Agrupación de textos cortos para el análisis de temas latentes de investigación en un conjunto de datos de proyectos de investigación

Los documentos de texto son una fuente importante de datos para las técnicas de minería. Normalmente, las bases de datos de texto incluyen documentos suficientemente largos para aplicar técnicas de minería de texto convencionales. Sin embargo, en algunas tareas, como el proceso de identificación de...

Full description

Autores:
Carrasco Ortiz, Jorge Mario
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63050
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63050
http://bdigital.unal.edu.co/62532/
Palabra clave:
0 Generalidades / Computer science, information and general works
02 Bibliotecología y ciencias de la información / Library and information sciences
8 Literatura y retórica / Literature
Agrupación
Textos cortos
Representación distribucional de términos
Kernel k-medias
Word2Vec
Scopus
ScienceDirect
Clustering
Short texts
Distributional term representation
NMF
Information retrival
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Los documentos de texto son una fuente importante de datos para las técnicas de minería. Normalmente, las bases de datos de texto incluyen documentos suficientemente largos para aplicar técnicas de minería de texto convencionales. Sin embargo, en algunas tareas, como el proceso de identificación de áreas de investigación, se cuenta con bases de datos de textos muy cortos, lo cual representa un desafío para las técnicas convencionales de minería de texto. El problema tiene que ver con el pequeño número de términos que no proporcionan suficiente información estadística para encontrar cualquier tipo de relación entre los documentos de la colección. El objetivo principal de este trabajo es mostrar cómo generar grupos temáticos utilizando solo los títulos de proyectos de investigación de una institución de educación superior. En esta tesis presentamos un método para agrupar colecciones de textos cortos a partir de representaciones distribucionales de términos. El método utiliza una colección de referencia de textos con mayor extensión, para encontrar una representación distribucional de términos (DTR, por sus siglas en inglés) que codifica relaciones semánticas y sintácticas entre términos. Estas representaciones son utilizadas posteriormente para mejorar los algoritmos de agrupación. Igualmente, exploramos diferentes estrategias para la representación de términos, así como varias estrategias para la agrupación. El método se evaluó en dos conjuntos de datos. El primero fue construido para este estudio y está compuesto de títulos de artículos científicos, el segundo conjunto de datos corresponde a los títulos de proyectos de investigación de una institución de educación superior. Los resultados fueron evaluados utilizando cuatro medidas extrínsecas (Homogeneity Score, V-measure, Adjusted MI, Pureza) para el primer conjunto de datos, y tres medidas intrínsecas (Davies-Bouldin, QError, Slihouette) para el segundo conjunto de datos. Los resultados muestran que la estrategia de representación distribucional de términos, mejora en gran medida la calidad de las agrupaciones generadas cuando se compara con la producida por las estrategias convencionales de agrupamiento de texto.