Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.

ilustraciones

Autores:
Orrego Restrepo, Estefanía
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79780
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79780
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
540 - Química y ciencias afines
Pirólisis
Biomasa
IR spectroscopy
Slow pyrolysis
Cellulose
Biomasa lignocelulósica
Pirólisis lenta
Espectroscopía IR
Celulosa
Lignocellulosic biomass
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_585c6bbb8725d68e3c288aa480a6372c
oai_identifier_str oai:repositorio.unal.edu.co:unal/79780
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
dc.title.translated.eng.fl_str_mv Physicochemical structural changes of biomass during slow pyrolysis.
title Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
spellingShingle Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
660 - Ingeniería química
540 - Química y ciencias afines
Pirólisis
Biomasa
IR spectroscopy
Slow pyrolysis
Cellulose
Biomasa lignocelulósica
Pirólisis lenta
Espectroscopía IR
Celulosa
Lignocellulosic biomass
title_short Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
title_full Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
title_fullStr Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
title_full_unstemmed Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
title_sort Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.
dc.creator.fl_str_mv Orrego Restrepo, Estefanía
dc.contributor.advisor.none.fl_str_mv Ordóñez Loza, Javier Alonso
Chejne Janna, Farid
dc.contributor.author.none.fl_str_mv Orrego Restrepo, Estefanía
dc.contributor.researchgroup.spa.fl_str_mv Termodinámica Aplicada Y Energías Alternativas (TAYEA)
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
540 - Química y ciencias afines
topic 660 - Ingeniería química
540 - Química y ciencias afines
Pirólisis
Biomasa
IR spectroscopy
Slow pyrolysis
Cellulose
Biomasa lignocelulósica
Pirólisis lenta
Espectroscopía IR
Celulosa
Lignocellulosic biomass
dc.subject.lemb.none.fl_str_mv Pirólisis
Biomasa
dc.subject.proposal.eng.fl_str_mv IR spectroscopy
Slow pyrolysis
Cellulose
dc.subject.proposal.spa.fl_str_mv Biomasa lignocelulósica
Pirólisis lenta
Espectroscopía IR
Celulosa
Lignocellulosic biomass
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-08T16:53:34Z
dc.date.available.none.fl_str_mv 2021-07-08T16:53:34Z
dc.date.issued.none.fl_str_mv 2021-07-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79780
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79780
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] H. L. Friedman, “Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic,” J. Polym. Sci. Part C Polym. Symp., vol. 6, no. 1, pp. 183–195, 1964, doi: 10.1002/polc.5070060121.
[2] M. J. Antal and H. L. Friedman, “Kinetics of Cellulose Pyrolysis in Nitrogen and Steam,” Combust. Sci. Technol., vol. 21, pp. 141–152, 1980.
[3] A. G. W. Bradbury, Y. Sakai, and F. Shafizadeh, “A kinetic model for pyrolysis of cellulose,” J. Appl. Polym. Sci., vol. 23, pp. 3271–3280, 1979, doi: 10.1002/app.1979.070231112.
[4] J. P. Diebold, “A unified, global model for the pyrolysis of cellulose,” Biomass and Bioenergy, vol. 7, no. 1–6, pp. 75–85, 1994, doi: 10.1016/0961-9534(94)00039-V.
[5] E. Ranzi et al., “Chemical kinetics of biomass pyrolysis,” Energy and Fuels, vol. 22, no. 6, pp. 4292–4300, 2008, doi: 10.1021/ef800551t.
[6] Ministerio de Minas y Energía de Colombia, “Colombia has great potential for producing biomass energy: Minister of Mines and Energy,” 2017. [Online]. Available: https://www.minminas.gov.co/web/ingles/noticias?idNoticia=23882538. [Accessed: 05-Mar-2019].
[7] N. Altawell, The Selection Process of Biomass Materials for the Production of Bio-fuels and Co-firing. New York, United States of America: Institute of Electrical and Electronics Engineers Inc., 2014.
[8] M. S. Mettler, D. G. Vlachos, and P. J. Dauenhauer, “Top ten fundamental challenges of biomass pyrolysis for biofuels,” Energy Environ. Sci., vol. 5, no. 7, pp. 7797–7809, 2012, doi: 10.1039/c2ee21679e.
[9] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, “Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins,” Energy and Fuels, vol. 30, pp. 6505–6524, 2016, doi: 10.1021/acs.energyfuels.6b01242.
[10] S. Hameed, A. Sharma, V. Pareek, H. Wu, and Y. Yu, “A review on biomass pyrolysis models: Kinetic, network and mechanistic models,” Biomass and Bioenergy, vol. 123, pp. 104–122, 2019, doi: 10.1016/j.biombioe.2019.02.008.
[11] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.
[12] R. Parthasarathi, G. Bellesia, S. P. S. Chundawat, B. E. Dale, P. Langan, and S. Gnanakaran, “Insights into hydrogen bonding and stacking interactions in cellulose,” J. Phys. Chem. A, vol. 115, pp. 14191–14202, 2011, doi: 10.1021/jp203620x.
[13] J. Zhang, Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B. H. Shanks, “Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis,” ACS Sustain. Chem. Eng., vol. 3, pp. 293–301, 2015, doi: 10.1021/sc500664h.
[14] Q. Liu, Z. Zhong, S. Wang, and Z. Luo, “Interactions of biomass components during pyrolysis: A TG-FTIR study,” J. Anal. Appl. Pyrolysis, vol. 90, no. 2, pp. 213–218, 2011, doi: 10.1016/j.jaap.2010.12.009.
[15] J. Yu, N. Paterson, J. Blamey, and M. Millan, “Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass,” Fuel, vol. 191, pp. 140–149, 2017, doi: 10.1016/j.fuel.2016.11.057.
[16] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy, “Characterization of bio-oils in chemical families,” Biomass and Bioenergy, vol. 31, pp. 222–242, 2007, doi: 10.1016/j.biombioe.2006.02.006.
[17] F. Stankovikj and M. Garcia-perez, “TG-FTIR method for the characterization of bio-oils in chemical families,” Energy and Fuels, vol. 31, p. 1689−1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.
[18] S. Wang, R. U. Bin, L. I. N. Haizhou, S. U. N. Wuxing, Y. U. Chunjiang, and L. U. O. Zhongyang, “Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes,” Chem. Res. Chin. Univ., vol. 30, no. 5, pp. 848–854, 2014, doi: 10.1007/s40242-014-4019-9.
[19] D. K. Shen and S. Gu, “The mechanism for thermal decomposition of cellulose and its main products,” Bioresour. Technol., vol. 100, no. 24, pp. 6496–6504, 2009, doi: 10.1016/j.biortech.2009.06.095.
[20] X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, and Z. Li, “Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 102, pp. 16–23, 2013, doi: 10.1016/j.jaap.2013.04.009.
[21] Q. Liu, S. Wang, Y. Zheng, Z. Luo, and K. Cen, “Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis,” J. Anal. Appl. Pyrolysis, vol. 82, pp. 170–177, 2008, doi: 10.1016/j.jaap.2008.03.007.
[22] F. xiang Xu, X. Zhang, F. Zhang, L. qun Jiang, Z. li Zhao, and H. bin Li, “TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures,” Fuel, vol. 268, pp. 1–8, 2020, doi: 10.1016/j.fuel.2020.117365.
[23] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour. Technol., vol. 271, pp. 462–472, 2019, doi: 10.1016/j.biortech.2018.09.070.
[24] P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. Pascual-Cosp, M. Benítez-Guerrero, and J. M. Criado, “An improved model for the kinetic description of the thermal degradation of cellulose,” Cellulose, vol. 18, pp. 1487–1498, 2011, doi: 10.1007/s10570-011-9602-3.
[25] S. Wu, D. Shen, J. Hu, H. Zhang, and R. Xiao, “Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods,” Biomass and Bioenergy, vol. 95, pp. 55–63, 2016, doi: 10.1016/j.biombioe.2016.09.015.
[26] L. Taiz and E. Zeiger, Plant Physiology, 3rd ed. Sunderland, England: Sinauer, 2002.
[27] D. Shen, R. Xiao, S. Gu, and H. Zhang, “The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass,” in Cellulose - Biomass Conversion, Intech, 2013, pp. 193–226.
[28] E. Terrell, L. D. Dellon, A. Dufour, E. Bartolomei, L. J. Broadbelt, and M. Garcia-Perez, “A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling,” Ind. Eng. Chem. Res., vol. 59, no. 2, pp. 526–555, 2020, doi: 10.1021/acs.iecr.9b05744.
[29] S. H. Ghaffar and M. Fan, “Structural analysis for lignin characteristics in biomass straw,” Biomass and Bioenergy, vol. 57, pp. 264–279, 2013, doi: 10.1016/j.biombioe.2013.07.015.
[30] J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Curr. Opin. Biotechnol., vol. 56, pp. 240–249, 2019, doi: 10.1016/j.copbio.2019.02.019.
[31] G. Costa and I. Plazanet, “Plant Cell Wall, a Challenge for Its Characterisation,” Adv. Biol. Chem., vol. 06, pp. 70–105, 2016, doi: 10.4236/abc.2016.63008.
[32] P. Bajpai, “Structure of Lignocellulosic Biomass,” in Pretreatment of Lignocellulosic Biomass Feedstocks for Biofuel Production, SpringerBriefs in Green Chemistry for Sustainability, 2016, p. 5.
[33] J. Montoya, “Kinetic Study and Phenomenological Modeling of a Biomass Particle During Fast Pyrolyss Process,” 2016.
[34] G. P. Marrugo Escobar, “Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar,” Universidad Nacional de Colombia, 2015.
[35] H. A. Ibrahim, “Introductory Chapter : Pyrolysis,” in Recent Advances in Pyrolysis, Hamah, Syria, 2020, pp. 1–12.
[36] L. Loweska, P. Miskowiec, T. Lojewski, and L. M. Proniewicz, “Cellulose oxidative and hydrolytic degradation: In situ FTIR approach,” Polym. Degrad. Stab., vol. 88, pp. 512–520, 2005, doi: 10.1016/j.polymdegradstab.2004.12.012.
[37] A. Broido and M. A. Nelson, “Char yield on pyrolysis of cellulose,” Combust. Flame, vol. 24, no. C, pp. 263–268, 1975, doi: 10.1016/0010-2180(75)90156-X.
[38] C. Zhao, E. Jiang, and A. Chen, “Volatile production from pyrolysis of cellulose, hemicellulose and lignin,” J. Energy Inst., vol. 90, pp. 902–913, 2017, doi: 10.1016/j.joei.2016.08.004.
[39] T. Hosoya, H. Kawamoto, and S. Saka, “Pyrolysis behaviors of wood and its constituent polymers at gasification temperature,” J. Anal. Appl. Pyrolysis, vol. 78, pp. 328–336, 2007, doi: 10.1016/j.jaap.2006.08.008.
[40] M. Benítez-Guerrero, J. López-Beceiro, P. E. Sánchez-Jiménez, and J. Pascual-Cosp, “Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products,” Thermochim. Acta, vol. 581, pp. 70–86, 2014, doi: 10.1016/j.tca.2014.02.013.
[41] B. C. Smith, Infrared spectral interpretation: a systematic approach, vol. 1. Boca Raton, Florida.: CRC Press LLC, 1999.
[42] B. C. Smith, “A Process for Successful Infrared Spectral Interpretation,” Spectroscopy, vol. 31, no. 1, pp. 14–21, 2016.
[43] B. C. Smith, Fundamentals of Fourier Transform Infrered Spectroscopy, 2nd ed. Boca Raton, Florida.: CRC Press LLC, 2011.
[44] J. Coates, “Interpretation of infrared Spectra, A Practical Approach,” in Encyclopedia ofAnalytical Chemistry, R. A. Meyers, Ed. Chichester: John Wiley & Sons Ltd., 2000, pp. 10815–10837.
[45] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, pp. 1781–1788, 2007, doi: 10.1016/j.fuel.2006.12.013.
[46] S. J. Parikh, B. J. Lafferty, and D. L. Sparks, “An ATR-FTIR spectroscopic approach for measuring rapid kinetics at the mineral/water interface,” J. Colloid Interface Sci., vol. 320, pp. 177–185, 2008, doi: 10.1016/j.jcis.2007.12.017.
[47] T. Siengchum, M. Isenberg, and S. S. C. Chuang, “Fast pyrolysis of coconut biomass - An FTIR study,” Fuel, vol. 105, pp. 559–565, 2013, doi: 10.1016/j.fuel.2012.09.039.
[48] D. K. Shen, S. Gu, and A. V. Bridgwater, “Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR,” J. Anal. Appl. Pyrolysis, vol. 87, no. 2, pp. 199–206, 2010, doi: 10.1016/j.jaap.2009.12.001.
[49] F. Wülfert, W. T. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem., vol. 70, pp. 1761–1767, 1998, doi: 10.1021/ac9709920.
[50] S. Vyazovkin and C. A. Wight, “Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data,” Thermochim. Acta, vol. 340–341, pp. 53–68, 1999, doi: 10.1016/S0040-6031(99)00253-1.
[51] A. K. Galwey, “Solid state reaction kinetics, mechanisms and catalysis: a retrospective rational review,” React. Kinet. Mech. Catal., vol. 114, no. 1, pp. 1–29, 2014, doi: 10.1007/s11144-014-0770-7.
[52] J. M. Criado, P. E. Sánchez-Jiménez, and L. A. Pérez-Maqueda, “Critical study of the isoconversional methods of kinetic analysis,” J. Therm. Anal. Calorim., vol. 92, no. 1, pp. 199–203, 2008, doi: 10.1007/s10973-007-8763-7.
[53] Y. C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, “Kinetics and mechanism of cellulose pyrolysis,” J. Phys. Chem. C, vol. 113, pp. 20097–20107, 2009, doi: 10.1021/jp906702p.
[54] S. Wang, Q. Liu, Z. Luo, L. Wen, and K. Cen, “Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy,” Front. Energy Power Eng. China, vol. 1, no. 4, pp. 413–419, 2007, doi: 10.1007/s11708-007-0060-8.
[55] P. Aggarwal, D. Dollimore, and K. Heon, “Comparative thermal analysis study of two biopolymers, starch and cellulose,” J. Therm. Anal., vol. 50, pp. 7–17, 1997, doi: 10.1007/bf01979545.
[56] D. Chen, J. Zhou, and Q. Zhang, “Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo,” Bioresour. Technol., vol. 169, pp. 313–319, 2014, doi: 10.1016/j.biortech.2014.07.009.
[57] C. Şerbǎnescu, “Kinetic analysis of cellulose pyrolysis: A short review,” Chem. Pap., vol. 68, no. 7, pp. 847–860, 2014, doi: 10.2478/s11696-013-0529-z.
[58] G. Zhu, X. Zhu, Z. Xiao, and F. Yi, “Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 126–130, 2012, doi: 10.1016/j.jaap.2011.11.016.
[59] R. Capart, L. Khezami, and A. K. Burnham, “Assessment of various kinetic models for the pyrolysis of a microgranular cellulose,” Thermochim. Acta, vol. 417, pp. 79–89, 2004, doi: 10.1016/j.tca.2004.01.029.
[60] J. Lédé, “Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 17–32, 2012, doi: 10.1016/j.jaap.2011.12.019.
[61] P. K. Chatterjee and C. M. Conrad, “Kinetics of the Pyrolysis of Cotton Cellulose,” Text. Res. J., vol. 36, no. 6, pp. 487–494, 1966, doi: 10.1177/004051756603600601.
[62] S. Matsuoka, H. Kawamoto, and S. Saka, “What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end,” J. Anal. Appl. Pyrolysis, vol. 106, pp. 138–146, 2014, doi: 10.1016/j.jaap.2014.01.011.
[63] Specac, “High Temperature High Pressure Cell - User Manual,” 2016.
[64] P. H. Eilers and H. F. Boelens, “Asymmetric Least Squares Smoothing,” Leiden Univ. Med. Cent. Rep., vol. 1, p. 5, 2005.
[65] A. Kuzmiakova, A. M. Dillner, and S. Takahama, “An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters,” Atmos. Meas. Tech., vol. 9, pp. 2615–2631, 2016, doi: 10.5194/amt-9-2615-2016.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79780/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79780/4/1036944138.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79780/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79780/5/1036944138.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
8c7764e009d1aa0f49f8d74267b1f252
f7d494f61e544413a13e6ba1da2089cd
526ae356fab44b2d3971585c58b1d22c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089979331084288
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ordóñez Loza, Javier Alonso2fd392fe79603346a2767b42806d7a49Chejne Janna, Farid401f8232cbbed073cf4612ce7bc3b54b600Orrego Restrepo, Estefaníad8acd267a8a6af9a2039656805993061Termodinámica Aplicada Y Energías Alternativas (TAYEA)2021-07-08T16:53:34Z2021-07-08T16:53:34Z2021-07-07https://repositorio.unal.edu.co/handle/unal/79780Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEsta investigación muestra una nueva metodología para evaluar la pirólisis lenta de la biomasa lignocelulósica usando a la celulosa como compuesto modelo. Para esto, se caracterizó la pirólisis de celulosa a través del método de Friedman [1], [2], y los modelos cinéticos de Broido-Shafizadeh [3], Diebold [4] y Ranzi et al. [5]. A partir del modelo de Ranzi et al. [5] se propuso un nuevo modelo cinético para la pirólisis de celulosa considerando los grupos funcionales representativos de los compuestos volátiles producidos durante la reacción. Los valores calculados para la energía de activación por este modelo cinético guardan estrecha relación con los valores calculados por el modelo de Ranzi et al. (Tomado de la fuente)This research shows a new methodology to evaluate the slow pyrolysis of lignocellulosic biomass using cellulose as a model compound. For this purpose, cellulose pyrolysis was characterized through the Friedman method [1], [2], and the Broido-Shafizadeh [3], Diebold [4] and Ranzi et al. [5]. Based on the model of Ranzi et al. [5] a new kinetic model for cellulose pyrolysis was proposed considering the representative functional groups of the volatile compounds produced during the reaction. The activation energy values calculated by this kinetic model are closely related to the values calculated by the Ranzi et al. Model. (Tomado de la fuente)MaestríaMagíster en Ingeniería - Ingeniería químicaProcesos Termoquímicos94 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Procesos y EnergíaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química540 - Química y ciencias afinesPirólisisBiomasaIR spectroscopySlow pyrolysisCelluloseBiomasa lignocelulósicaPirólisis lentaEspectroscopía IRCelulosaLignocellulosic biomassCambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.Physicochemical structural changes of biomass during slow pyrolysis.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] H. L. Friedman, “Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic,” J. Polym. Sci. Part C Polym. Symp., vol. 6, no. 1, pp. 183–195, 1964, doi: 10.1002/polc.5070060121.[2] M. J. Antal and H. L. Friedman, “Kinetics of Cellulose Pyrolysis in Nitrogen and Steam,” Combust. Sci. Technol., vol. 21, pp. 141–152, 1980.[3] A. G. W. Bradbury, Y. Sakai, and F. Shafizadeh, “A kinetic model for pyrolysis of cellulose,” J. Appl. Polym. Sci., vol. 23, pp. 3271–3280, 1979, doi: 10.1002/app.1979.070231112.[4] J. P. Diebold, “A unified, global model for the pyrolysis of cellulose,” Biomass and Bioenergy, vol. 7, no. 1–6, pp. 75–85, 1994, doi: 10.1016/0961-9534(94)00039-V.[5] E. Ranzi et al., “Chemical kinetics of biomass pyrolysis,” Energy and Fuels, vol. 22, no. 6, pp. 4292–4300, 2008, doi: 10.1021/ef800551t.[6] Ministerio de Minas y Energía de Colombia, “Colombia has great potential for producing biomass energy: Minister of Mines and Energy,” 2017. [Online]. Available: https://www.minminas.gov.co/web/ingles/noticias?idNoticia=23882538. [Accessed: 05-Mar-2019].[7] N. Altawell, The Selection Process of Biomass Materials for the Production of Bio-fuels and Co-firing. New York, United States of America: Institute of Electrical and Electronics Engineers Inc., 2014.[8] M. S. Mettler, D. G. Vlachos, and P. J. Dauenhauer, “Top ten fundamental challenges of biomass pyrolysis for biofuels,” Energy Environ. Sci., vol. 5, no. 7, pp. 7797–7809, 2012, doi: 10.1039/c2ee21679e.[9] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, “Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins,” Energy and Fuels, vol. 30, pp. 6505–6524, 2016, doi: 10.1021/acs.energyfuels.6b01242.[10] S. Hameed, A. Sharma, V. Pareek, H. Wu, and Y. Yu, “A review on biomass pyrolysis models: Kinetic, network and mechanistic models,” Biomass and Bioenergy, vol. 123, pp. 104–122, 2019, doi: 10.1016/j.biombioe.2019.02.008.[11] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.[12] R. Parthasarathi, G. Bellesia, S. P. S. Chundawat, B. E. Dale, P. Langan, and S. Gnanakaran, “Insights into hydrogen bonding and stacking interactions in cellulose,” J. Phys. Chem. A, vol. 115, pp. 14191–14202, 2011, doi: 10.1021/jp203620x.[13] J. Zhang, Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B. H. Shanks, “Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis,” ACS Sustain. Chem. Eng., vol. 3, pp. 293–301, 2015, doi: 10.1021/sc500664h.[14] Q. Liu, Z. Zhong, S. Wang, and Z. Luo, “Interactions of biomass components during pyrolysis: A TG-FTIR study,” J. Anal. Appl. Pyrolysis, vol. 90, no. 2, pp. 213–218, 2011, doi: 10.1016/j.jaap.2010.12.009.[15] J. Yu, N. Paterson, J. Blamey, and M. Millan, “Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass,” Fuel, vol. 191, pp. 140–149, 2017, doi: 10.1016/j.fuel.2016.11.057.[16] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy, “Characterization of bio-oils in chemical families,” Biomass and Bioenergy, vol. 31, pp. 222–242, 2007, doi: 10.1016/j.biombioe.2006.02.006.[17] F. Stankovikj and M. Garcia-perez, “TG-FTIR method for the characterization of bio-oils in chemical families,” Energy and Fuels, vol. 31, p. 1689−1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.[18] S. Wang, R. U. Bin, L. I. N. Haizhou, S. U. N. Wuxing, Y. U. Chunjiang, and L. U. O. Zhongyang, “Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes,” Chem. Res. Chin. Univ., vol. 30, no. 5, pp. 848–854, 2014, doi: 10.1007/s40242-014-4019-9.[19] D. K. Shen and S. Gu, “The mechanism for thermal decomposition of cellulose and its main products,” Bioresour. Technol., vol. 100, no. 24, pp. 6496–6504, 2009, doi: 10.1016/j.biortech.2009.06.095.[20] X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, and Z. Li, “Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 102, pp. 16–23, 2013, doi: 10.1016/j.jaap.2013.04.009.[21] Q. Liu, S. Wang, Y. Zheng, Z. Luo, and K. Cen, “Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis,” J. Anal. Appl. Pyrolysis, vol. 82, pp. 170–177, 2008, doi: 10.1016/j.jaap.2008.03.007.[22] F. xiang Xu, X. Zhang, F. Zhang, L. qun Jiang, Z. li Zhao, and H. bin Li, “TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures,” Fuel, vol. 268, pp. 1–8, 2020, doi: 10.1016/j.fuel.2020.117365.[23] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour. Technol., vol. 271, pp. 462–472, 2019, doi: 10.1016/j.biortech.2018.09.070.[24] P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. Pascual-Cosp, M. Benítez-Guerrero, and J. M. Criado, “An improved model for the kinetic description of the thermal degradation of cellulose,” Cellulose, vol. 18, pp. 1487–1498, 2011, doi: 10.1007/s10570-011-9602-3.[25] S. Wu, D. Shen, J. Hu, H. Zhang, and R. Xiao, “Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods,” Biomass and Bioenergy, vol. 95, pp. 55–63, 2016, doi: 10.1016/j.biombioe.2016.09.015.[26] L. Taiz and E. Zeiger, Plant Physiology, 3rd ed. Sunderland, England: Sinauer, 2002.[27] D. Shen, R. Xiao, S. Gu, and H. Zhang, “The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass,” in Cellulose - Biomass Conversion, Intech, 2013, pp. 193–226.[28] E. Terrell, L. D. Dellon, A. Dufour, E. Bartolomei, L. J. Broadbelt, and M. Garcia-Perez, “A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling,” Ind. Eng. Chem. Res., vol. 59, no. 2, pp. 526–555, 2020, doi: 10.1021/acs.iecr.9b05744.[29] S. H. Ghaffar and M. Fan, “Structural analysis for lignin characteristics in biomass straw,” Biomass and Bioenergy, vol. 57, pp. 264–279, 2013, doi: 10.1016/j.biombioe.2013.07.015.[30] J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Curr. Opin. Biotechnol., vol. 56, pp. 240–249, 2019, doi: 10.1016/j.copbio.2019.02.019.[31] G. Costa and I. Plazanet, “Plant Cell Wall, a Challenge for Its Characterisation,” Adv. Biol. Chem., vol. 06, pp. 70–105, 2016, doi: 10.4236/abc.2016.63008.[32] P. Bajpai, “Structure of Lignocellulosic Biomass,” in Pretreatment of Lignocellulosic Biomass Feedstocks for Biofuel Production, SpringerBriefs in Green Chemistry for Sustainability, 2016, p. 5.[33] J. Montoya, “Kinetic Study and Phenomenological Modeling of a Biomass Particle During Fast Pyrolyss Process,” 2016.[34] G. P. Marrugo Escobar, “Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar,” Universidad Nacional de Colombia, 2015.[35] H. A. Ibrahim, “Introductory Chapter : Pyrolysis,” in Recent Advances in Pyrolysis, Hamah, Syria, 2020, pp. 1–12.[36] L. Loweska, P. Miskowiec, T. Lojewski, and L. M. Proniewicz, “Cellulose oxidative and hydrolytic degradation: In situ FTIR approach,” Polym. Degrad. Stab., vol. 88, pp. 512–520, 2005, doi: 10.1016/j.polymdegradstab.2004.12.012.[37] A. Broido and M. A. Nelson, “Char yield on pyrolysis of cellulose,” Combust. Flame, vol. 24, no. C, pp. 263–268, 1975, doi: 10.1016/0010-2180(75)90156-X.[38] C. Zhao, E. Jiang, and A. Chen, “Volatile production from pyrolysis of cellulose, hemicellulose and lignin,” J. Energy Inst., vol. 90, pp. 902–913, 2017, doi: 10.1016/j.joei.2016.08.004.[39] T. Hosoya, H. Kawamoto, and S. Saka, “Pyrolysis behaviors of wood and its constituent polymers at gasification temperature,” J. Anal. Appl. Pyrolysis, vol. 78, pp. 328–336, 2007, doi: 10.1016/j.jaap.2006.08.008.[40] M. Benítez-Guerrero, J. López-Beceiro, P. E. Sánchez-Jiménez, and J. Pascual-Cosp, “Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products,” Thermochim. Acta, vol. 581, pp. 70–86, 2014, doi: 10.1016/j.tca.2014.02.013.[41] B. C. Smith, Infrared spectral interpretation: a systematic approach, vol. 1. Boca Raton, Florida.: CRC Press LLC, 1999.[42] B. C. Smith, “A Process for Successful Infrared Spectral Interpretation,” Spectroscopy, vol. 31, no. 1, pp. 14–21, 2016.[43] B. C. Smith, Fundamentals of Fourier Transform Infrered Spectroscopy, 2nd ed. Boca Raton, Florida.: CRC Press LLC, 2011.[44] J. Coates, “Interpretation of infrared Spectra, A Practical Approach,” in Encyclopedia ofAnalytical Chemistry, R. A. Meyers, Ed. Chichester: John Wiley & Sons Ltd., 2000, pp. 10815–10837.[45] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, pp. 1781–1788, 2007, doi: 10.1016/j.fuel.2006.12.013.[46] S. J. Parikh, B. J. Lafferty, and D. L. Sparks, “An ATR-FTIR spectroscopic approach for measuring rapid kinetics at the mineral/water interface,” J. Colloid Interface Sci., vol. 320, pp. 177–185, 2008, doi: 10.1016/j.jcis.2007.12.017.[47] T. Siengchum, M. Isenberg, and S. S. C. Chuang, “Fast pyrolysis of coconut biomass - An FTIR study,” Fuel, vol. 105, pp. 559–565, 2013, doi: 10.1016/j.fuel.2012.09.039.[48] D. K. Shen, S. Gu, and A. V. Bridgwater, “Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR,” J. Anal. Appl. Pyrolysis, vol. 87, no. 2, pp. 199–206, 2010, doi: 10.1016/j.jaap.2009.12.001.[49] F. Wülfert, W. T. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem., vol. 70, pp. 1761–1767, 1998, doi: 10.1021/ac9709920.[50] S. Vyazovkin and C. A. Wight, “Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data,” Thermochim. Acta, vol. 340–341, pp. 53–68, 1999, doi: 10.1016/S0040-6031(99)00253-1.[51] A. K. Galwey, “Solid state reaction kinetics, mechanisms and catalysis: a retrospective rational review,” React. Kinet. Mech. Catal., vol. 114, no. 1, pp. 1–29, 2014, doi: 10.1007/s11144-014-0770-7.[52] J. M. Criado, P. E. Sánchez-Jiménez, and L. A. Pérez-Maqueda, “Critical study of the isoconversional methods of kinetic analysis,” J. Therm. Anal. Calorim., vol. 92, no. 1, pp. 199–203, 2008, doi: 10.1007/s10973-007-8763-7.[53] Y. C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, “Kinetics and mechanism of cellulose pyrolysis,” J. Phys. Chem. C, vol. 113, pp. 20097–20107, 2009, doi: 10.1021/jp906702p.[54] S. Wang, Q. Liu, Z. Luo, L. Wen, and K. Cen, “Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy,” Front. Energy Power Eng. China, vol. 1, no. 4, pp. 413–419, 2007, doi: 10.1007/s11708-007-0060-8.[55] P. Aggarwal, D. Dollimore, and K. Heon, “Comparative thermal analysis study of two biopolymers, starch and cellulose,” J. Therm. Anal., vol. 50, pp. 7–17, 1997, doi: 10.1007/bf01979545.[56] D. Chen, J. Zhou, and Q. Zhang, “Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo,” Bioresour. Technol., vol. 169, pp. 313–319, 2014, doi: 10.1016/j.biortech.2014.07.009.[57] C. Şerbǎnescu, “Kinetic analysis of cellulose pyrolysis: A short review,” Chem. Pap., vol. 68, no. 7, pp. 847–860, 2014, doi: 10.2478/s11696-013-0529-z.[58] G. Zhu, X. Zhu, Z. Xiao, and F. Yi, “Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 126–130, 2012, doi: 10.1016/j.jaap.2011.11.016.[59] R. Capart, L. Khezami, and A. K. Burnham, “Assessment of various kinetic models for the pyrolysis of a microgranular cellulose,” Thermochim. Acta, vol. 417, pp. 79–89, 2004, doi: 10.1016/j.tca.2004.01.029.[60] J. Lédé, “Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 17–32, 2012, doi: 10.1016/j.jaap.2011.12.019.[61] P. K. Chatterjee and C. M. Conrad, “Kinetics of the Pyrolysis of Cotton Cellulose,” Text. Res. J., vol. 36, no. 6, pp. 487–494, 1966, doi: 10.1177/004051756603600601.[62] S. Matsuoka, H. Kawamoto, and S. Saka, “What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end,” J. Anal. Appl. Pyrolysis, vol. 106, pp. 138–146, 2014, doi: 10.1016/j.jaap.2014.01.011.[63] Specac, “High Temperature High Pressure Cell - User Manual,” 2016.[64] P. H. Eilers and H. F. Boelens, “Asymmetric Least Squares Smoothing,” Leiden Univ. Med. Cent. Rep., vol. 1, p. 5, 2005.[65] A. Kuzmiakova, A. M. Dillner, and S. Takahama, “An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters,” Atmos. Meas. Tech., vol. 9, pp. 2615–2631, 2016, doi: 10.5194/amt-9-2615-2016.EspecializadaP4. Poligeneración: Biomasa, enmarcado en el programa Colombia Científica: “Energética 2030: Estrategia de transformación del sector energético colombiano en el horizonte 2030”, código 58667 de ColcienciasLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79780/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1036944138.2021.pdf1036944138.2021.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf2384169https://repositorio.unal.edu.co/bitstream/unal/79780/4/1036944138.2021.pdf8c7764e009d1aa0f49f8d74267b1f252MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.unal.edu.co/bitstream/unal/79780/3/license_rdff7d494f61e544413a13e6ba1da2089cdMD53THUMBNAIL1036944138.2021.pdf.jpg1036944138.2021.pdf.jpgGenerated Thumbnailimage/jpeg4296https://repositorio.unal.edu.co/bitstream/unal/79780/5/1036944138.2021.pdf.jpg526ae356fab44b2d3971585c58b1d22cMD55unal/79780oai:repositorio.unal.edu.co:unal/797802023-10-13 12:49:23.369Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==