto, en este estudio probamos la hipótesis de que la eficiencia de la transfección génica está limitada principalmente por una barrera física simple: baja concentración de genes (ADN) en la superficie de la célula. Empleamos la centrifugación durante el proceso de transfección como un medio para aumentar más la disponibilidad de ADN en las proximidades de la membrana celular, generando así mayores eficiencias de transfección con el vector dorado no viral: PEI 25kDa. Además, una comprensión más profunda del mecanismo de transfección con este tipo de vectores permitió la estandarización de un nuevo y sencillo protocolo de transfección en el que se evaluaron la relación de peso, diferentes concentraciones de complejo, pH y número de paso para obtener tasas de transfección superiores al 25-30% con un método no viral. Por otro lado, nuestros resultados muestran que el efecto combinado de la centrifugación y la transfección tiene un impacto importante en la actividad metabólica de las MSC y la proliferación celular. (Texto tomado de la fuente)A human mesenchymal stromal cell (hMSC) is an adult stem cell characterized by its self-renoval and differentiation capacity. They also present several advantages such immunomodulatory properties which make them promissory for regenerative medicine. Thus, using these cells as gene carriers has been one of the main focuses of several studies. In recent years, non-viral carriers still exhibit some limitations, namely low transfection efficiencies in MSCs. It has been theorized that this low efficiency is caused by multiple factors regarding nanoparticle properties, including size, charge, degradation, endosomal escape, and transport to the nucleus. Moreover, the cell type and the phase cell cycle have been proven to be an important incidence in the gene delivery. In brief, transfection depends directly on the chemical nature of the material (vector) which covers the gene and its non-specific interaction with all the pathways within the cell. Therefore, in this study we tested the hypothesis that the efficiency of gene transfection is mainly limited by a simple physical barrier: low concentration of gene (DNA) on the surface of the cell. We employed centrifugation during the transfection process as a means to increase more the availability of DNA in the vicinity of the cell membrane, thus generating higher transfection efficiencies with non-viral golden vector: PEI 25kDa. Additionally, a deeper understanding of the transfection mechanism with these types of vectors enabled the standardization of a new and simple transfection protocol in which the weight ratio, different concentrations of complex, pH and passage number were evaluated to obtain transfection rates above 25-30% with a non-viral method. On the other hand, our results show that the combined effect of centrifugation and transfection has an important impact in MSCs metabolic activity and cell proliferation.MaestríaIngeniería de Tejidosxv, 69 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáEvaluación del efecto de la fuerza centrífuga en la eficiencia de la transfección de células madre mesenquimales de cordón umbilicalThe effect of centrifugal force on the mechanism of Wharton’s Jelly Mesenchymal Stem Cells transfectionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TME. W. Mien-Chie Hung, Leaf Huang, Nonviral Vectors for Gene Therapy, vol. 88. 2014.Y. Xiang, N. N. L. Oo, J. P. Lee, Z. Li, and X. J. Loh, “Recent development of synthetic nonviral systems for sustained gene delivery,” Drug Discov. Today, vol. 22, no. 9, pp. 1318–1335, 2017.T. M. Martin and A. K. Pannier, “Chapter 4 Molecular Mechanisms of Nonviral Gene Delivery,” pp. 1–7.T. Gonzalez-Fernandez et al., “Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector,” Acta Biomater., vol. 55, pp. 226–238, 2017.A. Vats, R. C. Bielby, N. S. Tolley, R. Nerem, and J. M. Polak, “Stem cells,” Lancet, vol. 366, no. 9485. pp. 592–602, 2005.C. S. Potten, R. B. Clarke, and A. G. Renehan, Tissue Stem Cells, vol. 1, no. 3560. 