Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
Ilustraciones, tablas
- Autores:
-
Aristizabal Jaramillo, Diego Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85920
- Palabra clave:
- 620 - Ingeniería y operaciones afines::621 - Física aplicada
Distribución de energía eléctrica
Métodos de simulación
Energía renovable - Métodos de simulación
Estabilidad
Inercia
NADIR
ROCOF
Generador sincrónico
generador síncrono virtual
Stability
Inertia
Energía renovable
Generador sincrónico
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_58932875774afbc023d0b32b65b85cfb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85920 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia |
dc.title.translated.eng.fl_str_mv |
Control implementation for virtual synchronous generators connected to photovoltaic solar generation sources in electrical power systems |
title |
Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia |
spellingShingle |
Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia 620 - Ingeniería y operaciones afines::621 - Física aplicada Distribución de energía eléctrica Métodos de simulación Energía renovable - Métodos de simulación Estabilidad Inercia NADIR ROCOF Generador sincrónico generador síncrono virtual Stability Inertia Energía renovable Generador sincrónico |
title_short |
Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia |
title_full |
Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia |
title_fullStr |
Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia |
title_full_unstemmed |
Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia |
title_sort |
Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia |
dc.creator.fl_str_mv |
Aristizabal Jaramillo, Diego Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Rincón Santamaria, Alejandro Candelo Becerra, John Edwin |
dc.contributor.author.none.fl_str_mv |
Aristizabal Jaramillo, Diego Alejandro |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Tecnologías Aplicadas Gita |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::621 - Física aplicada |
topic |
620 - Ingeniería y operaciones afines::621 - Física aplicada Distribución de energía eléctrica Métodos de simulación Energía renovable - Métodos de simulación Estabilidad Inercia NADIR ROCOF Generador sincrónico generador síncrono virtual Stability Inertia Energía renovable Generador sincrónico |
dc.subject.lemb.none.fl_str_mv |
Distribución de energía eléctrica Métodos de simulación Energía renovable - Métodos de simulación |
dc.subject.proposal.spa.fl_str_mv |
Estabilidad Inercia NADIR ROCOF Generador sincrónico generador síncrono virtual |
dc.subject.proposal.eng.fl_str_mv |
Stability Inertia |
dc.subject.wikidata.none.fl_str_mv |
Energía renovable Generador sincrónico |
description |
Ilustraciones, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-16T13:19:04Z |
dc.date.available.none.fl_str_mv |
2024-04-16T13:19:04Z |
dc.date.issued.none.fl_str_mv |
2024-01 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85920 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85920 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Q. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011, doi: 10.1109/TIE.2010.2048839. Salama, H. S., Bakeer, A., Magdy, G., & Vokony, I. (2021). Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system. Journal of Energy Storage, 44, 103466. M. Ashabani and Y. A. I. Mohamed, "Integrating VSCs to Weak Grids by Nonlinear Power Damping Controller With Self-Synchronization Capability," in IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 805-814, March 2014, doi: 10.1109/TPWRS.2013.2280659. Cheema, K. M., Chaudhary, N. I., Tahir, M. F., Mehmood, K., Mudassir, M., Kamran, M., ... & Elbarbary, Z. S. (2022). Virtual synchronous generator: Modifications, stability assessment and future applications. Energy Reports, 8, 1704-1717. Zhu, Y., Wang, H., & Zhu, Z. (2021). Improved VSG control strategy based on the combined power generation system with hydrogen fuel cells and super capacitors. Energy Reports, 7, 6820-6832. Chen, J., Liu, M., Milano, F., & O'Donnell, T. (2020). 100% Converter-Interfaced generation using virtual synchronous generator control: A case study based on the irish system. Electric Power Systems Research, 187, 106475. Zhang, B., Zhao, P., & Zhao, J. (2022). Research on control strategy of two-stage photovoltaic virtual synchronous generator with variable power point tracking. Energy Reports, 8, 283-290. Hirase, Y., Ohara, Y., & Bevrani, H. (2020). Virtual synchronous generator based frequency control in interconnected microgrids. Energy Reports, 6, 97-103. Wan, X., Ding, X., Hu, H., & Yu, Y. (2021). An enhanced second-order-consensus-based distributed secondary frequency controller of virtual synchronous generators for isolated AC microgrids. Energy Reports, 7, 5228-5238. Li, P., Hu, W., Xu, X., Huang, Q., Liu, Z., & Chen, Z. (2019). A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control. Energy, 189, 116389. D. Li, Q. Zhu, S. Lin and X. Y. Bian, "A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability," in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 397-398, March 2017, doi: 10.1109/TEC.2016.2623982. Tan, X., Li, Q., & Wang, H. (2013). Advances and trends of energy storage technology in microgrid. International Journal of Electrical Power & Energy Systems, 44(1), 179-191. Cheema, K. M., Milyani, A. H., El-Sherbeeny, A. M., & El-Meligy, M. A. (2021). Modification in active power-frequency loop of virtual synchronous generator to improve the transient stability. International Journal of Electrical Power & Energy Systems, 128, 106668. X. Wang, M. Yue y E. Muljadi, "Mejora de la generación fotovoltaica con un emulador de inercia virtual para proporcionar una respuesta inercial a la red", 2014 IEEE Energy Conversion Congress and Exposition (ECCE) , 2014, pp. 17-23, doi : 10.1109/ECCE.2014.6953370 Kerdphol, T., Rahman, F. S., & Mitani, Y. (2018). Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies, 11(4), 981. Farmer, W. J., & Rix, A. J. (2020). Optimising power system frequency stability using virtual inertia from inverter-based renewable energy generation. IET Renewable Power Generation, 14(15), 2820-2829. Tamrakar, U., Shrestha, D., Maharjan, M., Bhattarai, B. P., Hansen, T. M., & Tonkoski, R. (2017). Virtual inertia: Current trends and future directions. Applied Sciences, 7(7), 654. Kerdphol, T., Rahman, F. S., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability, 9(5), 773. Weedy, B.M.; Cory, B.J.; Jenkins, N.; Ekanayake, J.B.; Strbac, G. Electric Power System, 5th ed.; John Wiley & Sons: London, UK, 2012. Bevrani, H. Robust Power System Frequency Control; Springer: Cham, Switzerland, 2014. Kundur P., Paserba J., Ajjarapu V. et al.: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 1387– 1401 Bayer E.: ‘Report on the German power system’, Agora Energiewende, 2015, 1.01, pp. 1– 48 Juankorena X., Esandi I., Lopez J. et al.: ‘Method to enable variable speed wind turbine primary regulation’. Int. Conf. on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 2009, pp. 495– 500 Wang X., Yue M., Muljadi E.: ‘PV generation enhancement with a virtual inertia emulator to provide inertial response to the grid’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014 J.H Eto et al., "Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation", The Lawrence Berkeley National Laboratory LBNL-4142E, 2010. A. Fitzgerald, C. Kingsley and S. Umans, Electric machinery, Boston, Mass:McGraw-Hill, pp. 178, 2009. Zhong, Q.C.; Weiss, G. Synchonverter: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1265. Bevrani, H.; Watanabe, M.; Mitani, Y. Power System Monitoring and Control; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 9. C. Barbier and J.P. Barret, "An analysis of Phenomena of voltage collapse on the transmission system", Revue Generale d'Electricité, pp. 672-690, October 1980. Kundur, P. (1993). Power System Stability And Control by Prabha Kundur. Electric Power Research Institute. B. Gao, G.K. Morison and P. Kundur, “Voltage Stability Evaluation Using Modal Analysis,” IEEE Trans., vol. PWRS-7, No. 4, pp. 1529-1542, November 1992. C. Concordia, D.R. Davidson, D.N. Ewart, L.K. Kirchmayer and R.P. Schultz, "Long Term Power System Dynamics - A New Planning Dimension", CIGRE Paper 32-13, 1976 E.G. Cate, K. Hemmaplardh, J.W. Manke and D.P. Gelopulos, “Time frame Notion and time response of the methods in transient, Mid-Term- and Long-term stability programs,” IEEE Trans., vol. PAS-103, pp. 143-151, January 1984. CIGRE Working Group 32-03, "Tentative classification and terminologies relating to stability problems of Power system ", Electra, No. 56, 1978. EPRI Report EL-596, "Midterm Simulation of Electric Power Systems", Project RP745, June 1979. K. Hemmaplardh, J.W. Manke, W.R. Pauly and J. W. Lamont, “Considerations for a Long-Term Dynamic Simulation Program,” IEEE Trans., vol. PWRS-1, pp. 129-135, February 1986. Fernando, V. J. (2023). Generadores Síncronos Virtuales con Almacenamiento de Energía para Soporte de Frecuencia en Red. Sanahuja, S. D. (2017). Sistemas de control con lógica difusa: Métodos de Mamdani y de takagi-sugeno-kang (tsk). Univesitat Jaume. . Wadhwa, K. V. S. Bharath, K. Pandey and S. Sehrawat, "Controlling of frequency deviations in interconnected power systems using smart techniques," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-6, doi: 10.1109/ICPEICES.2016.7853222. N. Hatziargyriou et al., "Definition and Classification of Power System Stability – Revisited & Extended," in IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271-3281, July 2021, doi: 10.1109/TPWRS.2020.3041774. P. Anderson and A. Fouad, Power System Control and Stability, 1st ed. Iowa State University Press, Ames, Iowa, U.S.A., 1977. DIgSILENT PowerFactory 2016: Technical Reference Documentation Synchronous Machine, Version 2016, 1st ed., DIgSILENT GmbH, Heinrich- Hertz-Str. 9, 72810 Gomaringen, Germany, 2016. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recursos en línea (81 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85920/3/1053820472.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/85920/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85920/4/1053820472.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
e449bc92f7e27d769a4f97ac9a8e3b62 eb34b1cf90b7e1103fc9dfd26be24b4a 1372dfc24148478e35e9cd6604ff186f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089256838103040 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rincón Santamaria, Alejandro5a13f7b188029b1e358161132e84744cCandelo Becerra, John Edwinfd4d5bf051edb598a68e51ecc9561bc5Aristizabal Jaramillo, Diego Alejandrof663b1ef5db6ae1c3f0628a67283b1ccGrupo de Investigación en Tecnologías Aplicadas Gita2024-04-16T13:19:04Z2024-04-16T13:19:04Z2024-01https://repositorio.unal.edu.co/handle/unal/85920Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasLas fuentes de energía renovables no convencionales representan en la actualidad un importante aporte de la generación de energía eléctrica en los sistemas eléctricos de potencia a nivel mundial, el enfoque de integrar estas fuentes alternativas como unidades principales de la red puede conducir a la inestabilidad de los sistemas. Considerando la necesidad de inclusiones de fuentes de energía renovables no convencionales (FERNC) a los sistemas de transmisión, se hace necesario la implementación de dispositivos que den soportabilidad similar a la que tienen los generadores síncronos, al mismo tiempo se requiere que estos dispositivos de inyecciones de inercia virtual cuenten con un sistema de control que sea acorde a las necesidades del sistema. Para el caso descripto previamente se propone la implementación de un sistema de control para un generador síncrono virtual (VSG) implementado en un sistema de potencia mediante la herramienta DIgSILENT Power Factory, con el objetivo de que este dispositivo inyecte inercia en la red ante diferentes eventos, de tal forma que mejore y mantenga la estabilidad de frecuencia del sistema de potencia interconectado, principalmente cuando se tenga alta penetración de las FERNC. Al final del trabajo podemos evidenciar como la conservación de la inercia a través del VSG hace que el sistema tenga mejor respuesta ante eventos de aumento y disminución de carga, dando una mayor soportabilidad al sistema, al compararlo con sola la inclusión de fuentes solares sin ninguna tecnología adicional. (Tomado de la fuente)Non-conventional renewable energy sources currently represent an important contribution to the generation of electrical energy in electrical power systems worldwide, the approach of integrating these alternative sources as main units of the network can lead to the instability of the systems. Considering the need to include non-conventional renewable energy sources (FERNC) in the transmission systems, it is necessary to implement devices that provide supportability similar to that of synchronous generators, at the same time it is required that these injection devices of virtual inertia have a control system that is consistent with the needs of the system. For the case described previously, the implementation of a control system for a virtual synchronous generator (VSG) implemented in a power system using the DIgSILENT Power Factory tool is proposed, with the objective of this device injecting inertia into the network in the event of different events. , in such a way that it improves and maintains the frequency stability of the interconnected power system, mainly when there is high penetration of FERNC. At the end of the work we can show how the conservation of inertia through the VSG makes the system have a better response to load increase and decrease events, giving greater supportability to the system, when compared with just the inclusion of solar sources without any additional technology.MaestríaAnálisis, operación y control en sistemas de energía eléctrica Sistemas de potenciaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control1 recursos en línea (81 páginas)application/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::621 - Física aplicadaDistribución de energía eléctricaMétodos de simulaciónEnergía renovable - Métodos de simulaciónEstabilidadInerciaNADIRROCOFGenerador sincrónicogenerador síncrono virtualStabilityInertiaEnergía renovableGenerador sincrónicoImplementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potenciaControl implementation for virtual synchronous generators connected to photovoltaic solar generation sources in electrical power systemsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaQ. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011, doi: 10.1109/TIE.2010.2048839.Salama, H. S., Bakeer, A., Magdy, G., & Vokony, I. (2021). Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system. Journal of Energy Storage, 44, 103466.M. Ashabani and Y. A. I. Mohamed, "Integrating VSCs to Weak Grids by Nonlinear Power Damping Controller With Self-Synchronization Capability," in IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 805-814, March 2014, doi: 10.1109/TPWRS.2013.2280659.Cheema, K. M., Chaudhary, N. I., Tahir, M. F., Mehmood, K., Mudassir, M., Kamran, M., ... & Elbarbary, Z. S. (2022). Virtual synchronous generator: Modifications, stability assessment and future applications. Energy Reports, 8, 1704-1717.Zhu, Y., Wang, H., & Zhu, Z. (2021). Improved VSG control strategy based on the combined power generation system with hydrogen fuel cells and super capacitors. Energy Reports, 7, 6820-6832.Chen, J., Liu, M., Milano, F., & O'Donnell, T. (2020). 100% Converter-Interfaced generation using virtual synchronous generator control: A case study based on the irish system. Electric Power Systems Research, 187, 106475.Zhang, B., Zhao, P., & Zhao, J. (2022). Research on control strategy of two-stage photovoltaic virtual synchronous generator with variable power point tracking. Energy Reports, 8, 283-290.Hirase, Y., Ohara, Y., & Bevrani, H. (2020). Virtual synchronous generator based frequency control in interconnected microgrids. Energy Reports, 6, 97-103.Wan, X., Ding, X., Hu, H., & Yu, Y. (2021). An enhanced second-order-consensus-based distributed secondary frequency controller of virtual synchronous generators for isolated AC microgrids. Energy Reports, 7, 5228-5238.Li, P., Hu, W., Xu, X., Huang, Q., Liu, Z., & Chen, Z. (2019). A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control. Energy, 189, 116389.D. Li, Q. Zhu, S. Lin and X. Y. Bian, "A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability," in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 397-398, March 2017, doi: 10.1109/TEC.2016.2623982.Tan, X., Li, Q., & Wang, H. (2013). Advances and trends of energy storage technology in microgrid. International Journal of Electrical Power & Energy Systems, 44(1), 179-191.Cheema, K. M., Milyani, A. H., El-Sherbeeny, A. M., & El-Meligy, M. A. (2021). Modification in active power-frequency loop of virtual synchronous generator to improve the transient stability. International Journal of Electrical Power & Energy Systems, 128, 106668.X. Wang, M. Yue y E. Muljadi, "Mejora de la generación fotovoltaica con un emulador de inercia virtual para proporcionar una respuesta inercial a la red", 2014 IEEE Energy Conversion Congress and Exposition (ECCE) , 2014, pp. 17-23, doi : 10.1109/ECCE.2014.6953370Kerdphol, T., Rahman, F. S., & Mitani, Y. (2018). Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies, 11(4), 981.Farmer, W. J., & Rix, A. J. (2020). Optimising power system frequency stability using virtual inertia from inverter-based renewable energy generation. IET Renewable Power Generation, 14(15), 2820-2829.Tamrakar, U., Shrestha, D., Maharjan, M., Bhattarai, B. P., Hansen, T. M., & Tonkoski, R. (2017). Virtual inertia: Current trends and future directions. Applied Sciences, 7(7), 654.Kerdphol, T., Rahman, F. S., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability, 9(5), 773.Weedy, B.M.; Cory, B.J.; Jenkins, N.; Ekanayake, J.B.; Strbac, G. Electric Power System, 5th ed.; John Wiley & Sons: London, UK, 2012.Bevrani, H. Robust Power System Frequency Control; Springer: Cham, Switzerland, 2014.Kundur P., Paserba J., Ajjarapu V. et al.: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 1387– 1401Bayer E.: ‘Report on the German power system’, Agora Energiewende, 2015, 1.01, pp. 1– 48Juankorena X., Esandi I., Lopez J. et al.: ‘Method to enable variable speed wind turbine primary regulation’. Int. Conf. on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 2009, pp. 495– 500Wang X., Yue M., Muljadi E.: ‘PV generation enhancement with a virtual inertia emulator to provide inertial response to the grid’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014J.H Eto et al., "Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation", The Lawrence Berkeley National Laboratory LBNL-4142E, 2010.A. Fitzgerald, C. Kingsley and S. Umans, Electric machinery, Boston, Mass:McGraw-Hill, pp. 178, 2009.Zhong, Q.C.; Weiss, G. Synchonverter: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1265.Bevrani, H.; Watanabe, M.; Mitani, Y. Power System Monitoring and Control; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 9.C. Barbier and J.P. Barret, "An analysis of Phenomena of voltage collapse on the transmission system", Revue Generale d'Electricité, pp. 672-690, October 1980.Kundur, P. (1993). Power System Stability And Control by Prabha Kundur. Electric Power Research Institute.B. Gao, G.K. Morison and P. Kundur, “Voltage Stability Evaluation Using Modal Analysis,” IEEE Trans., vol. PWRS-7, No. 4, pp. 1529-1542, November 1992.C. Concordia, D.R. Davidson, D.N. Ewart, L.K. Kirchmayer and R.P. Schultz, "Long Term Power System Dynamics - A New Planning Dimension", CIGRE Paper 32-13, 1976E.G. Cate, K. Hemmaplardh, J.W. Manke and D.P. Gelopulos, “Time frame Notion and time response of the methods in transient, Mid-Term- and Long-term stability programs,” IEEE Trans., vol. PAS-103, pp. 143-151, January 1984.CIGRE Working Group 32-03, "Tentative classification and terminologies relating to stability problems of Power system ", Electra, No. 56, 1978.EPRI Report EL-596, "Midterm Simulation of Electric Power Systems", Project RP745, June 1979.K. Hemmaplardh, J.W. Manke, W.R. Pauly and J. W. Lamont, “Considerations for a Long-Term Dynamic Simulation Program,” IEEE Trans., vol. PWRS-1, pp. 129-135, February 1986.Fernando, V. J. (2023). Generadores Síncronos Virtuales con Almacenamiento de Energía para Soporte de Frecuencia en Red.Sanahuja, S. D. (2017). Sistemas de control con lógica difusa: Métodos de Mamdani y de takagi-sugeno-kang (tsk). Univesitat Jaume.. Wadhwa, K. V. S. Bharath, K. Pandey and S. Sehrawat, "Controlling of frequency deviations in interconnected power systems using smart techniques," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-6, doi: 10.1109/ICPEICES.2016.7853222.N. Hatziargyriou et al., "Definition and Classification of Power System Stability – Revisited & Extended," in IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271-3281, July 2021, doi: 10.1109/TPWRS.2020.3041774.P. Anderson and A. Fouad, Power System Control and Stability, 1st ed. Iowa State University Press, Ames, Iowa, U.S.A., 1977.DIgSILENT PowerFactory 2016: Technical Reference Documentation Synchronous Machine, Version 2016, 1st ed., DIgSILENT GmbH, Heinrich- Hertz-Str. 9, 72810 Gomaringen, Germany, 2016.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1053820472.2024.pdf1053820472.2024.pdfTesis Maestría en Ingeniería - Ingeniería Eléctricaapplication/pdf2498408https://repositorio.unal.edu.co/bitstream/unal/85920/3/1053820472.2024.pdfe449bc92f7e27d769a4f97ac9a8e3b62MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85920/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1053820472.2024.pdf.jpg1053820472.2024.pdf.jpgGenerated Thumbnailimage/jpeg5629https://repositorio.unal.edu.co/bitstream/unal/85920/4/1053820472.2024.pdf.jpg1372dfc24148478e35e9cd6604ff186fMD54unal/85920oai:repositorio.unal.edu.co:unal/859202024-04-16 23:19:34.56Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |