Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina
ilustraciones, gráficas, tablas
- Autores:
-
Vela Suazo, Miguel Angel
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80763
- Palabra clave:
- 540 - Química y ciencias afines
resorcin[4]areno
complejos huésped-hospedero
sulfometilación
interacción molecular
resorcin[4]arene
host-guest complexes
sulfomethylation
molecular interaction
Química orgánica
Compuesto orgánico
Organic chemistry
Organic compounds
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_5830ce7a8846f1b867b0385b98a0c033 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80763 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina |
dc.title.translated.eng.fl_str_mv |
Study of the effect of substituent on the lower rim of sulfomethylated resorcinarenes and its behavior in the host-guest interaction with choline |
title |
Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina |
spellingShingle |
Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina 540 - Química y ciencias afines resorcin[4]areno complejos huésped-hospedero sulfometilación interacción molecular resorcin[4]arene host-guest complexes sulfomethylation molecular interaction Química orgánica Compuesto orgánico Organic chemistry Organic compounds |
title_short |
Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina |
title_full |
Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina |
title_fullStr |
Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina |
title_full_unstemmed |
Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina |
title_sort |
Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina |
dc.creator.fl_str_mv |
Vela Suazo, Miguel Angel |
dc.contributor.advisor.none.fl_str_mv |
Maldonado Villamil, Mauricio |
dc.contributor.author.none.fl_str_mv |
Vela Suazo, Miguel Angel |
dc.contributor.researchgroup.spa.fl_str_mv |
Aplicaciones Analíticas de Compuestos Orgánicos (Aaco) |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines |
topic |
540 - Química y ciencias afines resorcin[4]areno complejos huésped-hospedero sulfometilación interacción molecular resorcin[4]arene host-guest complexes sulfomethylation molecular interaction Química orgánica Compuesto orgánico Organic chemistry Organic compounds |
dc.subject.proposal.spa.fl_str_mv |
resorcin[4]areno complejos huésped-hospedero sulfometilación interacción molecular |
dc.subject.proposal.eng.fl_str_mv |
resorcin[4]arene host-guest complexes sulfomethylation molecular interaction |
dc.subject.unesco.spa.fl_str_mv |
Química orgánica Compuesto orgánico |
dc.subject.unesco.eng.fl_str_mv |
Organic chemistry Organic compounds |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-12-07T22:04:59Z |
dc.date.available.none.fl_str_mv |
2021-12-07T22:04:59Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80763 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80763 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Zeisel, S. H.; da Costa, K.-A. Choline: An Essential Nutrient for Public Health. Nutr. Rev. 2009, 67 (11), 615–623. https://doi.org/10.1111/j.1753-4887.2009.00246.x. Wang, X.-F.; Zhou, Y.; Xu, J.-J.; Chen, H.-Y. Signal-On Electrochemiluminescence Biosensors Based on CdS-Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine. Adv. Funct. Mater. 2009, 19 (9), 1444–1450. https://doi.org/10.1002/adfm.200801313. Mironova, D. A.; Muslinkina, L. A.; Morozova, J. E.; Shalaeva, Y. V.; Kazakova, E. K.; Kadyrov, M. T.; Nizameev, I. R.; Konovalov, A. I. Complexes of Tetramethylensulfonatocalix[4]Resorcinarene Aggregates with Methyl Orange: Interactions with Guests and Driving Force of Color Response. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 468, 339–345. https://doi.org/10.1016/j.colsurfa.2014.12.028. Pereira, N. M.; Brincoveanu, O.; Pantazi, A. G.; Pereira, C. M.; Araújo, J. P.; Fernando Silva, A.; Enachescu, M.; Anicai, L. Electrodeposition of Co and Co Composites with Carbon Nanotubes Using Choline Chloride-Based Ionic Liquids. Surf. Coatings Technol. 2017, 324, 451–462. https://doi.org/10.1016/j.surfcoat.2017.06.002. Gramage-Doria, R.; Armspach, D.; Matt, D. Metallated Cavitands (Calixarenes, Resorcinarenes, Cyclodextrins) with Internal Coordination Sites. Coord. Chem. Rev. 2013, 257 (3–4), 776–816. https://doi.org/10.1016/j.ccr.2012.10.006. Kumar, S.; Chawla, S.; Zou, M. C. Calixarenes Based Materials for Gas Sensing Applications: A Review. J. Incl. Phenom. Macrocycl. Chem. 2017, 88 (3–4), 129–158. https://doi.org/10.1007/s10847-017-0728-2. Ma, X.; Zhao, Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem. Rev. 2015, 115 (15), 7794–7839. https://doi.org/10.1021/cr500392w. Catti, L.; Pöthig, A.; Tiefenbacher, K. Host-Catalyzed Cyclodehydration-Rearrangement Cascade Reaction of Unsaturated Tertiary Alcohols. Adv. Synth. Catal. 2017, 359 (8), 1331–1338. https://doi.org/10.1002/adsc.201601363. Zhang, Q.; Catti, L.; Kaila, V. R. I.; Tiefenbacher, K. To Catalyze or Not to Catalyze: Elucidation of the Subtle Differences between the Hexameric Capsules of Pyrogallolarene and Resorcinarene. Chem. Sci. 2017, 8 (2), 1653–1657. https://doi.org/10.1039/C6SC04565K. Ballester, P.; Biros, S. M. CH-π and π-π Interactions as Contributors to the Guest Binding in Reversible Inclusion and Encapsulation Complexes. In The Importance of Pi-Interactions in Crystal Engineering; John Wiley & Sons, Ltd: Chichester, UK, 2012; pp 79–107. https://doi.org/10.1002/9781119945888.ch3. Baeyer, A. Ueber Die Verbindungen Der Aldehyde Mit Den Phenolen. Berichte der Dtsch. Chem. Gesellschaft 1872, 5 (1), 280–282. https://doi.org/10.1002/cber.18720050186. Michael, A. On the Action of Aldehydes on Phenols I. Am. Chem. J 1883, 5, 338--349. Niederl, J. B.; Vogel, H. J. Aldehyde—Resorcinol Condensations 1. J. Am. Chem. Soc. 1940, 62 (9), 2512–2514. https://doi.org/10.1021/ja01866a067. Erdtman, H.; Högberg, S.; Abrahamsson, S.; Nilsson, B. Cyclooligomeric Phenol-Aldehyde Condensation Products I. Tetrahedron Lett. 1968, 9 (14), 1679–1682. https://doi.org/10.1016/S0040-4039(01)99028-8. Jain, V. K.; Kanaiya, P. H. Chemistry of Calix[4]Resorcinarenes. Russ. Chem. Rev. 2011, 80 (1), 75–102. https://doi.org/10.1070/RC2011v080n01ABEH004127. Mullins, S. Calixarenes By C. David Gutsche, Royal Society of Chemistry, Cambridge, 1989, Pp. 210, Price £39.50. ISBN 0-85186-916-5. J. Chem. Technol. Biotechnol. 2007, 50 (2), 293–294. https://doi.org/10.1002/jctb.280500214. Calixarenes 2001; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Saadioui, M., Eds.; Kluwer Academic Publishers: Dordrecht, 2002. https://doi.org/10.1007/0-306-47522-7. Egberink, R. J. M.; Cobben, P. L. H. M.; Vverboom, W.; Harkema, S.; Reinhoudt, D. N. Hogberg Compounds with a Functionalized Box-like Cavity. J. Incl. Phenom. Mol. Recognit. Chem. 1992, 12 (1–4), 151–158. https://doi.org/10.1007/BF01053858. Cram, D. J.; Karbach, S.; Kim, H. E.; Knobler, C. B.; Maverick, E. F.; Ericson, J. L.; Helgeson, R. C. Host-Guest Complexation. 46. Cavitands as Open Molecular Vessels Form Solvates. J. Am. Chem. Soc. 1988, 110 (7), 2229–2237. https://doi.org/10.1021/ja00215a037. Schneider, U.; Schneider, H.-J. Synthese Und Eigenschaften von Makrocyclen Aus Resorcinen Sowie von Entsprechenden Derivaten Und Wirt-Gast-Komplexen. Chem. Ber. 1994, 127 (12), 2455–2469. https://doi.org/10.1002/cber.19941271216. Purse, B. W.; Shivanyuk, A.; Rebek, J. Resorcin[6]Arene as a Building Block for Tubular Crystalline State Architectures. Chem. Commun. 2002, No. 22, 2612. https://doi.org/10.1039/b208189j. Weinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56 (19), 5527–5535. https://doi.org/10.1021/jo00019a011. Mann, G.; Weinelt, F.; Hauptmann, S. Influence of Aromatic Substituents on the Configuration and Conformation of Calix[4]Areneoctols. J. Phys. Org. Chem. 1989, 2 (7), 531–539. https://doi.org/10.1002/poc.610020705. Mann, G.; Tittelbach-Helmrich, V.; Lippmann, T.; Müller, K. Separation of Stereoisomers of Tetramethylcalix[4]Arenoctol and Derivatives by High-Performance Liquid Chromatography. Chromatographia 1992, 34 (9–10), 453–456. https://doi.org/10.1007/BF02290235. Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands. J. Org. Chem. 1989, 54 (6), 1305–1312. https://doi.org/10.1021/jo00267a015. Hoegberg, A. G. S. Two Stereoisomeric Macrocyclic Resorcinol-Acetaldehyde Condensation Products. J. Org. Chem. 1980, 45 (22), 4498–4500. https://doi.org/10.1021/jo01310a046. Ma, B.-Q.; Coppens, P. A Novel Scoop-Shaped Conformation of C-Methylcalix[4]Resorcinarene in a Bilayer StructureElectronic Supplementary Information (ESI) Available: Figure Showing Interlocked CMCR Molecules between Adjacent Sheets. See Http://Www.Rsc.Org/Suppdata/Cc/B1/B110193. Chem. Commun. 2002, No. 5, 424–425. https://doi.org/10.1039/b110193p. Abis, L.; Dalcanale, E.; Du vosel, A.; Spera, S. Nuclear Magnetic Resonance Elucidation of Ring-Inversion Processes in Macrocyclic Octaols. J. Chem. Soc. Perkin Trans. 2 1990, No. 12, 2075. https://doi.org/10.1039/p29900002075. Castillo-Aguirre, A.; Rivera-Monroy, Z.; Maldonado, M. Selective O-Alkylation of the Crown Conformer of Tetra(4-Hydroxyphenyl)Calix[4]Resorcinarene to the Corresponding Tetraalkyl Ether. Molecules 2017, 22 (10), 1660. https://doi.org/10.3390/molecules22101660. Hoegberg, A. G. S. Cyclooligomeric Phenol-Aldehyde Condensation Products. 2. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-Tetraphenyl[14]Metacyclophan-3,5,10,12,17,19,24,26-Octols. J. Am. Chem. Soc. 1980, 102 (19), 6046–6050. https://doi.org/10.1021/ja00539a012. Li, D.; Kusunoki, T.; Yamagishi, T.-A.; Nakamoto, Y. Synthesis of C-Unalkylated Calix[4]Resorcinarene from 1,3-Dimethoxybenzene-Formaldehyde Condensation. Polym. Bull. 2002, 47 (6), 493–499. https://doi.org/10.1007/s002890200013. Falana, O. M.; Al-Farhan, E.; Keehn, P. M.; Stevenson, R. High Yield Synthesis of the Parent C-Unsubstituted Calix[4]Resorcinarene Octamethyl Ether. Tetrahedron Lett. 1994, 35 (1), 65–68. https://doi.org/10.1016/0040-4039(94)88163-4. Klaes, M.; Agena, C.; Köhler, M.; Inoue, M.; Wada, T.; Inoue, Y.; Mattay, J. First Synthesis, Isolation and Characterization of Enantiomerically Pure and Inherently Chiral Resorc[4]Arenes by Lewis Acid Cyclization of a Resorcinol Monoalkyl Ether. European J. Org. Chem. 2003, 2003 (8), 1404–1409. https://doi.org/10.1002/ejoc.200390197. Botta, B.; Monache, G. D.; Salvatore, P.; Gasparrini, F.; Villani, C.; Botta, M.; Corelli, F.; Tafi, A.; Gacs-baitz, E.; Santini, A.; Carvalho, C. F.; Misiti, D. Synthesis of C-Alkylcalix[4]Arenes. 4. Design, Synthesis, and Computational Studies of Novel Chiral Amido[4]Resorcinarenes. J. Org. Chem. 1997, 62 (14), 932–938. https://doi.org/10.1021/jo962018r. Botta, B.; Iacomacci, P.; Di Giovanni, C.; Delle Monache, G.; Gacs-Baitz, E.; Botta, M.; Tafi, A.; Corelli, F.; Misiti, D. The Tetramerization of 2,4-Dimethoxycinnamates. A Novel Route to Calixarenes. J. Org. Chem. 1992, 57 (12), 3259–3261. https://doi.org/10.1021/jo00038a001. Botta, B.; Di Giovanni, M. C.; Monache, G. D.; De Rosa, M. C.; Gacs-Baitz, E.; Botta, M.; Corelli, F.; Tafi, A.; Santini, A. A Novel Route to Calix[4]Arenes. 2. Solution- and Solid-State Structural Analyses and Molecular Modeling Studies. J. Org. Chem. 1994, 59 (6), 1532–1541. https://doi.org/10.1021/jo00085a047. Iwanek, W.; Urbaniak, M.; Bocheńska, M. The Template Synthesis and Complexation Properties of Methoxypyrogallo[4]Arene. Tetrahedron 2002, 58 (11), 2239–2243. https://doi.org/10.1016/S0040-4020(02)00097-2. Bourgeois, J.-M.; Stoeckli-Evans, H. Synthesis of New Resorcinarenes Under Alkaline Conditions. Helv. Chim. Acta 2005, 88 (10), 2722–2730. https://doi.org/10.1002/hlca.200590211. Konishi, H.; Iwasaki, Y. Base-Catalyzed Synthesis of a Calix[4]Resorcinarene: Cyclocondensation of 2-Butyrylresorcinol with Formaldehyde. Synlett 1995, 1995 (06), 612–612. https://doi.org/10.1055/s-1995-5037. Sanabria, E.; Esteso, M.; Pérez-Redondo, A.; Vargas, E.; Maldonado, M.; Sanabria, E.; Esteso, M. Á.; Pérez-Redondo, A.; Vargas, E.; Maldonado, M. Synthesis and Characterization of Two Sulfonated Resorcinarenes: A New Example of a Linear Array of Sodium Centers and Macrocycles. Molecules 2015, 20 (6), 9915–9928. https://doi.org/10.3390/molecules20069915. Velásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z. J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J. Mol. Struct. 2017, 1137, 380–386. https://doi.org/10.1016/j.molstruc.2017.02.059. Kazakova, E. K.; Ziganshina, A. U.; Muslinkina, L. A.; Morozova, J. E.; Makarova, N. A.; Mustafina, A. R.; Habicher, W. D. The Complexation Properties of the Water-Soluble Tetrasulfonatomethylcalix[4]Resorcinarene toward α-Aminoacids. J. Incl. Phenom. Macrocycl. Chem. 2002, 43 (1/2), 65–69. https://doi.org/10.1023/A:1020404220640. Casas-Hinestroza, J.; Maldonado, M. Conformational Aspects of the O-Acetylation of C-Tetra(Phenyl)Calixpyrogallol[4]Arene. Molecules 2018, 23 (5), 1225. https://doi.org/10.3390/molecules23051225. Yan, C.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave Irradiation Assisted Synthesis, Alkylation Reaction, and Configuration Analysis of Aryl Pyrogallol[4]Arenes. Tetrahedron 2007, 63 (39), 9614–9620. https://doi.org/10.1016/j.tet.2007.07.043. Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Resorcinarenes. Tetrahedron 1996, 52 (8), 2663–2704. https://doi.org/10.1016/0040-4020(95)00984-1. Fransen, J. R.; Dutton, P. J. Cation Binding and Conformation of Octafunctionalized Calix[4]Resorcinarenes. Can. J. Chem. 1995, 73 (12), 2217–2223. https://doi.org/10.1139/v95-275. Maldonado, M.; Sanabria, E.; Batanero, B.; Esteso, M. Á. Apparent Molal Volume and Viscosity Values for a New Synthesized Diazoted Resorcin[4]Arene in DMSO at Several Temperatures. J. Mol. Liq. 2017, 231, 142–148. https://doi.org/10.1016/j.molliq.2017.01.093. Li, N.; Harrison, R. G.; Lamb, J. D. Application of Resorcinarene Derivatives in Chemical Separations. J. Incl. Phenom. Macrocycl. Chem. 2014, 78 (1–4), 39–60. https://doi.org/10.1007/s10847-013-0336-8. Pietraszkiewicz, O.; Pietraszkiewicz, M. Separation of Pyrimidine Bases on a HPLC Stationary RP-18 Phase Coated with Calix[4]Resorcinarene. J. Incl. Phenom. Macrocycl. Chem. 1999, 35 (1/2), 261–270. https://doi.org/10.1023/A:1008151100076. Velásquez-Silva, B. A.; Castillo-Aguirre, A.; Rivera-Monroy, Z. J.; Maldonado, M. Aminomethylated Calix[4]Resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. Polymers (Basel). 2019, 11 (7), 1147. https://doi.org/10.3390/polym11071147. Zhang, H.; Dai, R.; Ling, Y.; Wen, Y.; Zhang, S.; Fu, R.; Gu, J. Resorcarene Derivative Used as a New Stationary Phase for Capillary Gas Chromatography. J. Chromatogr. A 1997, 787 (1–2), 161–169. https://doi.org/10.1016/S0021-9673(97)00613-4. Jain, V. K.; Pillai, S. G.; Gupte, H. S. Supervanadophile: Complexation, Preconcentration and Transport Studies of Vanadium by Octa Functionalized Calix[4]Resorcinarene-Hydroxamic Acid. J. Iran. Chem. Soc. 2008, 5 (4), 646–656. https://doi.org/10.1007/BF03246146. JAIN, V. K.; PILLAP, S. G.; MANDAL, H. C. LIQUID-LIQUID EXTRACTION, PRECONCENTRATION AND TRANSPORT STUDIES OF LANTHANUM (III) WITH CALIX [4] RESORCINARENE-HYDROXAMIC ACID (C4RAHA). J. Chil. Chem. Soc. 2007, 52 (2). https://doi.org/10.4067/S0717-97072007000200013. Jain, V. K.; Pillai, S. G.; Kanaiya, P. H. Octafunctionalized Calix[4]Resorcinarene-N-Fenil-Acetohydroxamic Acid for the Separation, Preconcentration and Transport Studies of Cerium(IV). J. Braz. Chem. Soc. 2006, 17 (7), 1316–1322. https://doi.org/10.1590/S0103-50532006000700018. Podyachev, S. N.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Osyanina, D. V.; Avvakumova, L. V.; Buzykin, B. I.; Latypov, S. K.; Bauer, I.; Habicher, W. D.; Konovalov, A. I. Synthesis of New Calix[4]Arenes Functionalizated by Acetylhydrazide Groups. J. Incl. Phenom. Macrocycl. Chem. 2007, 58 (1–2), 55–61. https://doi.org/10.1007/s10847-006-9117-y. Podyachev, S. N.; Burmakina, N. E.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Konovalov, A. I. Synthesis, IR and NMR Characterization and Ion Extraction Properties of Tetranonylcalix[4]Resorcinol Bearing Acetylhydrazone Groups. Tetrahedron 2009, 65 (1), 408–417. https://doi.org/10.1016/j.tet.2008.10.008. Kuznetsova, L. S.; Pribylova, G. A.; Mustafina, A. R.; Tananaev, I. G.; Myasoedov, B. F.; Konovalov, A. I. Extraction of Am(III) and Eu(III) with a Dimethylaminomethylated Derivative of Calix[4]Resorcinolarene. Radiochemistry 2004, 46 (3), 277–281. https://doi.org/10.1023/B:RACH.0000031689.21856.c4. Puttreddy, R.; Beyeh, N. K.; Taimoory, S. M.; Meister, D.; Trant, J. F.; Rissanen, K. Host–Guest Complexes of Conformationally Flexible C -Hexyl-2-Bromoresorcinarene and Aromatic N -Oxides: Solid-State, Solution and Computational Studies. Beilstein J. Org. Chem. 2018, 14, 1723–1733. https://doi.org/10.3762/bjoc.14.146. Hong, M.; Zhang, Y.-M.; Liu, Y. Selective Binding Affinity between Quaternary Ammonium Cations and Water-Soluble Calix[4]Resorcinarene. J. Org. Chem. 2015, 80 (3), 1849–1855. https://doi.org/10.1021/jo502825z. Wei, J.; Ren, J.; Liu, J.; Meng, X.; Ren, X.; Chen, Z.; Tang, F. An Eco-Friendly, Simple, and Sensitive Fluorescence Biosensor for the Detection of Choline and Acetylcholine Based on C-Dots and the Fenton Reaction. Biosens. Bioelectron. 2014, 52, 304–309. https://doi.org/10.1016/j.bios.2013.09.006. Zeisel, S. H.; Mar, M.-H.; Howe, J. C.; Holden, J. M. Concentrations of Choline-Containing Compounds and Betaine in Common Foods. J. Nutr. 2003, 133 (5), 1302–1307. https://doi.org/10.1093/jn/133.5.1302. Zeisel, S. H. Choline: Critical Role During Fetal Development and Dietary Requirements in Adults. Annu. Rev. Nutr. 2006, 26 (1), 229–250. https://doi.org/10.1146/annurev.nutr.26.061505.111156. Buchman, A. L.; Dubin, M. D.; Moukarzel, A. A.; Jenden, D. J.; Roch, M.; Rice, K. M.; Gornbein, J.; Ament, M. E. Choline Deficiency: A Cause of Hepatic Steatosis during Parenteral Nutrition That Can Be Reversed with Intravenous Choline Supplementation. Hepatology 1995, 22 (5), 1399–1403. Wilcock, G. K.; Esiri, M. M.; Bowen, D. M.; Smith, C. C. Alzheimer’s Disease. Correlation of Cortical Choline Acetyltransferase Activity with the Severity of Dementia and Histological Abnormalities. J. Neurol. Sci. 1982, 57 (2–3), 407–417. Thal, L. J.; Rosen, W.; Sharpless, N. S.; Crystal, H. Choline Chloride Fails to Improve Cognition in Alzheimer’s Disease. Neurobiol. Aging 1981, 2 (3), 205–208. https://doi.org/10.1016/0197-4580(81)90022-1. Phillips, M. M. Analytical Approaches to Determination of Total Choline in Foods and Dietary Supplements. Anal. Bioanal. Chem. 2012, 403 (8), 2103–2112. https://doi.org/10.1007/s00216-011-5652-5. Holmes-McNary, M. Q.; Cheng, W. L.; Mar, M. H.; Fussell, S.; Zeisel, S. H. Choline and Choline Esters in Human and Rat Milk and in Infant Formulas. Am. J. Clin. Nutr. 1996, 64 (4), 572–576. https://doi.org/10.1093/ajcn/64.4.572. Zeisel, S. H.; Blusztajn, J. K. Choline and Human Nutrition. Annu. Rev. Nutr. 1994, 14 (1), 269–296. https://doi.org/10.1146/annurev.nu.14.070194.001413. AOAC International., J. I.; Thomson Gale (Firm), C. M.; Trucksess, M. W. Journal of AOAC International.; AOAC International, 1992; Vol. 87. Pati, S.; Palmisano, F.; Quinto, M.; Zambonin, P. G. Quantitation of Major Choline Fractions in Milk and Dietary Supplements Using a Phospholipase D Bioreactor Coupled to a Choline Amperometric Biosensor. J. Agric. Food Chem. 2005, 53 (18), 6974–6979. https://doi.org/10.1021/jf050277o. Guyenet, P. G.; Agid, Y.; Javoy, F.; Beaujouan, J. C.; Rossier, J.; Glowinski, J. Effects of Dopaminergic Receptor Agonists and Antagonists on the Activity of the Neo-Striatal Cholinergic System. Brain Res. 1975, 84 (2), 227–244. https://doi.org/10.1016/0006-8993(75)90978-6. Haubrich, D. R.; Gerber, N.; Pflueger, A. B.; Zweig, M. Tissue Choline Studied Using a Simple Chemical Assay. J. Neurochem. 1981, 36 (4), 1409–1417. https://doi.org/10.1111/j.1471-4159.1981.tb00580.x. Roisin, M.-P.; Brassart, J.-L.; Charton, G.; Crepel, V.; Ari, Y. Ben. A New Method for the Measurement of Endogenous Transmitter Release in Localized Regions of Hippocampal Slices. J. Neurosci. Methods 1991, 37 (2), 183–189. https://doi.org/10.1016/0165-0270(91)90129-N. YAO, T.; HANDA, S. Electroanalytical Properties of Aldehyde Biosensors with a Hybrid-Membrane Composed of an Enzyme Film and a Redox Os-Polymer Film. Anal. Sci. 2003, 19 (5), 767–770. https://doi.org/10.2116/analsci.19.767. Bullock, R.; Butcher, S. P.; Chen, M.-H.; Kendall, L.; McCulloch, J. Correlation of the Extracellular Glutamate Concentration with Extent of Blood Flow Reduction after Subdural Hematoma in the Rat. J. Neurosurg. 1991, 74 (5), 794–802. https://doi.org/10.3171/jns.1991.74.5.0794. Murai, S.; Saito, H.; Masuda, Y.; Itsukaichi, O.; Itoh, T. Basal Levels of Noradrenaline, Dopamine, 5-Hydroxytryptamine, and Acetylcholine in the Submandibular, Parotid, and Sublingual Glands of Mice and Rats. Arch. Oral Biol. 1995, 40 (7), 663–668. https://doi.org/10.1016/0003-9969(95)00023-I. Izaki, Y.; Hori, K.; Nomura, M. Dopamine and Acetylcholine Elevation on Lever-Press Acquisition in Rat Prefrontal Cortex. Neurosci. Lett. 1998, 258 (1), 33–36. https://doi.org/10.1016/S0304-3940(98)00841-6. Khan, A.; Khan, A. A. P.; Asiri, A. M.; Rub, M. A.; Azum, N.; Rahman, M. M.; Khan, S. B.; Ghani, S. A. A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview. Appl. Biochem. Biotechnol. 2013, 169 (6), 1927–1939. https://doi.org/10.1007/s12010-013-0099-0. Tamiya, E.; Sugiura, Y.; Nepomuceno Navera, E.; Mizoshita, S.; Nakajima, K.; Akiyama, A.; Karube, I. Ultramicro Acetylcholine Sensor Based on an Enzyme-Modified Carbon Fibre Electrode. Anal. Chim. Acta 1991, 251 (1–2), 129–134. https://doi.org/10.1016/0003-2670(91)87125-Q. Yao, T.; Suzuki, S.; Nishino, H.; Nakahara, T. On-Line Amperometric Assay of Glucose,L-Glutamate, and Acetylcholine Using Microdialysis Probes and Immobilized Enzyme Reactors. Electroanalysis 1995, 7 (12), 1114–1117. https://doi.org/10.1002/elan.1140071203. Larsson, N.; Ruzgas, T.; Gorton, L.; Kokaia, M.; Kissinger, P.; Csöregi, E. Design and Development of an Amperometric Biosensor for Acetylcholine Determination in Brain Microdialysates. Electrochim. Acta 1998, 43 (23), 3541–3554. https://doi.org/10.1016/S0013-4686(98)00102-9. BOWEN, D. M.; SMITH, C. B.; WHITE, P.; DAVISON, A. N. NEUROTRANSMITTER-RELATED ENZYMES AND INDICES OF HYPOXIA IN SENILE DEMENTIA AND OTHER ABIOTROPHIES. Brain 1976, 99 (3), 459–496. https://doi.org/10.1093/brain/99.3.459 Potter, P. E.; Meek, J. L.; Neff, N. H. Acetylcholine and Choline in Neuronal Tissue Measured by HPLC with Electrochemical Detection. J. Neurochem. 1983, 41 (1), 188–194. https://doi.org/10.1111/j.1471-4159.1983.tb13668.x. Meek, J. L.; Eva, C. Enzymes Adsorbed on an Ion Exchanger as a Post-Column Reactor: Application to Acetylcholine Measurement. J. Chromatogr. A 1984, 317, 343–347. https://doi.org/10.1016/S0021-9673(01)91673-5. Tyrefors, N.; Gillberg, P. G. Determination of Acetylcholine and Choline in Microdialysates from Spinal Cord of Rat Using Liquid Chromatography with Electrochemical Detection. J. Chromatogr. B Biomed. Sci. Appl. 1987, 423, 85–91. https://doi.org/10.1016/0378-4347(87)80330-4. Busi, S.; Saxell, H.; Fröhlich, R.; Rissanen, K. The Role of Cation⋯π Interactions in Capsule Formation: Co-Crystals of Resorcinarenes and Alkyl Ammonium Salts. CrystEngComm 2008, 10 (12), 1803. https://doi.org/10.1039/b809503e. Beyeh, N. K.; Pan, F.; Valkonen, A.; Rissanen, K. Encapsulation of Secondary and Tertiary Ammonium Salts by Resorcinarenes and Pyrogallarenes: The Effect of Size and Charge Concentration. CrystEngComm 2015, 17 (5), 1182–1188. https://doi.org/10.1039/C4CE01927J. Shivanyuk, A.; Rissanen, K.; Kolehmainen, E. Encapsulation of Et3N+–H•••OH2 in a Hydrogen-Bonded Resorcarene Capsule. Chem. Commun. 2000, No. 13, 1107–1108. https://doi.org/10.1039/b002144j. Abd El-Rahman, M. K.; Mazzone, G.; Mahmoud, A. M.; Sicilia, E.; Shoeib, T. Spectrophotometric Determination of Choline in Pharmaceutical Formulations via Host-Guest Complexation with a Biomimetic Calixarene Receptor. Microchem. J. 2019, 146, 735–741. https://doi.org/10.1016/j.microc.2019.01.046. Kazakova, E. K.; Makarova, N. A.; Ziganshina, A. U.; Muslinkina, L. A.; Muslinkin, A. A.; Habicher, W. D. Novel Water-Soluble Tetrasulfonatomethylcalix[4]Resorcinarenes. Tetrahedron Lett. 2000, 41 (51), 10111–10115. https://doi.org/10.1016/S0040-4039(00)01798-6. Ahmadzadeh, S.; Rezayi, M.; Karimi-Maleh, H.; Alias, Y. Conductometric Measurements of Complexation Study between 4-Isopropylcalix[4]Arene and Cr3+ Cation in THF–DMSO Binary Solvents. Measurement 2015, 70, 214–224. https://doi.org/10.1016/j.measurement.2015.04.005. Jalali, F.; Ashrafi, A.; Shamsipur, M. Conductance Study of the Thermodynamics of Complexation of Amantadine, Rimantadine and Aminocyclohexane with Some Macrocyclic Compounds in Acetonitrile Solution. J. Incl. Phenom. Macrocycl. Chem. 2008, 61 (1–2), 77–82. https://doi.org/10.1007/s10847-007-9395-z. Hasani, M.; Shamsipur, M. Conductance Study of the Thermodynamics of Ammonium Ion Complexes with Several Crown Ethers in Acetonitrile Solution. J. Solution Chem. 1994, 23 (6), 721–734. https://doi.org/10.1007/BF00972718. Christy, F. A.; Shrivastav, P. S. Conductometric Studies on Cation-Crown Ether Complexes: A Review. Crit. Rev. Anal. Chem. 2011, 41 (3), 236–269. https://doi.org/10.1080/10408347.2011.589284. Kashapov, R. R.; Razuvayeva, Y. S.; Ziganshina, A. Y.; Mukhitova, R. K.; Sapunova, A. S.; Voloshina, A. D.; Syakaev, V. V.; Latypov, S. K.; Nizameev, I. R.; Kadirov, M. K.; Zakharova, L. Y. N-Methyl-d-Glucamine–Calix[4]Resorcinarene Conjugates: Self-Assembly and Biological Properties. Molecules 2019, 24 (10), 1939. https://doi.org/10.3390/molecules24101939. TakedaYasuyuki; YanoHisao; IshibashiMasayuki; IsozumiHiroshi. A Conductance Study of Alkali Metal Ion-15-Crown-5, 18-Crown-6, and Dibenzo-24-Crown-8 Complexes in Propylene Carbonate. http://dx.doi.org/10.1246/bcsj.53.72 2006, 53 (1), 72–76. https://doi.org/10.1246/BCSJ.53.72. Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40 (3), 1305–1323. https://doi.org/10.1039/C0CS00062K. Salorinne, K.; Weimann, D. P.; Schalley, C. A.; Nissinen, M. Resorcinarene Podand with Amine-Functionalized Side Arms €“ Synthesis, Structure, and Binding Properties of a Neutral Anion Receptor. European J. Org. Chem. 2009, 2009 (35), 6151–6159. https://doi.org/10.1002/ejoc.200900814. Helttunen, K.; Salorinne, K.; Barboza, T.; Barbosa, H. C.; Suhonen, A.; Nissinen, M. Cation Binding Resorcinarene Bis-Crowns: The Effect of Lower Rim Alkyl Chain Length on Crystal Packing and Solid Lipid Nanoparticles. New J. Chem. 2012, 36 (3), 789. https://doi.org/10.1039/c2nj20981k. Helttunen, K.; Shahgaldian, P. Self-Assembly of Amphiphilic Calixarenes and Resorcinarenes in Water. New J. Chem. 2010, 34 (12), 2704. https://doi.org/10.1039/c0nj00123f. Patil, R. S.; Zhang, C.; Atwood, J. L. Process Development for Separation of Conformers from Derivatives of Resorcin[4]Arenes and Pyrogallol[4]Arenes. Chem. - A Eur. J. 2016, 22 (43), 15202–15207. https://doi.org/10.1002/chem.201603090. Mahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116 (5), 2775–2825. https://doi.org/10.1021/cr500344e. Urbaniak, M.; Pedrycz, A.; Gawdzik, B.; Wzorek, A. Preparation of Partially Functionalised Resorcinarene Derivatives. Supramol. Chem. 2013, 25 (12), 777–781. https://doi.org/10.1080/10610278.2013.803108. Konishi, H.; Nakamaru, H.; Nakatani, H.; Ueyama, T.; Kobayashi, K.; Morikawa, O. Regioselective Distal -Dibromination of Calix[4]Resorcinarene. Chem. Lett. 1997, 26 (2), 185–186. https://doi.org/10.1246/cl.1997.185. Luostarinen, M.; Shivanyuk, A.; Rissanen, K. Partial Aminomethylation of Resorcarenes. Org. Lett. 2001, 3 (26), 4141–4144. https://doi.org/10.1021/ol016658e. Hart, H.; Craine, L.; Hart, D.; Hadac, C. Química Orgánica, 12th ed.; McGraw-Hill, 2007. Morrison, R. T.; Boyd, R. N. Química Orgánica, 5th ed.; Pearson Education., 1990. Hirose, K. A Practical Guide for the Determination of Binding Constants. J. Incl. Phenom. Macrocycl. Chem. 2001, 39 (3), 193–209. https://doi.org/10.1023/A:1011117412693. Macomber, R. S. An Introduction to NMR Titration for Studying Rapid Reversible Complexation. J. Chem. Educ. 1992, 69 (5), 375. https://doi.org/10.1021/ed069p375. Jurado, J. M.; Muñiz-Valencia, R.; Alcázar, A.; Ceballos-Magaña, S. G.; González, J. Ajustando Datos Químicos Con Excel: Un Tutorial Práctico. Educ. Química 2016, 27 (1), 21–29. https://doi.org/10.1016/j.eq.2015.09.009. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos reservados al autor, 2021 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 87 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80763/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80763/3/1026288997.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80763/4/1026288997.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8153f7789df02f0a4c9e079953658ab2 dc79b6f6e59443be022a1da49cc5055c 72014c6fdda49a32019a6b1cd70f2d8c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089401695731712 |
spelling |
Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Maldonado Villamil, Mauricio3a378aa45195548db31da075813fbd30Vela Suazo, Miguel Angelf2e3742bfbcd436d472f94d9a2f9a7b4Aplicaciones Analíticas de Compuestos Orgánicos (Aaco)2021-12-07T22:04:59Z2021-12-07T22:04:59Z2021https://repositorio.unal.edu.co/handle/unal/80763Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEste trabajo de investigación tiene como objetivo la síntesis, derivación y caracterización de resorcinarenos corona solubles en agua para evaluar la interacción molecular con colina. En este sentido se llevó a cabo la síntesis para la obtención del C-tetra(nonil)calix[4]resorcinareno y C-tetra(fenil)calix[4]resorcinareno de la cual se obtuvo y caracterizó (IR, RMN-1H y RMN-13C) sus respectivos isómeros corona, y adicionalmente el isómero silla del C-tetra(fenil)calix[4]resorcinareno separado exitosamente mediante extracción con disolventes. En el caso puntual del C-tetra(fenil)calix[4]resorcinareno corona presentó dinamismo molecular demostrando que en solución tiene un cambio continuo conformacional de bote-corona-bote. Los dos macrociclos corona obtenidos fueron derivatizados mediante la reacción de sulfometilación en donde el C-tetra(fenil)calix[4]resorcinareno demostró tener baja quimioselectividad lo que conllevó a obtener una mezcla de varios compuestos (evidenciado por HPLC y RMN-1H) que varían según la cantidad de sitios funcionalizados dificultando su separación. Finalmente se evaluó la interacción molecular con colina con el único compuesto sulfometilado obtenido mediante titulaciones conductimétricas y por RMN-1H, por las cuales se logró determinar qué forma el complejo con estequiometria 1:1 con el huésped, además de evidenciar una buena interacción en la cavidad del macrociclo, demostrando un gran potencial para sistemas huésped-hospedero con colina. (texto tomado de la fuente)This research work aims at the synthesis, derivation and characterization of water-soluble crown resorcinarenes to evaluate the molecular interaction with choline. In this sense, the synthesis was carried out to obtain C-tetra(nonyl)calix[4]resorcinarene and C-tetra (phenyl)calix[4]resorcinarene from which it was obtained and characterized (IR, 1H-NMR and 13C-NMR) their respective crown isomers, and additionally the chair isomer of C-tetra(phenyl)calix[4]resorcinarene successfully removed by solvent extraction. In the specific case of crown C-tetra(phenyl)calix[4]resorcinarene presented molecular dynamism, demonstrating that in solution it has a continuous boat-crown-boat conformational change. The two crown macrocycles obtained were derived by the sulfomethylation reaction where C-tetra(phenyl)calix[4]resorcinarene demonstrated low chemoselectivity, which led to obtaining a mixture of several compounds (evidenced by HPLC and 1H-NMR) that It varies according to the number of functionalize sites, making it difficult to separate them. Finally, the molecular interaction with choline and the only sulfomethylated compound obtained through conductometric titrations and 1H-NMR was evaluated, by which it was possible to determine what the complex forms with 1: 1 stoichiometry with the host, in addition to showing a good interaction in the macrocycle cavity, demonstrating great potential for choline host-guest systems.MaestríaMagíster en Ciencias - QuímicaSíntesis orgánicaxiv, 87 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesresorcin[4]arenocomplejos huésped-hospederosulfometilacióninteracción molecularresorcin[4]arenehost-guest complexessulfomethylationmolecular interactionQuímica orgánicaCompuesto orgánicoOrganic chemistryOrganic compoundsEstudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colinaStudy of the effect of substituent on the lower rim of sulfomethylated resorcinarenes and its behavior in the host-guest interaction with cholineTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMZeisel, S. H.; da Costa, K.-A. Choline: An Essential Nutrient for Public Health. Nutr. Rev. 2009, 67 (11), 615–623. https://doi.org/10.1111/j.1753-4887.2009.00246.x.Wang, X.-F.; Zhou, Y.; Xu, J.-J.; Chen, H.-Y. Signal-On Electrochemiluminescence Biosensors Based on CdS-Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine. Adv. Funct. Mater. 2009, 19 (9), 1444–1450. https://doi.org/10.1002/adfm.200801313.Mironova, D. A.; Muslinkina, L. A.; Morozova, J. E.; Shalaeva, Y. V.; Kazakova, E. K.; Kadyrov, M. T.; Nizameev, I. R.; Konovalov, A. I. Complexes of Tetramethylensulfonatocalix[4]Resorcinarene Aggregates with Methyl Orange: Interactions with Guests and Driving Force of Color Response. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 468, 339–345. https://doi.org/10.1016/j.colsurfa.2014.12.028.Pereira, N. M.; Brincoveanu, O.; Pantazi, A. G.; Pereira, C. M.; Araújo, J. P.; Fernando Silva, A.; Enachescu, M.; Anicai, L. Electrodeposition of Co and Co Composites with Carbon Nanotubes Using Choline Chloride-Based Ionic Liquids. Surf. Coatings Technol. 2017, 324, 451–462. https://doi.org/10.1016/j.surfcoat.2017.06.002.Gramage-Doria, R.; Armspach, D.; Matt, D. Metallated Cavitands (Calixarenes, Resorcinarenes, Cyclodextrins) with Internal Coordination Sites. Coord. Chem. Rev. 2013, 257 (3–4), 776–816. https://doi.org/10.1016/j.ccr.2012.10.006.Kumar, S.; Chawla, S.; Zou, M. C. Calixarenes Based Materials for Gas Sensing Applications: A Review. J. Incl. Phenom. Macrocycl. Chem. 2017, 88 (3–4), 129–158. https://doi.org/10.1007/s10847-017-0728-2.Ma, X.; Zhao, Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem. Rev. 2015, 115 (15), 7794–7839. https://doi.org/10.1021/cr500392w.Catti, L.; Pöthig, A.; Tiefenbacher, K. Host-Catalyzed Cyclodehydration-Rearrangement Cascade Reaction of Unsaturated Tertiary Alcohols. Adv. Synth. Catal. 2017, 359 (8), 1331–1338. https://doi.org/10.1002/adsc.201601363.Zhang, Q.; Catti, L.; Kaila, V. R. I.; Tiefenbacher, K. To Catalyze or Not to Catalyze: Elucidation of the Subtle Differences between the Hexameric Capsules of Pyrogallolarene and Resorcinarene. Chem. Sci. 2017, 8 (2), 1653–1657. https://doi.org/10.1039/C6SC04565K.Ballester, P.; Biros, S. M. CH-π and π-π Interactions as Contributors to the Guest Binding in Reversible Inclusion and Encapsulation Complexes. In The Importance of Pi-Interactions in Crystal Engineering; John Wiley & Sons, Ltd: Chichester, UK, 2012; pp 79–107. https://doi.org/10.1002/9781119945888.ch3.Baeyer, A. Ueber Die Verbindungen Der Aldehyde Mit Den Phenolen. Berichte der Dtsch. Chem. Gesellschaft 1872, 5 (1), 280–282. https://doi.org/10.1002/cber.18720050186.Michael, A. On the Action of Aldehydes on Phenols I. Am. Chem. J 1883, 5, 338--349.Niederl, J. B.; Vogel, H. J. Aldehyde—Resorcinol Condensations 1. J. Am. Chem. Soc. 1940, 62 (9), 2512–2514. https://doi.org/10.1021/ja01866a067.Erdtman, H.; Högberg, S.; Abrahamsson, S.; Nilsson, B. Cyclooligomeric Phenol-Aldehyde Condensation Products I. Tetrahedron Lett. 1968, 9 (14), 1679–1682. https://doi.org/10.1016/S0040-4039(01)99028-8.Jain, V. K.; Kanaiya, P. H. Chemistry of Calix[4]Resorcinarenes. Russ. Chem. Rev. 2011, 80 (1), 75–102. https://doi.org/10.1070/RC2011v080n01ABEH004127.Mullins, S. Calixarenes By C. David Gutsche, Royal Society of Chemistry, Cambridge, 1989, Pp. 210, Price £39.50. ISBN 0-85186-916-5. J. Chem. Technol. Biotechnol. 2007, 50 (2), 293–294. https://doi.org/10.1002/jctb.280500214.Calixarenes 2001; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Saadioui, M., Eds.; Kluwer Academic Publishers: Dordrecht, 2002. https://doi.org/10.1007/0-306-47522-7.Egberink, R. J. M.; Cobben, P. L. H. M.; Vverboom, W.; Harkema, S.; Reinhoudt, D. N. Hogberg Compounds with a Functionalized Box-like Cavity. J. Incl. Phenom. Mol. Recognit. Chem. 1992, 12 (1–4), 151–158. https://doi.org/10.1007/BF01053858.Cram, D. J.; Karbach, S.; Kim, H. E.; Knobler, C. B.; Maverick, E. F.; Ericson, J. L.; Helgeson, R. C. Host-Guest Complexation. 