2006.T. H. E. Basics and O. N. Stem, Stem Cells and the Future fo Regenerative Medicine. 2003.J. A. T. John R. Masters, Bernhard O. Palsson, Embryonic Stem Cells, vol. 37, no. 1. 2007.K. Turksen, Mesenchymal Stromal Cells. Human Press- Springer Science + Business Media, 2013.G. Line, Stem Cells Handbook. 2001.J. Itskovitz-Eldor et al., “Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers.,” Mol. Med., vol. 6, no. 2, pp. 88–95, 2000.M. Amit et al., “Clonally Derived Human Embryonic Stem Cell Lines Maintain Pluripotency and Proliferative Potential for Prolonged Periods of Culture,” Dev. Biol., vol. 227, no. 2, pp. 271–278, 2000.B. C. Heng, T. Cao, and E. H. Lee, “Directing Stem Cell Differentiation into the Chondrogenic Lineage In Vitro,” Stem Cells, vol. 22, no. 7, pp. 1152–1167, 2004.B. Mollon, R. Kandel, J. Chahal, and J. Theodoropoulos, “The clinical status of cartilage tissue regeneration in humans,” Osteoarthritis and Cartilage, vol. 21, no. 12. pp. 1824–1833, 2013.H. Zreiqat, C. Dunstan, and V. Rosen, A Tissue Regeneration Approach to Bone and Cartilage Repair. 2015.R. S. Tuan, G. Boland, and R. Tuli, “Adult mesenchymal stem cells and cell-based tissue engineering.,” Arthritis Res. Ther., vol. 5, no. 1, pp. 32–45, 2003R. A. Somoza, J. F. Welter, D. Correa, and A. I. Caplan, “Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations,” Tissue Eng. Part B Rev., vol. 20, no. 6, pp. 596–608, 2014.W. K. Aicher, H. Bühring, M. Hart, B. Rolauffs, A. Badke, and G. Klein, “Regeneration of cartilage and bone by de fi ned subsets of mesenchymal stromal cells — Potential and pitfalls ☆,” Adv. Drug Deliv. Rev., vol. 63, no. 4–5, pp. 342–351, 2011.S. G. Almalki and D. K. Agrawal, “Key transcription factors in the differentiation of mesenchymal stem cells,” Differentiation, vol. 92, no. 1–2. Elsevier, pp. 41–51, 2016.J. S. Park, S. Suryaprakash, Y. H. Lao, and K. W. Leong, “Engineering mesenchymal stem cells for regenerative medicine and drug delivery,” Methods, vol. 84. Elsevier Inc., pp. 3–16, 2015.T. Nagamura-Inoue, “Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility,” World J. Stem Cells, vol. 6, no. 2, p. 195, 2014.S. Raisin, E. Belamie, and M. Morille, “Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage,” Biomaterials, vol. 104. Elsevier Ltd, pp. 223–237, 2016.B. Weyand, Mesenchymal Stem Cells - Basics and Clinical Application II, vol. 130. 2013.S. Viswanathan et al., “Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature,” Cytotherapy, vol. 21, no. 10, pp. 1019–1024, 2019.M. Dominici et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.C. J. Malemud and E. Alsberg, Mesenchymal Stem Cells and Immunomodulation. Cleveland, OH, USA: Human Press- Springer Nature, 2016.A. Hassouna, M. M. Abd Elgwad, and H. Fahmy, “Stromal Stem Cells: Nature, Biology and Potential Therapeutic Applications,” Stromal Cells - Struct. Funct. Ther. Implic., 2019.N. F. Symposium, Tissue Engineering of Cartilage and Bone, vol. 249. 2003.P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008N. Watson et al., “Discarded Wharton jelly of the human umbilical cord: A viable source for mesenchymal stromal cells,” Cytotherapy, vol. 17, no. 1. Elsevier Inc, pp. 18–24, 2015.I. Kalaszczynska and K. Ferdyn, “Wharton’s jelly derived mesenchymal stem cells: Future of regenerative medicine? Recent findings and clinical significance,” BioMed Research International, vol. 2015. pp. 1–11, 2015.A. K. Batsali, M.-C. Kastrinaki, H. A. Papadaki, and C. Pontikoglou, “Mesenchymal Stem Cells Derived from Wharton's Jelly of the Umbilical Cord: Biological Properties and Emerging Clinical Applications,” Curr. Stem Cell Res. Ther., vol. 8, no. 2, pp. 144–155, 2013.D. Ding, Y. Chang, W. Shyu, and S. Lin, “Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy,” Cell Transplant., vol. 24, no. 3, pp. 339–347, 2015.A. I. Ramos-Murillo et al., “Efficient non-viral gene modification of mesenchymal stromal cells from umbilical cord wharton’s jelly with polyethylenimine,” Pharmaceutics, vol. 12, no. 9, pp. 1–19, 2020.A. Musiał-Wysocka, M. Kot, M. Sułkowski, B. Badyra, and M. Majka, “Molecular and functional verification of wharton’s jelly mesenchymal stem cells (WJ-MSCs) pluripotency,” Int. J. Mol. Sci., vol. 20, no. 8, pp. 1–14, 2019.J. M. Hare et al., “Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial,” JAMA - J. Am. Med. Assoc., vol. 308, no. 22, pp. 2369–2379, 2012.K. Kim, W. C. W. Chen, Y. Heo, and Y. Wang, “Polycations and their biomedical applications,” Prog. Polym. Sci., vol. 60, pp. 18–50, 2016.C. Zhang, P. Yadava, and J. Hughes, “Polyethylenimine strategies for plasmid delivery to brain-derived cells,” Methods, vol. 33, no. 2, pp. 144–150, 2004.Z. Zhou et al., “Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration,” Adv. Drug Deliv. Rev., vol. 115, pp. 115–154, 2017.A. P. Pandey and K. K. Sawant, “Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery,” Mater. Sci. Eng. C, vol. 68, pp. 904–918, 2016.U. Lungwitz, M. Breunig, T. Blunk, and A. Göpferich, “Polyethylenimine-based non-viral gene delivery systems,” Eur. J. Pharm. Biopharm., vol. 60, no. 2, pp. 247–266, 2005.M. Morille, C. Passirani, A. Vonarbourg, A. Clavreul, and J. P. Benoit, “Progress in developing cationic vectors for non-viral systemic gene therapy against cancer,” Biomaterials, vol. 29, no. 24–25, pp. 3477–3496, 2008.A. A. Eltoukhy, M. C. V, J. Jn, R. Langer, and D. H. Koch, “Development of Polymer and Lipid Materials for Enhanced Delivery of Nucleic Acids and Proteins,” 2013.R. Narain, Polymers and Nanomaterials for Gene Therapy. 2016.Y. Ju, H. Guo, M. Edman, and S. F. Hamm-Alvarez, “Application of advances in endocytosis and membrane trafficking to drug delivery,” Adv. Drug Deliv. Rev., vol. 157, pp. 118–141, 2020.J. J. Rennick, A. P. R. Johnston, and R. G. Parton, “Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics,” Nat. Nanotechnol., vol. 16, no. 3, pp. 266–276, 2021.K. Takei and V. Haucke, “Clathrin-mediated endocytosis: Membrane factors pull the trigger,” Trends Cell Biol., vol. 11, no. 9, pp. 385–391, 2001.S. Xiang et al., “Uptake mechanisms of non-viral gene delivery,” J. Control. Release, vol. 158, no. 3, pp. 371–378, 2012.M. Thomas and A. M. Klibanov, “Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells,” Proc. Natl. Acad. Sci., vol. 99, no. 23, pp. 14640–14645, 2002.H. Hillaireau and P. Couvreur, “Nanocarriers’ entry into the cell: Relevance to drug delivery,” Cell. Mol. Life Sci., vol. 66, no. 17, pp. 2873–2896, 2009.D. Pezzoli, E. Giupponi, D. Mantovani, and G. Candiani, “Size matters for in vitro gene delivery: Investigating the relationships among complexation protocol, transfection medium, size and sedimentation,” Sci. Rep., vol. 7, no. March, pp. 1–11, 2017.M. A. Mintzer and E. E. Simanek, “Nonviral Vectors for Gene Delivery,” no. 979, pp. 259–302, 2009.W. F. Lai and W. T. Wong, “Design of Polymeric Gene Carriers for Effective Intracellular Delivery,” Trends Biotechnol., vol. 36, no. 7, pp. 713–728, 2018.S. Brunner, T. Sauer, S. Carotta, M. Cotten, M. Saltik, and E. Wagner, “Cell cycle dependence of gene transfer by lipoplex polyplex and recombinant adenovirus,” Gene Ther., vol. 7, no. 5, pp. 401–407, 2000.K. Kunath, A. Von Harpe, D. Fischer, and H. Petersen, “L ow-molecular-weight polyethylenimine as a non-viral vector for DNA delivery : comparison of physicochemical properties , transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine,” vol. 89, pp. 113–125, 2003.C. Y. Ming Hsu and H. Uluda Ğ, “A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine,” Nat. Protoc., vol. 7, no. 5, pp. 935–945, 2012G. Massimiliano, Mesenchymal Stem Cells Methods and Protocols, Second. UK: Human Press- Springer Science + Business Media, 2016.R. Namgung, J. Kim, K. Singha, C. H. Kim, and W. J. Kim, “Synergistic effect of low cytotoxic linear polyethylenimine and multiarm polyethylene glycol: Study of physicochemical properties and in vitro gene transfection,” Mol. Pharm., vol. 6, no. 6, pp. 1826–1835, 2009.D. Luo and W. M. Saltzman, “Enhancement of transfection by physical concentration of DNA at the cell surface,” Nat. Biotechnol., vol. 18, no. 8, pp. 893–895, 2000.C. Y. Ming Hsu and H. Uluda Ğ, “A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine,” Nat. Protoc., vol. 7, no. 5, pp. 935–945, 2012.W. Wang et al., “Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients,” J. Cell. Mol. Med., vol. 15, no. 9, pp. 1989–1998, 2011.A. Kichler, C. Leborgne, E. Coeytaux, and O. Danos, “Polyethylenimine-mediated gene delivery: A mechanistic study,” J. Gene Med., vol. 3, no. 2, pp. 135–144, 2001O. Boussif et al., “A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine,” Proc. Natl. Acad. Sci. U. S. A., vol. 92, no. 16, pp. 7297–7301, 1995.J. H. Lai, E. & van Zanten, “Monitoring DNA/Poly-L-Lysine Polyplex Formation with Time-Resolved Multiangle Laser Light Scattering.” pp. 864–873, 2001.D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, “Design and development of polymers for gene delivery,” Nat. Rev. Drug Discov., vol. 4, no. 7, pp. 581–593, 2005.I. I. Katkov and P. Mazur, “Factors affecting yield and survival of cells when suspensions are subjected to centrifugation: Influence of centrifugal acceleration, time of centrifugation, and length of the suspension column in quasi-homogeneous centrifugal fields,” Cell Biochem. Biophys., vol. 31, no. 3, pp. 231–245, 1999.B. Shi et al., “Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems,” Biomacromolecules, vol. 18, no. 8, pp. 2231–2246, 2017.U. Lächelt and E. Wagner, “Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond),” Chem. Rev., vol. 115, no. 19, pp. 11043–11078, 2015.T. F. Martens, K. Remaut, J. Demeester, S. C. De Smedt, and K. Braeckmans, “Intracellular delivery of nanomaterials: How to catch endosomal escape in the act,” Nano Today, vol. 9, no. 3, pp. 344–364, 2014.W. J. King, N. A. Kouris, S. Choi, B. M. Ogle, and W. L. Murphy, “Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications,” Cell Tissue Res., vol. 347, no. 3, pp. 689–699, 2012.S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk, “A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy,” Mol. Ther., vol. 11, no. 6, pp. 990–995, 2005C. L. Gebhart and A. V. Kabanov, “Evaluation of polyplexes as gene transfer agents,” J. Control. Release, vol. 73, no. 2–3, pp. 401–416, 2001A. R. Klemm, D. Young, and J. B. Lloyd, “Effects of polyethyleneimine on endocytosis and lysosome stability,” Biochem. Pharmacol., vol. 56, no. 1, pp. 41–46, 1998.M. Hanzlíková et al., “Mechanisms of polyethylenimine-mediated DNA delivery: Free carrier helps to overcome the barrier of cell-surface glycosaminoglycans,” J. Gene Med., vol. 13, no. 7–8, pp. 402–409, 2011.Regenerative MedicineMétodosMethodsMedicina regenerativaCélula estromal mesenquimalTransfecciónTerapía génicaCentrifugaciónMesenchymal Stromal CellGene deliveryTransfectionCentrifugationEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83338/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1015439363.2022.pdf1015439363.2022.pdfTesis de Maestría en Ingeniería Químicaapplication/pdf4046203https://repositorio.unal.edu.co/bitstream/unal/83338/4/1015439363.2022.pdfbfcdd7d12b488d8ec591018d830c696cMD54THUMBNAIL1015439363.2022.pdf.jpg1015439363.2022.pdf.jpgGenerated Thumbnailimage/jpeg5229https://repositorio.unal.edu.co/bitstream/unal/83338/5/1015439363.2022.pdf.jpg1d415ff922b30549303c24be4e505cbeMD55unal/83338oai:repositorio.unal.edu.co:unal/833382023-08-15 23:04:36.697Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=