Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia

Ilustraciones, tablas

Autores:
Aristizabal Jaramillo, Diego Alejandro
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85920
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85920
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
Distribución de energía eléctrica
Métodos de simulación
Energía renovable - Métodos de simulación
Estabilidad
Inercia
NADIR
ROCOF
Generador sincrónico
generador síncrono virtual
Stability
Inertia
Energía renovable
Generador sincrónico
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_58932875774afbc023d0b32b65b85cfb
oai_identifier_str oai:repositorio.unal.edu.co:unal/85920
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
dc.title.translated.eng.fl_str_mv Control implementation for virtual synchronous generators connected to photovoltaic solar generation sources in electrical power systems
title Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
spellingShingle Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
620 - Ingeniería y operaciones afines::621 - Física aplicada
Distribución de energía eléctrica
Métodos de simulación
Energía renovable - Métodos de simulación
Estabilidad
Inercia
NADIR
ROCOF
Generador sincrónico
generador síncrono virtual
Stability
Inertia
Energía renovable
Generador sincrónico
title_short Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
title_full Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
title_fullStr Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
title_full_unstemmed Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
title_sort Implementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potencia
dc.creator.fl_str_mv Aristizabal Jaramillo, Diego Alejandro
dc.contributor.advisor.none.fl_str_mv Rincón Santamaria, Alejandro
Candelo Becerra, John Edwin
dc.contributor.author.none.fl_str_mv Aristizabal Jaramillo, Diego Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Tecnologías Aplicadas Gita
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
Distribución de energía eléctrica
Métodos de simulación
Energía renovable - Métodos de simulación
Estabilidad
Inercia
NADIR
ROCOF
Generador sincrónico
generador síncrono virtual
Stability
Inertia
Energía renovable
Generador sincrónico
dc.subject.lemb.none.fl_str_mv Distribución de energía eléctrica
Métodos de simulación
Energía renovable - Métodos de simulación
dc.subject.proposal.spa.fl_str_mv Estabilidad
Inercia
NADIR
ROCOF
Generador sincrónico
generador síncrono virtual
dc.subject.proposal.eng.fl_str_mv Stability
Inertia
dc.subject.wikidata.none.fl_str_mv Energía renovable
Generador sincrónico
description Ilustraciones, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-16T13:19:04Z
dc.date.available.none.fl_str_mv 2024-04-16T13:19:04Z
dc.date.issued.none.fl_str_mv 2024-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85920
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85920
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Q. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011, doi: 10.1109/TIE.2010.2048839.
Salama, H. S., Bakeer, A., Magdy, G., & Vokony, I. (2021). Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system. Journal of Energy Storage, 44, 103466.
M. Ashabani and Y. A. I. Mohamed, "Integrating VSCs to Weak Grids by Nonlinear Power Damping Controller With Self-Synchronization Capability," in IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 805-814, March 2014, doi: 10.1109/TPWRS.2013.2280659.
Cheema, K. M., Chaudhary, N. I., Tahir, M. F., Mehmood, K., Mudassir, M., Kamran, M., ... & Elbarbary, Z. S. (2022). Virtual synchronous generator: Modifications, stability assessment and future applications. Energy Reports, 8, 1704-1717.
Zhu, Y., Wang, H., & Zhu, Z. (2021). Improved VSG control strategy based on the combined power generation system with hydrogen fuel cells and super capacitors. Energy Reports, 7, 6820-6832.
Chen, J., Liu, M., Milano, F., & O'Donnell, T. (2020). 100% Converter-Interfaced generation using virtual synchronous generator control: A case study based on the irish system. Electric Power Systems Research, 187, 106475.
Zhang, B., Zhao, P., & Zhao, J. (2022). Research on control strategy of two-stage photovoltaic virtual synchronous generator with variable power point tracking. Energy Reports, 8, 283-290.
Hirase, Y., Ohara, Y., & Bevrani, H. (2020). Virtual synchronous generator based frequency control in interconnected microgrids. Energy Reports, 6, 97-103.
Wan, X., Ding, X., Hu, H., & Yu, Y. (2021). An enhanced second-order-consensus-based distributed secondary frequency controller of virtual synchronous generators for isolated AC microgrids. Energy Reports, 7, 5228-5238.
Li, P., Hu, W., Xu, X., Huang, Q., Liu, Z., & Chen, Z. (2019). A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control. Energy, 189, 116389.
D. Li, Q. Zhu, S. Lin and X. Y. Bian, "A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability," in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 397-398, March 2017, doi: 10.1109/TEC.2016.2623982.
Tan, X., Li, Q., & Wang, H. (2013). Advances and trends of energy storage technology in microgrid. International Journal of Electrical Power & Energy Systems, 44(1), 179-191.
Cheema, K. M., Milyani, A. H., El-Sherbeeny, A. M., & El-Meligy, M. A. (2021). Modification in active power-frequency loop of virtual synchronous generator to improve the transient stability. International Journal of Electrical Power & Energy Systems, 128, 106668.
X. Wang, M. Yue y E. Muljadi, "Mejora de la generación fotovoltaica con un emulador de inercia virtual para proporcionar una respuesta inercial a la red", 2014 IEEE Energy Conversion Congress and Exposition (ECCE) , 2014, pp. 17-23, doi : 10.1109/ECCE.2014.6953370
Kerdphol, T., Rahman, F. S., & Mitani, Y. (2018). Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies, 11(4), 981.
Farmer, W. J., & Rix, A. J. (2020). Optimising power system frequency stability using virtual inertia from inverter-based renewable energy generation. IET Renewable Power Generation, 14(15), 2820-2829.
Tamrakar, U., Shrestha, D., Maharjan, M., Bhattarai, B. P., Hansen, T. M., & Tonkoski, R. (2017). Virtual inertia: Current trends and future directions. Applied Sciences, 7(7), 654.
Kerdphol, T., Rahman, F. S., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability, 9(5), 773.
Weedy, B.M.; Cory, B.J.; Jenkins, N.; Ekanayake, J.B.; Strbac, G. Electric Power System, 5th ed.; John Wiley & Sons: London, UK, 2012.
Bevrani, H. Robust Power System Frequency Control; Springer: Cham, Switzerland, 2014.
Kundur P., Paserba J., Ajjarapu V. et al.: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 1387– 1401
Bayer E.: ‘Report on the German power system’, Agora Energiewende, 2015, 1.01, pp. 1– 48
Juankorena X., Esandi I., Lopez J. et al.: ‘Method to enable variable speed wind turbine primary regulation’. Int. Conf. on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 2009, pp. 495– 500
Wang X., Yue M., Muljadi E.: ‘PV generation enhancement with a virtual inertia emulator to provide inertial response to the grid’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014
J.H Eto et al., "Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation", The Lawrence Berkeley National Laboratory LBNL-4142E, 2010.
A. Fitzgerald, C. Kingsley and S. Umans, Electric machinery, Boston, Mass:McGraw-Hill, pp. 178, 2009.
Zhong, Q.C.; Weiss, G. Synchonverter: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1265.
Bevrani, H.; Watanabe, M.; Mitani, Y. Power System Monitoring and Control; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 9.
C. Barbier and J.P. Barret, "An analysis of Phenomena of voltage collapse on the transmission system", Revue Generale d'Electricité, pp. 672-690, October 1980.
Kundur, P. (1993). Power System Stability And Control by Prabha Kundur. Electric Power Research Institute.
B. Gao, G.K. Morison and P. Kundur, “Voltage Stability Evaluation Using Modal Analysis,” IEEE Trans., vol. PWRS-7, No. 4, pp. 1529-1542, November 1992.
C. Concordia, D.R. Davidson, D.N. Ewart, L.K. Kirchmayer and R.P. Schultz, "Long Term Power System Dynamics - A New Planning Dimension", CIGRE Paper 32-13, 1976
E.G. Cate, K. Hemmaplardh, J.W. Manke and D.P. Gelopulos, “Time frame Notion and time response of the methods in transient, Mid-Term- and Long-term stability programs,” IEEE Trans., vol. PAS-103, pp. 143-151, January 1984.
CIGRE Working Group 32-03, "Tentative classification and terminologies relating to stability problems of Power system ", Electra, No. 56, 1978.
EPRI Report EL-596, "Midterm Simulation of Electric Power Systems", Project RP745, June 1979.
K. Hemmaplardh, J.W. Manke, W.R. Pauly and J. W. Lamont, “Considerations for a Long-Term Dynamic Simulation Program,” IEEE Trans., vol. PWRS-1, pp. 129-135, February 1986.
Fernando, V. J. (2023). Generadores Síncronos Virtuales con Almacenamiento de Energía para Soporte de Frecuencia en Red.
Sanahuja, S. D. (2017). Sistemas de control con lógica difusa: Métodos de Mamdani y de takagi-sugeno-kang (tsk). Univesitat Jaume.
. Wadhwa, K. V. S. Bharath, K. Pandey and S. Sehrawat, "Controlling of frequency deviations in interconnected power systems using smart techniques," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-6, doi: 10.1109/ICPEICES.2016.7853222.
N. Hatziargyriou et al., "Definition and Classification of Power System Stability – Revisited & Extended," in IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271-3281, July 2021, doi: 10.1109/TPWRS.2020.3041774.
P. Anderson and A. Fouad, Power System Control and Stability, 1st ed. Iowa State University Press, Ames, Iowa, U.S.A., 1977.
DIgSILENT PowerFactory 2016: Technical Reference Documentation Synchronous Machine, Version 2016, 1st ed., DIgSILENT GmbH, Heinrich- Hertz-Str. 9, 72810 Gomaringen, Germany, 2016.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recursos en línea (81 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85920/3/1053820472.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85920/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85920/4/1053820472.2024.pdf.jpg
bitstream.checksum.fl_str_mv e449bc92f7e27d769a4f97ac9a8e3b62
eb34b1cf90b7e1103fc9dfd26be24b4a
1372dfc24148478e35e9cd6604ff186f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089256838103040
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rincón Santamaria, Alejandro5a13f7b188029b1e358161132e84744cCandelo Becerra, John Edwinfd4d5bf051edb598a68e51ecc9561bc5Aristizabal Jaramillo, Diego Alejandrof663b1ef5db6ae1c3f0628a67283b1ccGrupo de Investigación en Tecnologías Aplicadas Gita2024-04-16T13:19:04Z2024-04-16T13:19:04Z2024-01https://repositorio.unal.edu.co/handle/unal/85920Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasLas fuentes de energía renovables no convencionales representan en la actualidad un importante aporte de la generación de energía eléctrica en los sistemas eléctricos de potencia a nivel mundial, el enfoque de integrar estas fuentes alternativas como unidades principales de la red puede conducir a la inestabilidad de los sistemas. Considerando la necesidad de inclusiones de fuentes de energía renovables no convencionales (FERNC) a los sistemas de transmisión, se hace necesario la implementación de dispositivos que den soportabilidad similar a la que tienen los generadores síncronos, al mismo tiempo se requiere que estos dispositivos de inyecciones de inercia virtual cuenten con un sistema de control que sea acorde a las necesidades del sistema. Para el caso descripto previamente se propone la implementación de un sistema de control para un generador síncrono virtual (VSG) implementado en un sistema de potencia mediante la herramienta DIgSILENT Power Factory, con el objetivo de que este dispositivo inyecte inercia en la red ante diferentes eventos, de tal forma que mejore y mantenga la estabilidad de frecuencia del sistema de potencia interconectado, principalmente cuando se tenga alta penetración de las FERNC. Al final del trabajo podemos evidenciar como la conservación de la inercia a través del VSG hace que el sistema tenga mejor respuesta ante eventos de aumento y disminución de carga, dando una mayor soportabilidad al sistema, al compararlo con sola la inclusión de fuentes solares sin ninguna tecnología adicional. (Tomado de la fuente)Non-conventional renewable energy sources currently represent an important contribution to the generation of electrical energy in electrical power systems worldwide, the approach of integrating these alternative sources as main units of the network can lead to the instability of the systems. Considering the need to include non-conventional renewable energy sources (FERNC) in the transmission systems, it is necessary to implement devices that provide supportability similar to that of synchronous generators, at the same time it is required that these injection devices of virtual inertia have a control system that is consistent with the needs of the system. For the case described previously, the implementation of a control system for a virtual synchronous generator (VSG) implemented in a power system using the DIgSILENT Power Factory tool is proposed, with the objective of this device injecting inertia into the network in the event of different events. , in such a way that it improves and maintains the frequency stability of the interconnected power system, mainly when there is high penetration of FERNC. At the end of the work we can show how the conservation of inertia through the VSG makes the system have a better response to load increase and decrease events, giving greater supportability to the system, when compared with just the inclusion of solar sources without any additional technology.MaestríaAnálisis, operación y control en sistemas de energía eléctrica Sistemas de potenciaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control1 recursos en línea (81 páginas)application/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::621 - Física aplicadaDistribución de energía eléctricaMétodos de simulaciónEnergía renovable - Métodos de simulaciónEstabilidadInerciaNADIRROCOFGenerador sincrónicogenerador síncrono virtualStabilityInertiaEnergía renovableGenerador sincrónicoImplementación de control para generadores síncronos virtuales conectados a fuentes de generación solar fotovoltaica en sistemas eléctricos de potenciaControl implementation for virtual synchronous generators connected to photovoltaic solar generation sources in electrical power systemsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaQ. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," in IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011, doi: 10.1109/TIE.2010.2048839.Salama, H. S., Bakeer, A., Magdy, G., & Vokony, I. (2021). Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system. Journal of Energy Storage, 44, 103466.M. Ashabani and Y. A. I. Mohamed, "Integrating VSCs to Weak Grids by Nonlinear Power Damping Controller With Self-Synchronization Capability," in IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 805-814, March 2014, doi: 10.1109/TPWRS.2013.2280659.Cheema, K. M., Chaudhary, N. I., Tahir, M. F., Mehmood, K., Mudassir, M., Kamran, M., ... & Elbarbary, Z. S. (2022). Virtual synchronous generator: Modifications, stability assessment and future applications. Energy Reports, 8, 1704-1717.Zhu, Y., Wang, H., & Zhu, Z. (2021). Improved VSG control strategy based on the combined power generation system with hydrogen fuel cells and super capacitors. Energy Reports, 7, 6820-6832.Chen, J., Liu, M., Milano, F., & O'Donnell, T. (2020). 100% Converter-Interfaced generation using virtual synchronous generator control: A case study based on the irish system. Electric Power Systems Research, 187, 106475.Zhang, B., Zhao, P., & Zhao, J. (2022). Research on control strategy of two-stage photovoltaic virtual synchronous generator with variable power point tracking. Energy Reports, 8, 283-290.Hirase, Y., Ohara, Y., & Bevrani, H. (2020). Virtual synchronous generator based frequency control in interconnected microgrids. Energy Reports, 6, 97-103.Wan, X., Ding, X., Hu, H., & Yu, Y. (2021). An enhanced second-order-consensus-based distributed secondary frequency controller of virtual synchronous generators for isolated AC microgrids. Energy Reports, 7, 5228-5238.Li, P., Hu, W., Xu, X., Huang, Q., Liu, Z., & Chen, Z. (2019). A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control. Energy, 189, 116389.D. Li, Q. Zhu, S. Lin and X. Y. Bian, "A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability," in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 397-398, March 2017, doi: 10.1109/TEC.2016.2623982.Tan, X., Li, Q., & Wang, H. (2013). Advances and trends of energy storage technology in microgrid. International Journal of Electrical Power & Energy Systems, 44(1), 179-191.Cheema, K. M., Milyani, A. H., El-Sherbeeny, A. M., & El-Meligy, M. A. (2021). Modification in active power-frequency loop of virtual synchronous generator to improve the transient stability. International Journal of Electrical Power & Energy Systems, 128, 106668.X. Wang, M. Yue y E. Muljadi, "Mejora de la generación fotovoltaica con un emulador de inercia virtual para proporcionar una respuesta inercial a la red", 2014 IEEE Energy Conversion Congress and Exposition (ECCE) , 2014, pp. 17-23, doi : 10.1109/ECCE.2014.6953370Kerdphol, T., Rahman, F. S., & Mitani, Y. (2018). Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies, 11(4), 981.Farmer, W. J., & Rix, A. J. (2020). Optimising power system frequency stability using virtual inertia from inverter-based renewable energy generation. IET Renewable Power Generation, 14(15), 2820-2829.Tamrakar, U., Shrestha, D., Maharjan, M., Bhattarai, B. P., Hansen, T. M., & Tonkoski, R. (2017). Virtual inertia: Current trends and future directions. Applied Sciences, 7(7), 654.Kerdphol, T., Rahman, F. S., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability, 9(5), 773.Weedy, B.M.; Cory, B.J.; Jenkins, N.; Ekanayake, J.B.; Strbac, G. Electric Power System, 5th ed.; John Wiley & Sons: London, UK, 2012.Bevrani, H. Robust Power System Frequency Control; Springer: Cham, Switzerland, 2014.Kundur P., Paserba J., Ajjarapu V. et al.: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 1387– 1401Bayer E.: ‘Report on the German power system’, Agora Energiewende, 2015, 1.01, pp. 1– 48Juankorena X., Esandi I., Lopez J. et al.: ‘Method to enable variable speed wind turbine primary regulation’. Int. Conf. on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 2009, pp. 495– 500Wang X., Yue M., Muljadi E.: ‘PV generation enhancement with a virtual inertia emulator to provide inertial response to the grid’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014J.H Eto et al., "Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation", The Lawrence Berkeley National Laboratory LBNL-4142E, 2010.A. Fitzgerald, C. Kingsley and S. Umans, Electric machinery, Boston, Mass:McGraw-Hill, pp. 178, 2009.Zhong, Q.C.; Weiss, G. Synchonverter: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1265.Bevrani, H.; Watanabe, M.; Mitani, Y. Power System Monitoring and Control; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 9.C. Barbier and J.P. Barret, "An analysis of Phenomena of voltage collapse on the transmission system", Revue Generale d'Electricité, pp. 672-690, October 1980.Kundur, P. (1993). Power System Stability And Control by Prabha Kundur. Electric Power Research Institute.B. Gao, G.K. Morison and P. Kundur, “Voltage Stability Evaluation Using Modal Analysis,” IEEE Trans., vol. PWRS-7, No. 4, pp. 1529-1542, November 1992.C. Concordia, D.R. Davidson, D.N. Ewart, L.K. Kirchmayer and R.P. Schultz, "Long Term Power System Dynamics - A New Planning Dimension", CIGRE Paper 32-13, 1976E.G. Cate, K. Hemmaplardh, J.W. Manke and D.P. Gelopulos, “Time frame Notion and time response of the methods in transient, Mid-Term- and Long-term stability programs,” IEEE Trans., vol. PAS-103, pp. 143-151, January 1984.CIGRE Working Group 32-03, "Tentative classification and terminologies relating to stability problems of Power system ", Electra, No. 56, 1978.EPRI Report EL-596, "Midterm Simulation of Electric Power Systems", Project RP745, June 1979.K. Hemmaplardh, J.W. Manke, W.R. Pauly and J. W. Lamont, “Considerations for a Long-Term Dynamic Simulation Program,” IEEE Trans., vol. PWRS-1, pp. 129-135, February 1986.Fernando, V. J. (2023). Generadores Síncronos Virtuales con Almacenamiento de Energía para Soporte de Frecuencia en Red.Sanahuja, S. D. (2017). Sistemas de control con lógica difusa: Métodos de Mamdani y de takagi-sugeno-kang (tsk). Univesitat Jaume.. Wadhwa, K. V. S. Bharath, K. Pandey and S. Sehrawat, "Controlling of frequency deviations in interconnected power systems using smart techniques," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-6, doi: 10.1109/ICPEICES.2016.7853222.N. Hatziargyriou et al., "Definition and Classification of Power System Stability – Revisited & Extended," in IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271-3281, July 2021, doi: 10.1109/TPWRS.2020.3041774.P. Anderson and A. Fouad, Power System Control and Stability, 1st ed. Iowa State University Press, Ames, Iowa, U.S.A., 1977.DIgSILENT PowerFactory 2016: Technical Reference Documentation Synchronous Machine, Version 2016, 1st ed., DIgSILENT GmbH, Heinrich- Hertz-Str. 9, 72810 Gomaringen, Germany, 2016.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1053820472.2024.pdf1053820472.2024.pdfTesis Maestría en Ingeniería - Ingeniería Eléctricaapplication/pdf2498408https://repositorio.unal.edu.co/bitstream/unal/85920/3/1053820472.2024.pdfe449bc92f7e27d769a4f97ac9a8e3b62MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85920/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1053820472.2024.pdf.jpg1053820472.2024.pdf.jpgGenerated Thumbnailimage/jpeg5629https://repositorio.unal.edu.co/bitstream/unal/85920/4/1053820472.2024.pdf.jpg1372dfc24148478e35e9cd6604ff186fMD54unal/85920oai:repositorio.unal.edu.co:unal/859202024-04-16 23:19:34.56Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=