46. Cavitands as Open Molecular Vessels Form Solvates. J. Am. Chem. Soc. 1988, 110 (7), 2229–2237. https://doi.org/10.1021/ja00215a037.Schneider, U.; Schneider, H.-J. Synthese Und Eigenschaften von Makrocyclen Aus Resorcinen Sowie von Entsprechenden Derivaten Und Wirt-Gast-Komplexen. Chem. Ber. 1994, 127 (12), 2455–2469. https://doi.org/10.1002/cber.19941271216.Purse, B. W.; Shivanyuk, A.; Rebek, J. Resorcin[6]Arene as a Building Block for Tubular Crystalline State Architectures. Chem. Commun. 2002, No. 22, 2612. https://doi.org/10.1039/b208189j.Weinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56 (19), 5527–5535. https://doi.org/10.1021/jo00019a011.Mann, G.; Weinelt, F.; Hauptmann, S. Influence of Aromatic Substituents on the Configuration and Conformation of Calix[4]Areneoctols. J. Phys. Org. Chem. 1989, 2 (7), 531–539. https://doi.org/10.1002/poc.610020705.Mann, G.; Tittelbach-Helmrich, V.; Lippmann, T.; Müller, K. Separation of Stereoisomers of Tetramethylcalix[4]Arenoctol and Derivatives by High-Performance Liquid Chromatography. Chromatographia 1992, 34 (9–10), 453–456. https://doi.org/10.1007/BF02290235.Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands. J. Org. Chem. 1989, 54 (6), 1305–1312. https://doi.org/10.1021/jo00267a015.Hoegberg, A. G. S. Two Stereoisomeric Macrocyclic Resorcinol-Acetaldehyde Condensation Products. J. Org. Chem. 1980, 45 (22), 4498–4500. https://doi.org/10.1021/jo01310a046.Ma, B.-Q.; Coppens, P. A Novel Scoop-Shaped Conformation of C-Methylcalix[4]Resorcinarene in a Bilayer StructureElectronic Supplementary Information (ESI) Available: Figure Showing Interlocked CMCR Molecules between Adjacent Sheets. See Http://Www.Rsc.Org/Suppdata/Cc/B1/B110193. Chem. Commun. 2002, No. 5, 424–425. https://doi.org/10.1039/b110193p.Abis, L.; Dalcanale, E.; Du vosel, A.; Spera, S. Nuclear Magnetic Resonance Elucidation of Ring-Inversion Processes in Macrocyclic Octaols. J. Chem. Soc. Perkin Trans. 2 1990, No. 12, 2075. https://doi.org/10.1039/p29900002075.Castillo-Aguirre, A.; Rivera-Monroy, Z.; Maldonado, M. Selective O-Alkylation of the Crown Conformer of Tetra(4-Hydroxyphenyl)Calix[4]Resorcinarene to the Corresponding Tetraalkyl Ether. Molecules 2017, 22 (10), 1660. https://doi.org/10.3390/molecules22101660.Hoegberg, A. G. S. Cyclooligomeric Phenol-Aldehyde Condensation Products. 2. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-Tetraphenyl[14]Metacyclophan-3,5,10,12,17,19,24,26-Octols. J. Am. Chem. Soc. 1980, 102 (19), 6046–6050. https://doi.org/10.1021/ja00539a012.Li, D.; Kusunoki, T.; Yamagishi, T.-A.; Nakamoto, Y. Synthesis of C-Unalkylated Calix[4]Resorcinarene from 1,3-Dimethoxybenzene-Formaldehyde Condensation. Polym. Bull. 2002, 47 (6), 493–499. https://doi.org/10.1007/s002890200013.Falana, O. M.; Al-Farhan, E.; Keehn, P. M.; Stevenson, R. High Yield Synthesis of the Parent C-Unsubstituted Calix[4]Resorcinarene Octamethyl Ether. Tetrahedron Lett. 1994, 35 (1), 65–68. https://doi.org/10.1016/0040-4039(94)88163-4.Klaes, M.; Agena, C.; Köhler, M.; Inoue, M.; Wada, T.; Inoue, Y.; Mattay, J. First Synthesis, Isolation and Characterization of Enantiomerically Pure and Inherently Chiral Resorc[4]Arenes by Lewis Acid Cyclization of a Resorcinol Monoalkyl Ether. European J. Org. Chem. 2003, 2003 (8), 1404–1409. https://doi.org/10.1002/ejoc.200390197.Botta, B.; Monache, G. D.; Salvatore, P.; Gasparrini, F.; Villani, C.; Botta, M.; Corelli, F.; Tafi, A.; Gacs-baitz, E.; Santini, A.; Carvalho, C. F.; Misiti, D. Synthesis of C-Alkylcalix[4]Arenes. 4. Design, Synthesis, and Computational Studies of Novel Chiral Amido[4]Resorcinarenes. J. Org. Chem. 1997, 62 (14), 932–938. https://doi.org/10.1021/jo962018r.Botta, B.; Iacomacci, P.; Di Giovanni, C.; Delle Monache, G.; Gacs-Baitz, E.; Botta, M.; Tafi, A.; Corelli, F.; Misiti, D. The Tetramerization of 2,4-Dimethoxycinnamates. A Novel Route to Calixarenes. J. Org. Chem. 1992, 57 (12), 3259–3261. https://doi.org/10.1021/jo00038a001.Botta, B.; Di Giovanni, M. C.; Monache, G. D.; De Rosa, M. C.; Gacs-Baitz, E.; Botta, M.; Corelli, F.; Tafi, A.; Santini, A. A Novel Route to Calix[4]Arenes. 2. Solution- and Solid-State Structural Analyses and Molecular Modeling Studies. J. Org. Chem. 1994, 59 (6), 1532–1541. https://doi.org/10.1021/jo00085a047.Iwanek, W.; Urbaniak, M.; Bocheńska, M. The Template Synthesis and Complexation Properties of Methoxypyrogallo[4]Arene. Tetrahedron 2002, 58 (11), 2239–2243. https://doi.org/10.1016/S0040-4020(02)00097-2.Bourgeois, J.-M.; Stoeckli-Evans, H. Synthesis of New Resorcinarenes Under Alkaline Conditions. Helv. Chim. Acta 2005, 88 (10), 2722–2730. https://doi.org/10.1002/hlca.200590211.Konishi, H.; Iwasaki, Y. Base-Catalyzed Synthesis of a Calix[4]Resorcinarene: Cyclocondensation of 2-Butyrylresorcinol with Formaldehyde. Synlett 1995, 1995 (06), 612–612. https://doi.org/10.1055/s-1995-5037.Sanabria, E.; Esteso, M.; Pérez-Redondo, A.; Vargas, E.; Maldonado, M.; Sanabria, E.; Esteso, M. Á.; Pérez-Redondo, A.; Vargas, E.; Maldonado, M. Synthesis and Characterization of Two Sulfonated Resorcinarenes: A New Example of a Linear Array of Sodium Centers and Macrocycles. Molecules 2015, 20 (6), 9915–9928. https://doi.org/10.3390/molecules20069915.Velásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z. J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J. Mol. Struct. 2017, 1137, 380–386. https://doi.org/10.1016/j.molstruc.2017.02.059.Kazakova, E. K.; Ziganshina, A. U.; Muslinkina, L. A.; Morozova, J. E.; Makarova, N. A.; Mustafina, A. R.; Habicher, W. D. The Complexation Properties of the Water-Soluble Tetrasulfonatomethylcalix[4]Resorcinarene toward α-Aminoacids. J. Incl. Phenom. Macrocycl. Chem. 2002, 43 (1/2), 65–69. https://doi.org/10.1023/A:1020404220640.Casas-Hinestroza, J.; Maldonado, M. Conformational Aspects of the O-Acetylation of C-Tetra(Phenyl)Calixpyrogallol[4]Arene. Molecules 2018, 23 (5), 1225. https://doi.org/10.3390/molecules23051225.Yan, C.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave Irradiation Assisted Synthesis, Alkylation Reaction, and Configuration Analysis of Aryl Pyrogallol[4]Arenes. Tetrahedron 2007, 63 (39), 9614–9620. https://doi.org/10.1016/j.tet.2007.07.043.Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Resorcinarenes. Tetrahedron 1996, 52 (8), 2663–2704. https://doi.org/10.1016/0040-4020(95)00984-1.Fransen, J. R.; Dutton, P. J. Cation Binding and Conformation of Octafunctionalized Calix[4]Resorcinarenes. Can. J. Chem. 1995, 73 (12), 2217–2223. https://doi.org/10.1139/v95-275.Maldonado, M.; Sanabria, E.; Batanero, B.; Esteso, M. Á. Apparent Molal Volume and Viscosity Values for a New Synthesized Diazoted Resorcin[4]Arene in DMSO at Several Temperatures. J. Mol. Liq. 2017, 231, 142–148. https://doi.org/10.1016/j.molliq.2017.01.093.Li, N.; Harrison, R. G.; Lamb, J. D. Application of Resorcinarene Derivatives in Chemical Separations. J. Incl. Phenom. Macrocycl. Chem. 2014, 78 (1–4), 39–60. https://doi.org/10.1007/s10847-013-0336-8.Pietraszkiewicz, O.; Pietraszkiewicz, M. Separation of Pyrimidine Bases on a HPLC Stationary RP-18 Phase Coated with Calix[4]Resorcinarene. J. Incl. Phenom. Macrocycl. Chem. 1999, 35 (1/2), 261–270. https://doi.org/10.1023/A:1008151100076.Velásquez-Silva, B. A.; Castillo-Aguirre, A.; Rivera-Monroy, Z. J.; Maldonado, M. Aminomethylated Calix[4]Resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. Polymers (Basel). 2019, 11 (7), 1147. https://doi.org/10.3390/polym11071147.Zhang, H.; Dai, R.; Ling, Y.; Wen, Y.; Zhang, S.; Fu, R.; Gu, J. Resorcarene Derivative Used as a New Stationary Phase for Capillary Gas Chromatography. J. Chromatogr. A 1997, 787 (1–2), 161–169. https://doi.org/10.1016/S0021-9673(97)00613-4.Jain, V. K.; Pillai, S. G.; Gupte, H. S. Supervanadophile: Complexation, Preconcentration and Transport Studies of Vanadium by Octa Functionalized Calix[4]Resorcinarene-Hydroxamic Acid. J. Iran. Chem. Soc. 2008, 5 (4), 646–656. https://doi.org/10.1007/BF03246146.JAIN, V. K.; PILLAP, S. G.; MANDAL, H. C. LIQUID-LIQUID EXTRACTION, PRECONCENTRATION AND TRANSPORT STUDIES OF LANTHANUM (III) WITH CALIX [4] RESORCINARENE-HYDROXAMIC ACID (C4RAHA). J. Chil. Chem. Soc. 2007, 52 (2). https://doi.org/10.4067/S0717-97072007000200013.Jain, V. K.; Pillai, S. G.; Kanaiya, P. H. Octafunctionalized Calix[4]Resorcinarene-N-Fenil-Acetohydroxamic Acid for the Separation, Preconcentration and Transport Studies of Cerium(IV). J. Braz. Chem. Soc. 2006, 17 (7), 1316–1322. https://doi.org/10.1590/S0103-50532006000700018.Podyachev, S. N.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Osyanina, D. V.; Avvakumova, L. V.; Buzykin, B. I.; Latypov, S. K.; Bauer, I.; Habicher, W. D.; Konovalov, A. I. Synthesis of New Calix[4]Arenes Functionalizated by Acetylhydrazide Groups. J. Incl. Phenom. Macrocycl. Chem. 2007, 58 (1–2), 55–61. https://doi.org/10.1007/s10847-006-9117-y.Podyachev, S. N.; Burmakina, N. E.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Konovalov, A. I. Synthesis, IR and NMR Characterization and Ion Extraction Properties of Tetranonylcalix[4]Resorcinol Bearing Acetylhydrazone Groups. Tetrahedron 2009, 65 (1), 408–417. https://doi.org/10.1016/j.tet.2008.10.008.Kuznetsova, L. S.; Pribylova, G. A.; Mustafina, A. R.; Tananaev, I. G.; Myasoedov, B. F.; Konovalov, A. I. Extraction of Am(III) and Eu(III) with a Dimethylaminomethylated Derivative of Calix[4]Resorcinolarene. Radiochemistry 2004, 46 (3), 277–281. https://doi.org/10.1023/B:RACH.0000031689.21856.c4.Puttreddy, R.; Beyeh, N. K.; Taimoory, S. M.; Meister, D.; Trant, J. F.; Rissanen, K. Host–Guest Complexes of Conformationally Flexible C -Hexyl-2-Bromoresorcinarene and Aromatic N -Oxides: Solid-State, Solution and Computational Studies. Beilstein J. Org. Chem. 2018, 14, 1723–1733. https://doi.org/10.3762/bjoc.14.146.Hong, M.; Zhang, Y.-M.; Liu, Y. Selective Binding Affinity between Quaternary Ammonium Cations and Water-Soluble Calix[4]Resorcinarene. J. Org. Chem. 2015, 80 (3), 1849–1855. https://doi.org/10.1021/jo502825z.Wei, J.; Ren, J.; Liu, J.; Meng, X.; Ren, X.; Chen, Z.; Tang, F. An Eco-Friendly, Simple, and Sensitive Fluorescence Biosensor for the Detection of Choline and Acetylcholine Based on C-Dots and the Fenton Reaction. Biosens. Bioelectron. 2014, 52, 304–309. https://doi.org/10.1016/j.bios.2013.09.006.Zeisel, S. H.; Mar, M.-H.; Howe, J. C.; Holden, J. M. Concentrations of Choline-Containing Compounds and Betaine in Common Foods. J. Nutr. 2003, 133 (5), 1302–1307. https://doi.org/10.1093/jn/133.5.1302.Zeisel, S. H. Choline: Critical Role During Fetal Development and Dietary Requirements in Adults. Annu. Rev. Nutr. 2006, 26 (1), 229–250. https://doi.org/10.1146/annurev.nutr.26.061505.111156.Buchman, A. L.; Dubin, M. D.; Moukarzel, A. A.; Jenden, D. J.; Roch, M.; Rice, K. M.; Gornbein, J.; Ament, M. E. Choline Deficiency: A Cause of Hepatic Steatosis during Parenteral Nutrition That Can Be Reversed with Intravenous Choline Supplementation. Hepatology 1995, 22 (5), 1399–1403.Wilcock, G. K.; Esiri, M. M.; Bowen, D. M.; Smith, C. C. Alzheimer’s Disease. Correlation of Cortical Choline Acetyltransferase Activity with the Severity of Dementia and Histological Abnormalities. J. Neurol. Sci. 1982, 57 (2–3), 407–417.Thal, L. J.; Rosen, W.; Sharpless, N. S.; Crystal, H. Choline Chloride Fails to Improve Cognition in Alzheimer’s Disease. Neurobiol. Aging 1981, 2 (3), 205–208. https://doi.org/10.1016/0197-4580(81)90022-1.Phillips, M. M. Analytical Approaches to Determination of Total Choline in Foods and Dietary Supplements. Anal. Bioanal. Chem. 2012, 403 (8), 2103–2112. https://doi.org/10.1007/s00216-011-5652-5.Holmes-McNary, M. Q.; Cheng, W. L.; Mar, M. H.; Fussell, S.; Zeisel, S. H. Choline and Choline Esters in Human and Rat Milk and in Infant Formulas. Am. J. Clin. Nutr. 1996, 64 (4), 572–576. https://doi.org/10.1093/ajcn/64.4.572.Zeisel, S. H.; Blusztajn, J. K. Choline and Human Nutrition. Annu. Rev. Nutr. 1994, 14 (1), 269–296. https://doi.org/10.1146/annurev.nu.14.070194.001413.AOAC International., J. I.; Thomson Gale (Firm), C. M.; Trucksess, M. W. Journal of AOAC International.; AOAC International, 1992; Vol. 87.Pati, S.; Palmisano, F.; Quinto, M.; Zambonin, P. G. Quantitation of Major Choline Fractions in Milk and Dietary Supplements Using a Phospholipase D Bioreactor Coupled to a Choline Amperometric Biosensor. J. Agric. Food Chem. 2005, 53 (18), 6974–6979. https://doi.org/10.1021/jf050277o.Guyenet, P. G.; Agid, Y.; Javoy, F.; Beaujouan, J. C.; Rossier, J.; Glowinski, J. Effects of Dopaminergic Receptor Agonists and Antagonists on the Activity of the Neo-Striatal Cholinergic System. Brain Res. 1975, 84 (2), 227–244. https://doi.org/10.1016/0006-8993(75)90978-6.Haubrich, D. R.; Gerber, N.; Pflueger, A. B.; Zweig, M. Tissue Choline Studied Using a Simple Chemical Assay. J. Neurochem. 1981, 36 (4), 1409–1417. https://doi.org/10.1111/j.1471-4159.1981.tb00580.x.Roisin, M.-P.; Brassart, J.-L.; Charton, G.; Crepel, V.; Ari, Y. Ben. A New Method for the Measurement of Endogenous Transmitter Release in Localized Regions of Hippocampal Slices. J. Neurosci. Methods 1991, 37 (2), 183–189. https://doi.org/10.1016/0165-0270(91)90129-N.YAO, T.; HANDA, S. Electroanalytical Properties of Aldehyde Biosensors with a Hybrid-Membrane Composed of an Enzyme Film and a Redox Os-Polymer Film. Anal. Sci. 2003, 19 (5), 767–770. https://doi.org/10.2116/analsci.19.767.Bullock, R.; Butcher, S. P.; Chen, M.-H.; Kendall, L.; McCulloch, J. Correlation of the Extracellular Glutamate Concentration with Extent of Blood Flow Reduction after Subdural Hematoma in the Rat. J. Neurosurg. 1991, 74 (5), 794–802. https://doi.org/10.3171/jns.1991.74.5.0794.Murai, S.; Saito, H.; Masuda, Y.; Itsukaichi, O.; Itoh, T. Basal Levels of Noradrenaline, Dopamine, 5-Hydroxytryptamine, and Acetylcholine in the Submandibular, Parotid, and Sublingual Glands of Mice and Rats. Arch. Oral Biol. 1995, 40 (7), 663–668. https://doi.org/10.1016/0003-9969(95)00023-I.Izaki, Y.; Hori, K.; Nomura, M. Dopamine and Acetylcholine Elevation on Lever-Press Acquisition in Rat Prefrontal Cortex. Neurosci. Lett. 1998, 258 (1), 33–36. https://doi.org/10.1016/S0304-3940(98)00841-6.Khan, A.; Khan, A. A. P.; Asiri, A. M.; Rub, M. A.; Azum, N.; Rahman, M. M.; Khan, S. B.; Ghani, S. A. A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview. Appl. Biochem. Biotechnol. 2013, 169 (6), 1927–1939. https://doi.org/10.1007/s12010-013-0099-0.Tamiya, E.; Sugiura, Y.; Nepomuceno Navera, E.; Mizoshita, S.; Nakajima, K.; Akiyama, A.; Karube, I. Ultramicro Acetylcholine Sensor Based on an Enzyme-Modified Carbon Fibre Electrode. Anal. Chim. Acta 1991, 251 (1–2), 129–134. https://doi.org/10.1016/0003-2670(91)87125-Q.Yao, T.; Suzuki, S.; Nishino, H.; Nakahara, T. On-Line Amperometric Assay of Glucose,L-Glutamate, and Acetylcholine Using Microdialysis Probes and Immobilized Enzyme Reactors. Electroanalysis 1995, 7 (12), 1114–1117. https://doi.org/10.1002/elan.1140071203.Larsson, N.; Ruzgas, T.; Gorton, L.; Kokaia, M.; Kissinger, P.; Csöregi, E. Design and Development of an Amperometric Biosensor for Acetylcholine Determination in Brain Microdialysates. Electrochim. Acta 1998, 43 (23), 3541–3554. https://doi.org/10.1016/S0013-4686(98)00102-9.BOWEN, D. M.; SMITH, C. B.; WHITE, P.; DAVISON, A. N. NEUROTRANSMITTER-RELATED ENZYMES AND INDICES OF HYPOXIA IN SENILE DEMENTIA AND OTHER ABIOTROPHIES. Brain 1976, 99 (3), 459–496. https://doi.org/10.1093/brain/99.3.459Potter, P. E.; Meek, J. L.; Neff, N. H. Acetylcholine and Choline in Neuronal Tissue Measured by HPLC with Electrochemical Detection. J. Neurochem. 1983, 41 (1), 188–194. https://doi.org/10.1111/j.1471-4159.1983.tb13668.x.Meek, J. L.; Eva, C. Enzymes Adsorbed on an Ion Exchanger as a Post-Column Reactor: Application to Acetylcholine Measurement. J. Chromatogr. A 1984, 317, 343–347. https://doi.org/10.1016/S0021-9673(01)91673-5.Tyrefors, N.; Gillberg, P. G. Determination of Acetylcholine and Choline in Microdialysates from Spinal Cord of Rat Using Liquid Chromatography with Electrochemical Detection. J. Chromatogr. B Biomed. Sci. Appl. 1987, 423, 85–91. https://doi.org/10.1016/0378-4347(87)80330-4.Busi, S.; Saxell, H.; Fröhlich, R.; Rissanen, K. The Role of Cation⋯π Interactions in Capsule Formation: Co-Crystals of Resorcinarenes and Alkyl Ammonium Salts. CrystEngComm 2008, 10 (12), 1803. https://doi.org/10.1039/b809503e.Beyeh, N. K.; Pan, F.; Valkonen, A.; Rissanen, K. Encapsulation of Secondary and Tertiary Ammonium Salts by Resorcinarenes and Pyrogallarenes: The Effect of Size and Charge Concentration. CrystEngComm 2015, 17 (5), 1182–1188. https://doi.org/10.1039/C4CE01927J.Shivanyuk, A.; Rissanen, K.; Kolehmainen, E. Encapsulation of Et3N+–H•••OH2 in a Hydrogen-Bonded Resorcarene Capsule. Chem. Commun. 2000, No. 13, 1107–1108. https://doi.org/10.1039/b002144j.Abd El-Rahman, M. K.; Mazzone, G.; Mahmoud, A. M.; Sicilia, E.; Shoeib, T. Spectrophotometric Determination of Choline in Pharmaceutical Formulations via Host-Guest Complexation with a Biomimetic Calixarene Receptor. Microchem. J. 2019, 146, 735–741. https://doi.org/10.1016/j.microc.2019.01.046.Kazakova, E. K.; Makarova, N. A.; Ziganshina, A. U.; Muslinkina, L. A.; Muslinkin, A. A.; Habicher, W. D. Novel Water-Soluble Tetrasulfonatomethylcalix[4]Resorcinarenes. Tetrahedron Lett. 2000, 41 (51), 10111–10115. https://doi.org/10.1016/S0040-4039(00)01798-6.Ahmadzadeh, S.; Rezayi, M.; Karimi-Maleh, H.; Alias, Y. Conductometric Measurements of Complexation Study between 4-Isopropylcalix[4]Arene and Cr3+ Cation in THF–DMSO Binary Solvents. Measurement 2015, 70, 214–224. https://doi.org/10.1016/j.measurement.2015.04.005.Jalali, F.; Ashrafi, A.; Shamsipur, M. Conductance Study of the Thermodynamics of Complexation of Amantadine, Rimantadine and Aminocyclohexane with Some Macrocyclic Compounds in Acetonitrile Solution. J. Incl. Phenom. Macrocycl. Chem. 2008, 61 (1–2), 77–82. https://doi.org/10.1007/s10847-007-9395-z.Hasani, M.; Shamsipur, M. Conductance Study of the Thermodynamics of Ammonium Ion Complexes with Several Crown Ethers in Acetonitrile Solution. J. Solution Chem. 1994, 23 (6), 721–734. https://doi.org/10.1007/BF00972718.Christy, F. A.; Shrivastav, P. S. Conductometric Studies on Cation-Crown Ether Complexes: A Review. Crit. Rev. Anal. Chem. 2011, 41 (3), 236–269. https://doi.org/10.1080/10408347.2011.589284.Kashapov, R. R.; Razuvayeva, Y. S.; Ziganshina, A. Y.; Mukhitova, R. K.; Sapunova, A. S.; Voloshina, A. D.; Syakaev, V. V.; Latypov, S. K.; Nizameev, I. R.; Kadirov, M. K.; Zakharova, L. Y. N-Methyl-d-Glucamine–Calix[4]Resorcinarene Conjugates: Self-Assembly and Biological Properties. Molecules 2019, 24 (10), 1939. https://doi.org/10.3390/molecules24101939.TakedaYasuyuki; YanoHisao; IshibashiMasayuki; IsozumiHiroshi. A Conductance Study of Alkali Metal Ion-15-Crown-5, 18-Crown-6, and Dibenzo-24-Crown-8 Complexes in Propylene Carbonate. http://dx.doi.org/10.1246/bcsj.53.72 2006, 53 (1), 72–76. https://doi.org/10.1246/BCSJ.53.72.Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40 (3), 1305–1323. https://doi.org/10.1039/C0CS00062K.Salorinne, K.; Weimann, D. P.; Schalley, C. A.; Nissinen, M. Resorcinarene Podand with Amine-Functionalized Side Arms €“ Synthesis, Structure, and Binding Properties of a Neutral Anion Receptor. European J. Org. Chem. 2009, 2009 (35), 6151–6159. https://doi.org/10.1002/ejoc.200900814.Helttunen, K.; Salorinne, K.; Barboza, T.; Barbosa, H. C.; Suhonen, A.; Nissinen, M. Cation Binding Resorcinarene Bis-Crowns: The Effect of Lower Rim Alkyl Chain Length on Crystal Packing and Solid Lipid Nanoparticles. New J. Chem. 2012, 36 (3), 789. https://doi.org/10.1039/c2nj20981k.Helttunen, K.; Shahgaldian, P. Self-Assembly of Amphiphilic Calixarenes and Resorcinarenes in Water. New J. Chem. 2010, 34 (12), 2704. https://doi.org/10.1039/c0nj00123f.Patil, R. S.; Zhang, C.; Atwood, J. L. Process Development for Separation of Conformers from Derivatives of Resorcin[4]Arenes and Pyrogallol[4]Arenes. Chem. - A Eur. J. 2016, 22 (43), 15202–15207. https://doi.org/10.1002/chem.201603090.Mahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116 (5), 2775–2825. https://doi.org/10.1021/cr500344e.Urbaniak, M.; Pedrycz, A.; Gawdzik, B.; Wzorek, A. Preparation of Partially Functionalised Resorcinarene Derivatives. Supramol. Chem. 2013, 25 (12), 777–781. https://doi.org/10.1080/10610278.2013.803108.Konishi, H.; Nakamaru, H.; Nakatani, H.; Ueyama, T.; Kobayashi, K.; Morikawa, O. Regioselective Distal -Dibromination of Calix[4]Resorcinarene. Chem. Lett. 1997, 26 (2), 185–186. https://doi.org/10.1246/cl.1997.185.Luostarinen, M.; Shivanyuk, A.; Rissanen, K. Partial Aminomethylation of Resorcarenes. Org. Lett. 2001, 3 (26), 4141–4144. https://doi.org/10.1021/ol016658e.Hart, H.; Craine, L.; Hart, D.; Hadac, C. Química Orgánica, 12th ed.; McGraw-Hill, 2007.Morrison, R. T.; Boyd, R. N. Química Orgánica, 5th ed.; Pearson Education., 1990.Hirose, K. A Practical Guide for the Determination of Binding Constants. J. Incl. Phenom. Macrocycl. Chem. 2001, 39 (3), 193–209. https://doi.org/10.1023/A:1011117412693.Macomber, R. S. An Introduction to NMR Titration for Studying Rapid Reversible Complexation. J. Chem. Educ. 1992, 69 (5), 375. https://doi.org/10.1021/ed069p375.Jurado, J. M.; Muñiz-Valencia, R.; Alcázar, A.; Ceballos-Magaña, S. G.; González, J. Ajustando Datos Químicos Con Excel: Un Tutorial Práctico. Educ. Química 2016, 27 (1), 21–29. https://doi.org/10.1016/j.eq.2015.09.009.BibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80763/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL1026288997.2021.pdf1026288997.2021.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf4306984https://repositorio.unal.edu.co/bitstream/unal/80763/3/1026288997.2021.pdfdc79b6f6e59443be022a1da49cc5055cMD53THUMBNAIL1026288997.2021.pdf.jpg1026288997.2021.pdf.jpgGenerated Thumbnailimage/jpeg4598https://repositorio.unal.edu.co/bitstream/unal/80763/4/1026288997.2021.pdf.jpg72014c6fdda49a32019a6b1cd70f2d8cMD54unal/80763oai:repositorio.unal.edu.co:unal/807632023-07-31 23:03:59.121Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |