Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation
We use the molecular theory of liquids to review the Perturbed Chain-Statistical Association Fluid Theory Equation of State (PC-SAFT EoS) and formulate new dispersive and repulsive terms for this model. As a well-known fact in the literature, the original PC-SAFT normally predicts accelerated asphal...
- Autores:
-
Cañas Marín, Wilson Antonio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79496
- Palabra clave:
- 660 - Ingeniería química
330 - Economía::333 - Economía de la tierra y de la energía
Teoría molecular
Ecuaciones integrales
Perturbación (Dinámica cuántica)
PC-SAFT
Thermodynamic perturbation theory
Integral equation theory
Effective diameter
Asphaltene onset pressure
Soft repulsion
Teoría de perturbaciones termodinámicas
Teoría de ecuaciones integrales
Potencial intermolecular
Diámetro efectivo
Presión de inicio de asfaltenos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_57c35ea1f1888262045a4a3f65639159 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79496 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation |
dc.title.translated.spa.fl_str_mv |
Desarrollo de una ecuación de estado fundamentada en teoría de perturbación termodinámica (TPT) para mezclas propensas a la precipitación de asfaltenos |
title |
Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation |
spellingShingle |
Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation 660 - Ingeniería química 330 - Economía::333 - Economía de la tierra y de la energía Teoría molecular Ecuaciones integrales Perturbación (Dinámica cuántica) PC-SAFT Thermodynamic perturbation theory Integral equation theory Effective diameter Asphaltene onset pressure Soft repulsion Teoría de perturbaciones termodinámicas Teoría de ecuaciones integrales Potencial intermolecular Diámetro efectivo Presión de inicio de asfaltenos |
title_short |
Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation |
title_full |
Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation |
title_fullStr |
Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation |
title_full_unstemmed |
Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation |
title_sort |
Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation |
dc.creator.fl_str_mv |
Cañas Marín, Wilson Antonio |
dc.contributor.advisor.none.fl_str_mv |
Gonzalez, Doris Hoyos Madrigal, Bibian Alonso |
dc.contributor.author.none.fl_str_mv |
Cañas Marín, Wilson Antonio |
dc.contributor.researchgroup.spa.fl_str_mv |
Termodinámica Aplicada y Energías Alternativas |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química 330 - Economía::333 - Economía de la tierra y de la energía |
topic |
660 - Ingeniería química 330 - Economía::333 - Economía de la tierra y de la energía Teoría molecular Ecuaciones integrales Perturbación (Dinámica cuántica) PC-SAFT Thermodynamic perturbation theory Integral equation theory Effective diameter Asphaltene onset pressure Soft repulsion Teoría de perturbaciones termodinámicas Teoría de ecuaciones integrales Potencial intermolecular Diámetro efectivo Presión de inicio de asfaltenos |
dc.subject.lemb.none.fl_str_mv |
Teoría molecular Ecuaciones integrales Perturbación (Dinámica cuántica) |
dc.subject.proposal.eng.fl_str_mv |
PC-SAFT Thermodynamic perturbation theory Integral equation theory Effective diameter Asphaltene onset pressure Soft repulsion |
dc.subject.proposal.spa.fl_str_mv |
Teoría de perturbaciones termodinámicas Teoría de ecuaciones integrales Potencial intermolecular Diámetro efectivo Presión de inicio de asfaltenos |
description |
We use the molecular theory of liquids to review the Perturbed Chain-Statistical Association Fluid Theory Equation of State (PC-SAFT EoS) and formulate new dispersive and repulsive terms for this model. As a well-known fact in the literature, the original PC-SAFT normally predicts accelerated asphaltene onset pressures (AOPs) in petroleum reservoir fluids and cloud points (CPs) in polymeric systems at low temperatures. This phenomenon was studied in this thesis. Thermodynamic perturbation theories (TPTs) and integral equation theory (IET) are central. By combining these theories, we formulate several effective diameter expressions dependent upon temperature and density to replace the original effective diameter of PC-SAFT, which depends on temperature only. Barker and Henderson´s second-order dispersion term based upon a concept of correlated shells of fluids was introduced into PC-SAFT and its effect was studied, especially at low temperatures. Both the new effective diameters formulated, and the modified second-order dispersion term produce less accelerated AOPs and CPs curves at low temperatures. The original universal constants (called here as GSUCs) in the attractive part PC-SAFT were also analyzed in this work. The main conclusion is that GSUCs should not be used at all, and the set of these constants presented by Liang and Kontogeorgies (LKUCs) are preferred instead. In fact, LKUCs not only correct the defect of PC-SAFT of predicting multiple density roots at low temperatures but also reduces the tendency of PC-SAFT of predicting accelerated AOP and CP curves at low temperatures. The PC-SAFT predictions of HAOP loci at very high pressures were also studied. New phase diagrams at low temperatures are presented in this work. HAOPs are displaced at very low temperatures when the modified second-order dispersion term is used or when the LKUCs are combined with the temperature- and density-dependent effective diameters presented in this thesis. Unfortunately, these HAOPs are not possible of being experimentally tested. Nonetheless, the high densities at which these HAOPs are predicted by the original PC-SAFT represent non-isotropic conditions. Under those conditions, the TPTs for fluids lose validity. The combination of the LKUCs and the temperature-and density-dependent effective diameters presented in this thesis substantially increases the isotropic range, allowing a most robust use of the TPTs, and then of PC-SAFT. The failure of the original PC-SAFT to predict coherent Amagat curves is also amply studied. As a result, the failure was found to be directly related to the soft-core repulsion included in PC-SAFT by the effective diameter. Intermolecular potentials as the square well square shoulder (SWSS) are not “soft” enough to correctly predict these curves. Then, we demonstrate in this dissertation that intermolecular potentials soft enough, like Lennard-Jones one, need to be introduced. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-11T13:56:41Z |
dc.date.available.none.fl_str_mv |
2021-05-11T13:56:41Z |
dc.date.issued.none.fl_str_mv |
2021-01-05 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79496 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79496 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] J. D. van der Waals, Thermodynamic theory of capillarity in the assumption of continuous density change. Verh K Akad Wet Amsterdam. 1-8, 1893. [2] J. C. Dyre, Simple liquids quasiuniversality and the hard-sphere paradigm, J. Phys.: Condens. Matter, 28, 323001, 2016. [3] D. Henderson, M. Holovko, I. Nezbeda, A. Trokhymchuk, What is Liquid?, Condens Matter Phys. 18(1), 10101: 1-4, 2015. [4] T. S. Ingebrigtsen, T. B. Schrøder, J. C. Dyre, What Is a Simple Liquid?, Phys. Review X, 2, 011011, 2012. [5] G. A. Baker, P. Graves-Morris, P. A. Carruthers, Padé Approximants, Vols. I and II, Addison-Wesley, Reading (1981). [6] M. Baus, J. L. Colot, Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions, Phys. A, 36, 3912, 1987. [7] J. L. Largo, Teoría y simulación de las propiedades de Equilibrio de Fluidos de Pozo Cuadrado. Tesis Doctoral. Departamento de física aplicada, Universidad de Cantabria, 2003. [8] T. Young, III. An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95, 65, 1805. [9] P. S. Laplace, Traité de Mécanique Céleste; Supplément au Dixième Livre, sur LAction Capillaire, Courcier, Paris, 1806. [10] O. F. Mosotti, On the Forces that Govern the Internal Constitution of the Body, Insight to Serve to Determine the Cause of the Laws of the Body Action Moléculaire (Turin, 1836) [English translation in Taylors Scientific Memoirs, Vol. 1, 448-469, 1836]. [11] H. Yukawa, On the Interaction of Elementary Particles. I, Phys. Math. Soc. Jpn., 17, 48, 1935. [12] R. Clausius, XI. On the nature of the motion which we call heat, Ann. Phys. (Berlin), 176, 353, 1857. [13] J. C. Maxwell, Iv. on the dynamical theory of gases, Philos. Trans. R. Soc. London, 157, 49, 1867. [14] L. Boltzmann, Sitz. Akad. Naturwiss. Kaiser Akad Class. Wissen Wien 66, 275, 1872. [15] W. Sutherland, XI. The law of attraction amongst the molecules of a gas, Philos. Mag., 22, 81, 1886. [16] W. Sutherland, XXXVI. On the law of molecular force, Philos. Mag., 27, 305, 1889. [17] W. Sutherland, LII. The viscosity of gases and molecular force, Philos. Mag., 36, 507, 1893. [18] G. Mie, Ann. Phys. (Berlin), 316, 657, 1903. [19] W. H. Keesom, Commun. Phys. Lab. Leiden University 32(Suppl. 24B), 6, 1912. [20] J. E. Jones, On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature, Proc. R. Soc. London, Ser. A, 106, 441, 1924. [21] J. E. Jones, On the determination of molecular fields. —II. From the equation of state of a gas, Proc. R. Soc. London, Ser. A, 106, 463, 1924. [22] J. E. Lennard-Jones, Cohesion, Proc. R. Soc. London, 43, 461, 1931. [23] J. C. Slater, The Normal State of Helium, Phys. Rev., 32, 349, 1928. [24] J. C. Slater, J. G. Kirkwood, The Van Der Waals Forces in Gases, Phys. 37, 682, 1931. [25] S. C. Wang, The mutual energy of two hydrogen atoms, Phys. Z., 28, 663, 1927. [26] R. Eisenschitz and F. London, On the ratio of the van der Waals forces and the homo-polar binding forces, Z. Phys., 60, 491, 1930. [27] T. Kihara, Nippon Sugaku-Buturegakukaisi, 17, 11, 1943. [28] T. Kihara, Virial Coefficients and Models of Molecules in Gases, Rev. Mod. Phys. 25, 831, 1953. [29] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954. [30] G. C. Maitland, M. Rigby, E. B. Smith, W. A. Wakeham, Intermolecular Forces: Their Origin and Determination, International Series of Monographs on Chemistry No. 3, Clarendon Press, Oxford, 1981. [31] D. Chandler, Liquids: Condensed, disordered, and sometimes complex, PNAS, 106, 15111-15112, 2009. [32] R. W. Zwanzig, High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases, J. Chem. Phys., 22, 1420, 1954. [33] J.A. Barker, D. Henderson, Perturbation Theory and Equation of State for Fluids: The Square-Well Potential, J. Chem. Phys. 47 (1967) 2856-2861. [34] J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids. II. A successful theory of liquids, J. Chem. Phys. 47 (1967) 4714-4721. [35] J. A. Barker, D. Henderson, Theories of Liquids, Ann. Rev. Phys. Chem. 23, 439, 1972. [36] J. D. Weeks, D. Chandler, H. C. Andersen, Perturbation Theory of the Thermodynamic Properties of Simple Liquids, J. Chem. Phys., 55, 5422, 1971. [37] J. S. Rowlinson, The statistical mechanics of systems with steep intermolecular potentials Mol. Phys. 8, 107, 1964. [38] J. S. Rowlinson, An equation of state of gases at high temperatures and densities, Mol. Phys. 7, 349, 1964. [39] J. S. Rowlinson, Molecular theory of liquids and liquid mixtures, Ber. Bunsenges Phys. Chem. 85, 970, 1981. [40] L. S. Ornstein, F. Zernike, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Acad. Sci., Amsterdam, 17 (1914) 793-806. [41] J. K. Percus, G. J. Yevick, J. K. Percus, G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev., 110 (1) (1958) 1-13. [42] J.A. Barker, D. Henderson, what is "liquid"? Understanding the states of matter, Rev. mod. Phys., 48, 587, 1976. [43] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700. [44] L. Benavides, A. Gil-Villegas, The thermodynamics of molecules with discrete potentials, Molecular Physics, 97, 12, 1225, 1999. [45] A. Lang, G. Kahl, C. N. Likos, H. Lowen, M. Watzlawek, Structure and thermodynamics of square-well and square-shoulder fluids, J. Phys.: Condens. Matter, 11, 10143, 1999. [46] C. Rascón, E. Velasco, L. Mederos, G. Nevascués, Phase diagrams of systems of particles interacting via repulsive potentials, J. Chem. Phys. 106,16, 6689, 1997. [47] A. Vidales, L. Benavides, A. Gil-Villegas, Perturbation theory for mixtures of discrete potential fluids, Molecular Physics, 99, 9, 703, 2001 [48] L. A. Cervantes, G. Jaime-Muñoz, A. L. Benavides, J. Torres-Arenas, F. Sartre, Discrete perturbation theory for continuous soft-core potential fluids, J. Chem. Phys., 142, 114501, 2015. [49] J. Gross, G. Sadowski, Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, Fluid. Phase. Equilib. 168, 183, 2000. [50] J. Gross, G. Sadowski, Ind. Eng. Chem. Res., Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, 40, 1244, 2001. [51] J. A. Barker, D. Henderson, in proceeding of the fourth symposium on thermophycical properties, edited by J.R. Moszynski (ASTM, New York), page 30. [52] J. P. Hansen, I. R. McDonald, Theory of simple liquids, Ed. Academic Press, London, 1976. [53] L. Berthier, G. Tarjus, Nonperturbative Effect of Attractive Forces in Viscous Liquids, Phys. Lett. 103, 170601, 2009. [54] L. Berthier, G. Tarjus, The role of attractive forces in viscous liquids, J. Chem. Phys., 134, 214503, 2011. [55] S. Toxvaerd, J. C. Dyre, Communication: Shifted forces in molecular dynamics, J. Chem. Phys., 134, 081102, 2011. [56] S. Toxvaerd and J. C. Dyre, Role of the first coordination shell in determining the equilibrium structure and dynamics of simple liquids, J. Chem. Phys., 135, 134501, 2011. [57] H. Touba, G. A. Mansoori, Subcritical and Supercritical Water Radial Distribution Function, Inter. J. Journal of Thermophys., 18, 5, 1217, 1997. [58] Y.S. Wei, R. J. Sadus, Equations of state for the calculation of fluid‐phase equilibria, AIChE Journal, 46, 1, 2000. [59] J. Reščič, Y. V. Kalyuzhnyi, P. T. Cummings, Shielded attractive shell model again: resummed thermodynamic perturbation theory for central force potential, J. Phys. Condens. Matter, 28 (41), 414011, 2016. [60] R. Elliot, Lessons learned from theory and simulation of step potentials, Fluid Phase Equilib. 416, 27-41, 2016 [61] K. E. Gubbins, Perturbation theories of the thermodynamics of polar and associating liquids: A historical perspective, Fluid Phase Equilib., 416, 3-17, 2016 [62] W. Zmpitas, J. Gross, A new equation of state for linear hard chains: Analysis of a third-order expansion of Wertheims Thermodynamic Perturbation Theory, Fluid Phase Equilib. 416, 18-26, 2016. [63] T. H. Westen, An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility, J. Chem. Phys., 142, 244903, 2015. [64] A. S. V. Ramana, Generalized coupling parameter expansion: Application to square well and Lennard-Jones fluids, J. Chem. Phys., 139, 044106, 2013. [65] D. Pini, A. Parola, J. Colombo, L. Reatto, An investigation of the SCOZA for narrow square-well potentials and in the sticky limit, Mol. Phys. 109, 1343, 2011. [66] Y. Duda, C. Lira-Galena, Thermodynamics of asphaltene structure and aggregation, Fluid Phase Equilib. 241, 257-267, 2006. [67] O. Redlich, J. N. S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev., 44, 233, 1949. [68] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 27, 1197, 1972. [69] D. Y. Peng, D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59, 1976. [70] N. F. Carnahan, K. E. Starling, Equation of State for Nonattracting Rigid Spheres, J. Chem. Phys., 51, 635, 1969. [71] M. Khanpour, G. A. Parsafar, A simple method of generating equations of state for hard sphere fluid, Chem. Phys., 333, 208, 2007. [72] A. C. Mulero, C. Galán, F. Cuadros, Equations of state for hard spheres. A review of accuracy and applications, Phys.Chem. Phys., 3, 4991-4999, 2001. [73] M. du Rand, I. Nieuwoudt, C. E. Schwarz, j. h. Knoetze, A practical equation of state for non‐spherical and asymmetric systems for application at high pressures. Part 1: Development of the pure component model, The Canadian Journal of Chemical Engineering, 90, 584-596, 2012. [74] J. Wu, J.M. Prausnitz, Phase equilibria for systems containing hydrocarbons, water, and salt: An extended Peng− Robinson equation of state, Ind. Eng. Chem. Res., 37, 1634, 1998. [75] S.B. Kiselev, Cubic crossover equation of state, Fluid Phase Equilib., 147, 7, 1998. [76] A. Bakhshandeh, H. Behnejad, Crossover parametric equation of state for asymmetric fluids, Chem. Phys., 409, 32, 2012. [77] L. Yelash, M. Müller, W. Paul, K. Binder, A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach, J. Chem. Phys., 123, 014908, 2005. [78] U. K. Deiters, Private Communication, 2009. [79] M. A. Van Schilt, R. M. Wering, W. J. van Meerendonk, M. F. Kemmere, J. T. F. Keurentjes, High-Pressure Phase Behavior of the System PCHC−CHO−CO2 for the Development of a Solvent-Free Alternative toward Polycarbonate Production, Ind. Eng. Chem. Res., 44, 3363, 2005. [80] S. Mohebbinia, K. Sepehrnoori, R. T. Johns, A. Kazemi-Nia-Korrani, Simulation of Asphaltene Precipitation During Gas Injection Using PC-SAFT EOS, SPE Annual Technical Conference and Exhibition, Amsterdam, Netherlands, 2014. [81] T. Laffite, A. Apostolakau, C. Avendaño, A. Galindo, C. S. Adjiman, E. Muller, G. Jackson, Accurate statistical associating fluid theory for chain molecules formed from Mie segments, J. Chem. Phys., 139, 154504, 2013. [82] S. Dufal, T. Lafitte, A. Galingo, G. Jackson, A. J. Haslam, Developing intermolecular‐potential models for use with the SAFT‐VR Mie equation of state, AIChE J., 61(9), 2891-2912, 2015. [83] V. Szewczyk, E. Béhar, Compositional model for predicting asphaltenes flocculation, Fluid Phase Equilib. 158-160, 459, 1999. [84] S. Ashoori, M. Sharifi, M. Masoumi, The relationship between SARA fractions and crude oil stability, Egyptian J. Petrol. 26, 209, 2017. [85] K. J. Leontaritis, G. A. Mansoori, Asphaltene flocculation during oil production and processing: A thermodynamic collodial model, SPE International Symposium on Oilfield Chemistry, 4-6 february, 1987. [86] A. I. Victorov, A. Firoozabadi, Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids, AIChE J., 42 (6), 1753, 1996. [87] H. Pan, A. Firoozabadi, H. Pan, A. Firoozabadi, AIChE J., 46 (2), 416, 2000, AIChE J., 46 (2), 416, 2000. [88] A. K. Gupta, A model for asphaltene flocculation using an equation of state. MSc. thesis, University of Calgary, 1986. [89] L. X. Nghiem, M. S. Hassam, R. Nutakki, A. E. D. George, Efficient Modelling of Asphaltene Precipitation, 3-6 October; Houston, TX: Society of Petroleum Engineers, 1993. [90] L. X. Nghiem, D. A. Coombe, Modelling asphaltene precipitation during primary depletion, SPE J., 2 (2), 170, 1997. [91] B. F. Kohse, L. X. Nghiem, H. Maeda, K. Ohno, Modelling Phase Behavior Includingthe Effect of Pressure and Temperature on Asphaltene Precipitation, SPE Asia Pacific Oil and Gas Conference and Exhibition, 16-18 October; Brisbane, Australia: Society of Petroleum Engineers, 2000. [92] N. Lindeloff, R. H. Heidemann, S. I. Andersen, E. H. Stenby, A thermodynamic mixedsolid asphaltene precipitation model, Pet. Sci. Technol. 16 (3-4), 307, 1998. [93] J. L. Du, D. Zhang, A Thermodynamic Model for the Prediction of Asphaltene Precipitation, Pet. Sci. Technol. 22 (7-8), 1023, 2004. [94] O. Sabbagh, K. Akbarzadeh, A. Badamchi-Zadeh, W. Y. Svrcek, H. Y. Yarranton, Applying the PR-EoS to Asphaltene Precipitation from n-Alkane Diluted Heavy Oils and Bitumens, Energy & Fuels, 20 (2): 625, 2006. [95] G.M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, D. P. Tassios, Ind. Eng. Chem. Res., An equation of state for associating fluids, 35 (11), 4310, 1996. [96] Z. Li, A. Firoozabadi, Modeling Asphaltene Precipitation by n-Alkanes from Heavy Oils and Bitumens Using Cubic-Plus-Association Equation of State, Energy & Fuels, 24 (2): 1106, 2010. [97] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548, 2012. [98] X. Zhang, N. Pedrosa, T. Moorwood, Modeling asphaltene phase behavior: comparison of methods for flow assurance studies, Energy & Fuels, 26(5), 2611-2620, 2012. [99] M. S. Wertheim, Fluids with highly directional attractive forces. IV. Equilibrium polymerization, J. Stat. Phys. 42 (3-4), 477, 1986. [100] M.S. Wertheim, Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations, J. Stat. Phys. 35 (1-2), 35, 1984. [101] M. S. Wertheim, Fluids with highly directional attractive forces. I. Statistical thermodynamics, J. Stat. Phys. 35 (1-2), 19, 1984. [102] M. S. Wertheim, Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres, J. Chem. Phys., 85 (5), 2929, 1986. [103] M. S. Wertheim, Thermodynamic perturbation theory of polymerization, J. Chem. Phys. 87 (12), 7323, 1987. [104] M. S. Wertheim, Fluids with highly directional attractive forces. III. Multiple attraction sites, J. Stat. Phys. 42 (3-4), 459, 1986. [105] W.G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, SAFT: Equation-of-state solution model for associating fluids, Fluid Phase Equilib., 52, 31, 1989. [106] W. G. Chapman, G. Jackson, K. E. Gubbins, Phase equilibria of associating fluids: chain molecules with multiple bonding sites, Mol. Phys. 65 (5), 1079, 1988. [107] S. H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules, Ind. Eng. Chem. Res., 29 (11), 2294, 1990. [108] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 1. Pure Alkanes, Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4737, 1996. [109] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 2. Binary Mixtures of n-Alkanes, 1-Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4746, 1996. [110] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, Statistical associating fluid theory for chain molecules with attractive potentials of variable range, J. Chem. Phys., 106 (10), 4168, 1997. [111] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular‐thermodynamic framework for asphaltene‐oil equilibria, AIChE J., 44 (5), 1188, 1998. [112] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular thermodynamics of asphaltene precipitation in reservoir fluids, AIChE J., 46 (1), 197, 2000. [113] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gil-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J., 50 (10), 2552, 2004. [114] A. A. Alhammadi, F. M. Vargas, W. G. Chapman, Comparison of Cubic-Plus-Association and Perturbed-Chain Statistical Associating Fluid Theory Methods for Modeling Asphaltene Phase Behavior and Pressure–Volume–Temperature Properties, Energy & Fuels, 29, 2864, 2015. [115] A. Arya, X. Liang, N. von Solms, G. M. Kontogeorgis, Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State, Energy & Fuels, 30(8), 6835, 2016. [116] D. P. Ting, G. J. Hirasaki, W. G. Chapman, Modeling of asphaltene phase behavior with the SAFT equation of state, Pet. Sci. Technol. 21 (3-4), 647, 2003. [117] D. L. Gonzalez, D. P. Ting, G. J. Hirasaki, W. G. Chapman, Prediction of asphaltene instability under gas injection with the PC-SAFT equation of state, Energy & Fuels, 19 (4), 1230, 2005. [118] D. L. Gonzalez, G. J. Hirasaki, J. Creek, W. G. Chapman, Modeling of Asphaltene Precipitation Due to Changes in Composition Using the Perturbed Chain Statistical Associating Fluid Theory Equation of State, Energy & Fuels, 21 (3), 1231, 2007. [119] S. R. Panuganti, F. M. Vargas, D. L. Gonzalez, A. S. Kurup, W. G. Chapman, PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior, Fuel, 93, 658, 2012. [120] S. Punnapala, F. M. Vargas, Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation prediction, Fuel, 108, 417, 2013. [121] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib., 12, 235-251, 1983. [122] S. S. Chen, A. Kreglewski, Ver. Bunsen-Ges., A. Kreglewski, Applications of the augmented van der Waals theory of fluids. I. pure fluids, 81 (10), 1048, 1977. [123] D. Gonzalez, M. García, O. Diaz, Unusual asphaltene phase behavior of fluids from lake of Maracaibo, Venezuela, SPE 153602-PP, 2012. [124] O. L. Boshkova, U. K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int J Thermophys, 31, 227-252, 2010. [125] L. Verlet, J. Weis, Perturbation theory for the thermodynamic properties of simple liquids, Phys. A, 5, 939, 1972. [126] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988 [127] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986). [128] Y. Tang, J. Chem. Phys., Direct correlation function for the square-well potential, 127, 164504, 2007. [129] Y. Tang, Erratum: “Direct correlation function for the square-well potential” [J. Chem. Phys. 127, 164504 (2007)], J. Chem. Phys., 133, 119903, 2010. [130] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A parametrisation of the direct correlation function for the square-shoulder fluid, Physica A, 108 (2), 141-150, 2010. [131] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A modified soft-core fluid model for the direct correlation function of the square-shoulder and square-well fluidsPhysica A, 390, 3637-3644, 2011. [132] S. P. Hlushak, P.A. Hlushak, A. Trokhymchuk, An improved first-order mean spherical approximation theory for the square-shoulder fluid, J. Chem. Phys., 138, 164107, 2013. [133] M. Khnpour, R. Hashim, Phys. Chem. of Liquids, Pair correlation function from the Barker–Henderson perturbation theory of fluids: the structure of square-well and square-shoulder potentials, 51 (2), 203-217, 2013. [134] S. B. Yuste, A. Santos, M. López de Haro, Structure of the square-shoulder fluid, Mol. Phys. 109 (6), 987-995, 2011. [135] W.A. Cañas-Marín, D.L. Gonzalez, B.A. Hoyos, Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5743, 2019. [136] J. Gross, G. Sadowski, Reply to Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5744, 2019. [137] M. Sabeti, A. Rahimbakhsh, M. Nikookar, A.H. Mohammadi, Estimation of asphaltene precipitation and equilibrium properties of hydrocarbon fluid phases using the PC-SAFT equation of state, Journal of Molecular Liquids. 209 (2015) 447-460. DOI: 10.1016/j.fluid.2019.04.037. [138] W. A. Cañas-Marín, D. L. Gonzalez, B. A. Hoyos, A theoretically modified PC- SAFT equation of state for predicting asphaltene onset pressures at low temperatures, Fluid Phase Equilib. 495 (2019) 1-11. DOI: 10.1016/j.fluid.2019.04.037. [139] B-J. Zhang, Calculating thermodynamic properties from perturbation theory: I. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilib. 1, 154, 1999. [140] X. Zhou, F.B. Thomas, R.G. Moore, Modelling of Solid Precipitation from Reservoir Fluid, J. Can. Petrol. Tech. 35 (1996) 37-45. DOI:10.2118/96-10-03. [141] C. Browarzik, D. Browarzik, Modeling the Onset of Asphaltene Flocculation at High Pressure by an Association Model, Petrol. Sci. Tech. 27 (2005) 795-810. DOI:10.1081/LFT-200033121. [142] P.D. Ting, Thermodynamic Stability and Phase Behavior of Asphaltenes in Oil and of other Highly Asymmetric Mixtures, PhD Thesis, Rice University, 2003. [143] D.L. Gonzalez, F. M. Vargas, G. J Hirasaki, W. G. Chapman, Modeling Study of CO2-Induced Asphaltene Precipitation. Energy Fuels 22 (2) (2008) 757–762. DOI:10.1021/ef700369u. [144] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548-1561, 2012. DOI: 10.1080/10916466.2010.506465. [145] M. I. L. Abutaqiya, C. J. Sisco, F. M. Vargas, A Linear Extrapolation of Normalized Cohesive Energy (LENCE) for Fast and Accurate Prediction of the Asphaltene Onset Pressure, Fluid Phase Equilibria 483 (2019) 52–69. DOI: 10.1016/j.fluid.2018.10.025. [146] X. Liang, G. M. Kontogeorgis, New Variant of the Universal Constants in the Perturbed Chain-Statistical Associating Fluid Theory Equation of State. Ind. Eng. Chem. Res. 54 (4) (2015) 1373–1384. DOI: 10.1021/ie503925h. [147] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700. DOI: 10.1063/1.1461360. [148] B. Saager, R. Hennenberg, J. Fischer, Construction and application of physically based equations of state: Part I. Modification of the BACK equation, Fluid Phase Equilibria 72 (1992) 41-66. DOI: 10.1016/0378-3812(92)85018-4. [149] B-J, Zhang, S. Liang, Y. Lu, Calculating thermodynamic properties from perturbation theory II. An analytic representation for the square-well chain fluid, Fluid Phase Equilibria 180 (2001) 183–194. DOI: 10.1016/S0378-3812(01)00346-6. [150] S. Lian, B-J, Zhang, S. Han, W. Hu, Z. Jin, Calculating thermodynamic properties from perturbation theory III. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilibria 200 (2002) 337–348, DOI: 10.1016/S0378-3812(02)00044-4. [151] G.P. Oskui, M.A. Jumaa, W.A. Abuhaimed, Laboratory Investigation of Asphaltene Precipitation Problems During CO2/Hydrocarbon Injection Project for EOR Application in Kwaiti Reservoirs, SPE 126267 (2009) 1-11. DOI: 10.2118/126267-MS. [152] M. Hassanvand, B. Shahsavani, A. Anooshe, Study of temperature effect on asphaltene precipitation by visual and quantitative methods, JPTAF, 3 (2012) 8-18. DOI: 10.5897/JPTAF11.035. [153] A.K.M. Jamaluddin, N. Joshi, F. Iwere, O. Gurpinar, An Investigation of Asphaltene Instability Under Nitrogen Injection, SPE 74393 (2002) 1-10. DOI: 10.2118/74393-MS. [154] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gill-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J 50 (2004) 2552-2570. DOI: 10.1002/aic.10243. [155] D.L. Gonzalez, E. Mahmoodaghdam, F.H. Lim, N.B. Joshi, Effects of Gas Additions to Deepwater Gulf of Mexico Reservoir Oil: Experimental Investigation of Asphaltene Precipitation and Deposition. Presented at SPE Annual Technical Conference and Exhibition, 8-10 October, San Antonio, Texas, USA, 2012. DOI: 10.2118/159098-MS. [156] O.C. Mullins, E.Y. Sheu, A. Hammami, A.G. Marshall, Asphaltene, Heavy Oils, and Petroleomics, Springer, 2007. [157] M. Tavakkoli, A. Chen, F. M. Vargas, Rethinking the modeling approach for asphaltene precipitation using the PC-SAFT Equation of State, Fluid Phase Equilibria 416 (2016) 120–129, DOI: 10.1016/j.fluid.2015.11.003. [158] D.L. Gonzalez, Modeling of Asphaltene Precipitation and Deposition Tendency using the PC-SAFT Equation of State, PhD Thesis, Rice University, 2008. [159] W.A. Burgess, B.A. Bangbade, I.K. Gamwo, Experimental and predictive PC-SAFT modeling results for density and isothermal compressibility for two oil samples at elevated temperatures and pressures, Fuel (2018) 385-395, DOI: 10.1016/j.fuel.2017.12.101. [160] L.C.C. Marques, J.O. Pereira, A. D. Bueno, V.S. Marques, E.F. Lucas, C.R.E. Mansur, A.L.C. Machado, G. González, A Study of Asphaltene-Resin Interactions, J. Braz.Chem. Soc,. 23 (2012) 1880-1888. DOI: 10.1590/S0103-50532012005000060. [161] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib. 12 (1983) 235-251. DOI: 10.1016/0378-3812(83)80064-8. [162] I. Nezbeda, K. Aim, Perturbed hard sphere equations of state of real liquids. II. Effective hard-sphere diameters and residual properties, Fluid Phase Equilib. 17 (1984) 1-18. DOI: 10.1016/0378-3812(84)80010-2. [163] W. A. Cañas-Marín, B. A. Hoyos, D. L. Gonzalez, Role of the soft- core repulsion upon the prediction of characteristic curves with PC- SAFT, Fluid Phase Equilib. 499 (2019) 112247. DOI: 10.1016/j.fluid.2019.112247. [164] P. Bahrami, R. Karrat, S. Mahdavi, H. Firoozinia, Prediction of the gas injection effect on the asphaltene phase envelope, Oil & Gas Science and Technology-Rev. IFP Energies Nouvelles 70 (2015) 1075-1086. DOI: 10.2516/ogst/2014037. [165] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, A temperature-and density-dependent effective diameter for PC- SAFT, Journal of Molecular Liquids, 300 (2020) 112277. [166] F. del Rio, D.A. Lonngi, The mean distance of closet approach in the theory of liquids, Phys. Letters. 56A (6) (1976) 463-464. DOI: 10.1016/0375-9601(76)90729-5. [167] S. Gormsen, J.M. Mollerup, Calculation of effective hard sphere diameters from perturbation theory, Fluid Phase Equilib. 65 (1992) 127–135, DOI: 10.1016/0378-3812(92)87012-C. [168] L. Verlet, J-J. Weis, Equilibrium theory of simple liquids, Phys. Rev. A, 5 (2) (1972) 939-952. DOI: 10.1103/PhysRevA.5.939. [169] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988. [170] D. Henderson, E. W. Grundke, Direct correlation function: Hard sphere fluid, J. Chem. Phys. 63 (1975) 601-607. DOI: 10.1063/1.431378. [171] T. Wang, T. Davis, Molecular theory of simple dense fluid structure and thermodynamics, Chem. Eng. Commun. 4 (1980) 343-352. DOI: 10.1080/00986448008935914. [172] H. Nikoofard, T. Rezaye, A. H. Amin, The static structure factor of monatomic liquids using an analytical expression for the hard-sphere correlation function, PCAIJ. 8(4) (2013) 126-131. ISSN: 0974 – 7524. [173] A. M. Bratkovsky, V. G. Vaks, A. V. Trefilov, On the accuracy of the liquid theory approximate methods for calculating the structure factors in liquid metals, J. Phys. F: Met. Phys. 12 (1982) 611-632. DOI: 10.1088/0305-4608/12/4/004, [174] M. Giordano, D. de Angelis, A. Forlani, The one-component plasma liquid: and equation for the strongly coupled limit. J. Phys. C: Solid State phys. 17 (1984) 4089-4100. DOI: 10.1088/0022-3719/17/23/010. [175] A. D. Law, D. M. A. Buzza, Determination of interaction potentials of colloidal monolayers from the inversion of pair correlation functions: A two-dimensional predictor-corrector method, J. Chem. Phys. 131 (2009) 094704. DOI: 10.1063/1.3216568. [176] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44. DOI: 10.1016/S0378-3812(00)00346-0. [177] R. P. Brent, Chapter 4: An Algorithm with Guaranteed Convergence for Finding a Zero of a Function, Algorithms for Minimization without Derivatives, Englewood Cliffs, NJ: Prentice-Hall, ISBN 0-13-0223, 1973. [178] P. Ungerer, B. Faissat, C. Leibovici, H. Zhou, E. Behar, G. Morachini, J. P. Courcy, High pressure-high temperature reservoir fluids: investigation of synthetic condensate gases containing a solid hydrocarbon, Fluid Phase Equilib. 111 (1995) 287- 311. DOI: 10.1016/S0301-9322(97)88277-8. [179] S. Jiu-Xun, simple analytic expression with high precision for Barker-Henderson diameter, Chin. Phys. Lett. 20 (2003) 180-182. DOI: 10.1088/0256-307X/20/2/302. [180] S. Zarei, F. Feyzi, Boyle temperature from SAFT, PC-SAFT and SAFT-VR equations of state, Journal of Molecular Liquids. 187 (2013) 144-128. DOI: 10.1016/j.molliq.2013.06.010. [181] X. Liang, B. Maribo-Mogensen, K. Thomsen, W. Yan, G. M. Kontogeorgis, Approach to improve speed of sound calculation within PC-SAFT framework. Ind. Eng. Chem. Res. 51 (2012) 14903-14914. DOI: 10.1021/ie3018127I. [182] I. Polishuk, P. Privat, J.N., Jaubert, Novel methodology for analysis and evaluation of SAFT-type equation of state, Ind. Eng. Chem. Res. 2013, S2, 13875. DOI: 10.1021/ie4020155. [183] P. Paricaud, Extension of the BMCSL equation of state for hard spheres to the metastable disordered region: Application to the SAFT approach, J. Chem. Phys. 143 (2015) 044507. DOI:10.1063/1.4927148. [184] J. Gross, G. Sadowski, Reply to comment on “Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules”, Ind. Eng. Chem. Res. 58 (2019) 5744-5745. DOI: 10.1021/acs.iecr.9b01515. [185] C.P. Hicks, C.L. Young, Gas-liquid critical properties of binary mixtures, Chem. Rev. 75(2) (1975) 119-175. DOI: 10.1021/cr60294a001. [186] E. F. Gholoum, G. P. Oskui, M. Salman, Investigation of Asphaltenes Precipitation Onset Conditions for Kuwaiti Reservoirs, SPE Paper 81571, SPE 13th Middle East Oil Show & Conference, Bahrain, 2003. DOI: 10.2118/81571-MS. [187] F. Nascimento, G.M.N. Costa, S.A.B. Vieira de Melo, A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope, Fluid Phase Equilibria 494 (2019) 74–92. DOI: 10.1016/j.fluid.2015.11.003. 10.1016/j.fluid.2019.04.027. [188] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Comparison of four different PC- SAFT versions to predict liquid- liquid equilibria of polymer and asphaltene systems at low temperatures, Fluid Phase Equilib. 521 (2020) 112646. [189] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178. [190] O.L. Boshkova, U.K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int. J Thermophys. 31 (2010) 227-252. DOI: 10.1007/s10765-010-0727-7. DOI: 10.1007/s10765-010-0727-7. [191] A.K.M. Jamaluddin, J. Creek, C.S. Kabir, J.D. McFeeden, D. D´Cruz, M.T. Joseph, N. Joshi, B. Ross, A comparison of various laboratory techniques to measure thermodynamic asphaltene instability, SPE 72154 (2001) 1-17. DOI: 10.2118/72154-MS. [192] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Prediction of extreme asphaltene onset pressures with PC- SAFT for petroleum reservoir fluids, Fluid Phase Equilib. 522 (2020) 112769. [193] C.H. Whitson, M.R. Brule, Phase Behavior. SPE monograph series vol. 20 (2000). [194] K.S. Pedersen, P.L. Christensen, Phase behavior of petroleum reservoir fluids. CRC press. Taylor & Francis Group (2007). [195] C. S. Agger, H. Sorensen, Algorithm for constructing complete asphaltene PT and Px phase diagrams, Ind. Eng. Chem. Res. 57 (1) (2017) 392-400. DOI: 10.1021/acs.iecr.7b04246. [196] R. R. Boesen, H. Sorensen, K. S. Pedersen, Asphaltene predictions using screening methods and equations of state, SPE 190401-MS (2018) 1-19. DOI: 10.2118/190401-MS. [197] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197-1203. [198] M. Robles, M. López de Haro, A. Santos, Note: Equation of state and the freezing point in the hard-sphere model. J. Chem. Phys. 140 (2014) 136101. [199] H.S. Kang, C.S. Lee, T. Ree, A perturbation theory of classical equilibrium fluids. J. Chem. Phys. 82(1) (1985) 414-423. [200] C.F. Leibovici, J. Neoschil, A solution of Rachford-Rice equations for multiphase systems, Fluid Phase Equilib. 112 (1995) 217–221. DOI: 10.1016/0378-3812(95)02797-I. [201] M.L. Michelsen, Calculation of multiphase equilibrium. Comput. Chem. Eng. 18 (7) (1994) 545-550. DOI: 10.1016/0098-1354(93)E0017-4. [202] M.L. Michelsen, The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9 (1) (1982) 1-19. DOI: 10.1016/0378-3812(82)85001-2. [203] W.A. Cañas-Marín, J.D. Ortiz-Arango, U.E. Guerrero-Aconcha, Improved two-sided tangent plane initialization and two-phase-split calculations. Ind. Eng. Chem. Res. 46 (2007) 5429-5436. DOI: 10.1021/ie061361b. [204] M.A. Trebble, A preliminary evaluation of two and three phase flash initialization procedures. Fluid Phase Equilib. 53 (1989) 113–122. DOI: 10.1016/0378-3812(89)80078-0. [205] M.L. Michelsen, J.M. Mollerup, Thermodynamic models: Fundamentals & computational aspects. Tie-Line Publications (2004). [206] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Role of the soft-core repulsion upon density-and temperature-dependent effective diameters from two thermodynamic perturbation theories, Fluid Phase Equilib. 528 (2021) 112849. DOI: 10.1016/j.fluid.2020.112849. [207] D. Henderson, Rowlinson´s concept of an effective hard sphere diameter, J. Chem. Eng. Data. 55(10) (2010) 4507-4508. [208] B. J. Alder, C.E. Hecht, Studies in Molecular Dynamics. VII. Hard‐Sphere Distribution Functions and an Augmented van der Waals Theory. J. Chem. Phys. 50 (1969) 2032-2037. [209] D.M. Heyes, Thermodynamics and elastic moduli of fluids with steeply repulsive potentials. J. Chem. Phys. 107(6) (1997) 1963-1969. [210] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178. [211] G.A. Parsafar, C. Izanloo, Deriving analytical expressions for the ideal curves and using the curves to obtain the temperature dependence of equation-of-state parameters. Int. J Thermophys. 27 (5) (2006) 1564-1589. [212] U.K. Deiters, A. Neumaier, Computer simulation of the characteristic curves of pure fluids. J. Chem. Eng. Data. 61 (8) (2016) 2720-2728. [213] U.K. Deiters, K.M. De Reuck, Guidelines for publication of equations of state-I. Pure fluids. Pure & Appl. Chem., 68 (6) (1997) 1237-1249. [214] L. Boltzmann, Lectures on gas theory, University of California Press, Berkeley, CA, 1964. [215] M. Shokouhi, G.A. Parsafar, A new equation of state derived by the statistical mechanical perturbation theory, Fluid Phase Equilib. 264 (2008) 1-11. [216] C.M. Silva, H. Liu, E.A. Macedo, Comparison between different explicit expressions of the effective hard sphere diameter of Lennard-Jones fluids: Application to self-diffusion coefficients, Ind. Eng. Chem. Res. 37 (1998) 221-227. [217] U.K. Deiters, The equation of state of soft repulsive spherical molecules, Molecular Physics. 74 (1) (1991) 153-160. [218] U.K. Deiters, S.L. Randzio, The equation of state for molecules with shifted Lennard-Jones pair potentials, Fluid Phase Equilib. 103 (1995) 199-212. [219] R.L. Cotterman, B.J., Schwardz, J.M. Prausnitz, Molecular thermodynamics for fluids al low and high densities. Part I. Pure fluids containing small or large molecules, AIChE J. 32 (11) (1986) 1787-1798. [220] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44. [221] Y. Tang, B.C.-Y. Liu, On the mean spherical approximation for the Lennard-Jones fluid, Fluid Phase Equilib. 190 (2001) 149-158. [222] I. Polishuk, Standardized critical point-based numerical solution of statistical association fluid theory parameters: The perturbed chain-statistical association fluid theory equation of state revisited, Ind. Eng. Chem. Res. 53 (2014) 14127-14141. [223] Ch. Tegeler, R. Span, W. Wagner, A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa. Journal of Physical and chemical Reference Data, 28 (3) (1999) 779-850. [224] R. Span, E. Lemmon, R. Jacobsen, W. Wagner, A, Yokozeki, A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. Journal of Physical and chemical Reference Data, 29 (6) (2000) 1361-1433. [225] R. Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and chemical Reference Data, 25 (6) (1996) 1509-1596. [226] M. Shokouhi, G.A. Parsafar, The effect of steepness of soft-core square-well potential model on some fluid properties. Molecular Physics, 106 (1) (2008) 103-112. [227] D. Ghie Chae, F.H. Ree, T. Ree, Radial distribution functions and equation of state of the hard-disk fluid, J. Chem. Phys, 50 (4) (1969) 1581-1589. [228] D. Henderson, A simple equation of state for hard discs, Molecular Physics, 30 (3) (1975) 971-972. [229] A. Santos, M. López de Haro, S. Bravo Yuste, An accurate and simple equation of state for hard disks, J. Chem. Phys, 103 (11) (1995) 4622-4625. [230] D.P. Fraser, M.J. Zuckerman, O.G. Mouritsen, Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom, Phys. Rev. A, 43 (12) (1991) 6642-6656. [231] S. Luding, A. Santos. Molecular dynamics and theory for the contact values of the radial distribution functions of hard-disk fluid mixtures, J. Chem. Phys, 121 (17) (1995) 8458-8465. [232] A. Santos, S.B. Yuste, M. López de Aro, V. Ogarko. Equation of state of polydisperse hard-disk mixtures in the high-density regime, Phys. Rew. E, 96 (2017) 0626031- 06260311. [233] P.M. Ndiaye, C. Dariva, J.V. Oliveira, F.W. Tavares, Improving the SAFT-EoS by using an effective WCA segmaent diameter, Fluid Phase Equilib., 194-197 (2002) 531-539. [234] S. Beret, J.M. Prausnitz, Perturbed Hard-Chain Theory: An Equation of State for Fluids Containig Small or Large Molecules, AIChE J., 21 (1975) 1123-1132. [235] C-H. Kim, P. Vimalchand, M.D. Donohue, S.I. Sandler, Local composition model for chainlike molecules: A new simplified version of the perturbed hard chain theory, AIChE J., 32 (10) (1986) 1726-1734. [236] A. Galindo, P.J. Whitehead, G. Jackson, A.N. Burgess, Predicting the high-pressure phase equilibria of water + n-alkanes using a simplified SAFT theory with transferable intermolecular interaction parameters, J. chem. Phys., 100 (1996) 6781-6792. [237] C.J. Sisco, M.I.L. Abutaqiya, F.M. Vargas, Cubi-Plus-Chain (CPC). I: A Statistical Association Fluid Theory-Based Chain Modification to the Cubic Equation of State for Large Nonpolar Molecules, Ind. Eng. Chem. Res., 58 (2019) 7341-7351. [238] M.I.L. Abutaqiya, C.J. Sisco, Y. Khemka, M.A. Safa, E.F. Gholum, A.M. Rashed, R. Gharbi, S. Santhanagopalan, M. AL-Qahtani, E. AL-Kandari, Accurate Modeling of Asphatene Onset Pressure in Crude Oils Under Gas Injection Using Peng-Robinson Equation of State, Energy Fuels, 34 (2020) 4055-4070. [239] D. Gonzalez, P. Gramin, P. Haldipur, M. Pietrobon, H. Zeng, Experimental study to understand formation damage due to asphaltene deposition in a deepwater field, SPWLA Formation Testing SIG, 2020 Weminar series. [240] K.J. Leontaritis, G.A. Mansoori, T-S, Jiang, Asphaltene Deposition in Oil Recovery: A Survey of Field Experiences and Field Approaches, Proceeding of International Conference on Advanced Technologies (ICAT), IL, USA, 1986. [241] H. Belhaj, H.A. Khalifeh, N. Al-Huraibi, Asphaltene Stability in Crude Oil during Production Process, J. Pet. Environ. Biotechnol., 4(3) (2013) 1-5. [242] F. Gonzalez, Private Communication, 2021. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
227 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos |
dc.publisher.department.spa.fl_str_mv |
Departamento de Procesos y Energía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79496/4/71730033.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79496/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/79496/6/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79496/7/71730033.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
3bc0d05258946849f8743f755338e393 cccfe52f796b7c63423298c2d3365fc6 4460e5956bc1d1639be9ae6146a50347 7da39b22a6fa174c7b7db5a3a7f813bf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089213721706496 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gonzalez, Dorisad81126967a48926079b9fea870711f0600Hoyos Madrigal, Bibian Alonso70c0183ce5ed55bb4bdd191be920467fCañas Marín, Wilson Antonio547cf3c94274763be57e34d2791ae596Termodinámica Aplicada y Energías Alternativas2021-05-11T13:56:41Z2021-05-11T13:56:41Z2021-01-05https://repositorio.unal.edu.co/handle/unal/79496Universidad Nacional de ColombiaRepositorio Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/We use the molecular theory of liquids to review the Perturbed Chain-Statistical Association Fluid Theory Equation of State (PC-SAFT EoS) and formulate new dispersive and repulsive terms for this model. As a well-known fact in the literature, the original PC-SAFT normally predicts accelerated asphaltene onset pressures (AOPs) in petroleum reservoir fluids and cloud points (CPs) in polymeric systems at low temperatures. This phenomenon was studied in this thesis. Thermodynamic perturbation theories (TPTs) and integral equation theory (IET) are central. By combining these theories, we formulate several effective diameter expressions dependent upon temperature and density to replace the original effective diameter of PC-SAFT, which depends on temperature only. Barker and Henderson´s second-order dispersion term based upon a concept of correlated shells of fluids was introduced into PC-SAFT and its effect was studied, especially at low temperatures. Both the new effective diameters formulated, and the modified second-order dispersion term produce less accelerated AOPs and CPs curves at low temperatures. The original universal constants (called here as GSUCs) in the attractive part PC-SAFT were also analyzed in this work. The main conclusion is that GSUCs should not be used at all, and the set of these constants presented by Liang and Kontogeorgies (LKUCs) are preferred instead. In fact, LKUCs not only correct the defect of PC-SAFT of predicting multiple density roots at low temperatures but also reduces the tendency of PC-SAFT of predicting accelerated AOP and CP curves at low temperatures. The PC-SAFT predictions of HAOP loci at very high pressures were also studied. New phase diagrams at low temperatures are presented in this work. HAOPs are displaced at very low temperatures when the modified second-order dispersion term is used or when the LKUCs are combined with the temperature- and density-dependent effective diameters presented in this thesis. Unfortunately, these HAOPs are not possible of being experimentally tested. Nonetheless, the high densities at which these HAOPs are predicted by the original PC-SAFT represent non-isotropic conditions. Under those conditions, the TPTs for fluids lose validity. The combination of the LKUCs and the temperature-and density-dependent effective diameters presented in this thesis substantially increases the isotropic range, allowing a most robust use of the TPTs, and then of PC-SAFT. The failure of the original PC-SAFT to predict coherent Amagat curves is also amply studied. As a result, the failure was found to be directly related to the soft-core repulsion included in PC-SAFT by the effective diameter. Intermolecular potentials as the square well square shoulder (SWSS) are not “soft” enough to correctly predict these curves. Then, we demonstrate in this dissertation that intermolecular potentials soft enough, like Lennard-Jones one, need to be introduced.En esta tesis usamos la teoría molecular de los líquidos para revisar la Ecuación de Estado de la Teoría de Fluidos de Asociación Estadística de Cadena Perturbada (PC-SAFT EoS) y formulamos nuevos términos dispersivos y repulsivos para este modelo. Como es bien sabido en la literatura, la PC-SAFT original normalmente predice curvas de presión de inicio de precipitación de asfaltenos (AOP) en fluidos de yacimientos de petróleo, así como puntos de nube (CP) en sistemas poliméricos, muy aceleradas a bajas temperaturas. Este fenómeno se estudió en esta tesis con la ayuda de las teorías de perturbación termodinámica (TPT) y la teoría de ecuaciones integrales (IET). Al combinar estas teorías, formulamos varias expresiones de diámetro efectivo que dependen de la temperatura y la densidad, con el objetivo de reemplazar el diámetro efectivo original de PC-SAFT, que sólo es función de la temperatura. Además, se introdujo en PC-SAFT una modificación para el término de dispersión de segundo orden de Barker y Henderson, la cual está basada en un concepto de capas correlacionadas de fluido, estududiándese su efecto especialmente a bajas temperaturas. Los nuevos diámetros efectivos formulados y el término de dispersión de segundo orden modificado producen curvas AOP y CPs menos aceleradas a bajas temperaturas. De igual manera, las constantes universales originales (denominadas aquí como GSUC) en la parte atractiva of PC-SAFT también se analizaron en este trabajo. La conclusión principal es que las GSUCs no deben usarse, y en su lugar es preferible utilizar el conjunto de estas constantes presentado por Liang y Kontogeorgies (LKUC). De hecho, estas últimas no sólo corrigen el defecto de PC-SAFT de predecir múltiples raíces de densidad a temperaturas bajas, sino que reducen la tendencia de PC-SAFT de predecir curvas AOP y CP aceleradas a tales condiciones. También se estudiaron las predicciones de PCSAFT de hiper presiones de inicio de precipitación de asfaltenos (HAOPs), reportándose nuevos diagramas de fase a bajas temperaturas para fluidos de yacimiento propensos a la precipitación de asfaltenos. Las HAOPs se desplazan a temperaturas muy bajas cuando se usa la versión modifcada del término de dispersión de segundo orden de Barker y Henderson o cuando los LKUC se combinan con los diámetros efectivos dependientes de la temperatura y densidad desarrollados en esta tesis. Desafortunadamente, la existencia de estas HAOPs no se puede comprobar experimentalmente. Sin embargo, las altas densidades a las que la PC-SAFT original predice estas HAOPs claramente representan condiciones no isotrópicas. En esas condiciones, las TPTs para fluidos pierden validez. No obstante, el efecto de utilizar la combinación de las LKUC y los diámetros efectivos dependientes de la temperatura y la densidad, presentados en esta tesis, aumenta sustancialmente el rango isotrópico, permitiendo así un uso más sólido de las TPT, y por tanto de PC-SAFT. El fracaso de la PC-SAFT original para predecir curvas Amagat coherentes también se estudió en profundidad en esta tesis. Como resultado, se encontró que la falla de PC-SAFT está directamente relacionada con la repulsión de núcleo blando incluida a través de su diámetro efectivo original. Los potenciales intermoleculares como el pozo cuadrado con hombro cuadrado (SWSS), usado en PC-SAFT, no son lo suficientemente "suaves" para predecir correctamente estas curvas. Luego, es entonces necesario introducir potenciales intermoleculares lo suficientemente suaves, como el Lennard-Jones, tal y como se demuestra en esta disertación.DoctoradoHidrocarburos227 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosDepartamento de Procesos y EnergíaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química330 - Economía::333 - Economía de la tierra y de la energíaTeoría molecularEcuaciones integralesPerturbación (Dinámica cuántica)PC-SAFTThermodynamic perturbation theoryIntegral equation theoryEffective diameterAsphaltene onset pressureSoft repulsionTeoría de perturbaciones termodinámicasTeoría de ecuaciones integralesPotencial intermolecularDiámetro efectivoPresión de inicio de asfaltenosDevelopment of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitationDesarrollo de una ecuación de estado fundamentada en teoría de perturbación termodinámica (TPT) para mezclas propensas a la precipitación de asfaltenosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Text[1] J. D. van der Waals, Thermodynamic theory of capillarity in the assumption of continuous density change. Verh K Akad Wet Amsterdam. 1-8, 1893.[2] J. C. Dyre, Simple liquids quasiuniversality and the hard-sphere paradigm, J. Phys.: Condens. Matter, 28, 323001, 2016.[3] D. Henderson, M. Holovko, I. Nezbeda, A. Trokhymchuk, What is Liquid?, Condens Matter Phys. 18(1), 10101: 1-4, 2015.[4] T. S. Ingebrigtsen, T. B. Schrøder, J. C. Dyre, What Is a Simple Liquid?, Phys. Review X, 2, 011011, 2012.[5] G. A. Baker, P. Graves-Morris, P. A. Carruthers, Padé Approximants, Vols. I and II, Addison-Wesley, Reading (1981).[6] M. Baus, J. L. Colot, Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions, Phys. A, 36, 3912, 1987.[7] J. L. Largo, Teoría y simulación de las propiedades de Equilibrio de Fluidos de Pozo Cuadrado. Tesis Doctoral. Departamento de física aplicada, Universidad de Cantabria, 2003.[8] T. Young, III. An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95, 65, 1805.[9] P. S. Laplace, Traité de Mécanique Céleste; Supplément au Dixième Livre, sur LAction Capillaire, Courcier, Paris, 1806.[10] O. F. Mosotti, On the Forces that Govern the Internal Constitution of the Body, Insight to Serve to Determine the Cause of the Laws of the Body Action Moléculaire (Turin, 1836) [English translation in Taylors Scientific Memoirs, Vol. 1, 448-469, 1836].[11] H. Yukawa, On the Interaction of Elementary Particles. I, Phys. Math. Soc. Jpn., 17, 48, 1935.[12] R. Clausius, XI. On the nature of the motion which we call heat, Ann. Phys. (Berlin), 176, 353, 1857.[13] J. C. Maxwell, Iv. on the dynamical theory of gases, Philos. Trans. R. Soc. London, 157, 49, 1867.[14] L. Boltzmann, Sitz. Akad. Naturwiss. Kaiser Akad Class. Wissen Wien 66, 275, 1872.[15] W. Sutherland, XI. The law of attraction amongst the molecules of a gas, Philos. Mag., 22, 81, 1886.[16] W. Sutherland, XXXVI. On the law of molecular force, Philos. Mag., 27, 305, 1889.[17] W. Sutherland, LII. The viscosity of gases and molecular force, Philos. Mag., 36, 507, 1893.[18] G. Mie, Ann. Phys. (Berlin), 316, 657, 1903.[19] W. H. Keesom, Commun. Phys. Lab. Leiden University 32(Suppl. 24B), 6, 1912.[20] J. E. Jones, On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature, Proc. R. Soc. London, Ser. A, 106, 441, 1924.[21] J. E. Jones, On the determination of molecular fields. —II. From the equation of state of a gas, Proc. R. Soc. London, Ser. A, 106, 463, 1924.[22] J. E. Lennard-Jones, Cohesion, Proc. R. Soc. London, 43, 461, 1931.[23] J. C. Slater, The Normal State of Helium, Phys. Rev., 32, 349, 1928.[24] J. C. Slater, J. G. Kirkwood, The Van Der Waals Forces in Gases, Phys. 37, 682, 1931.[25] S. C. Wang, The mutual energy of two hydrogen atoms, Phys. Z., 28, 663, 1927.[26] R. Eisenschitz and F. London, On the ratio of the van der Waals forces and the homo-polar binding forces, Z. Phys., 60, 491, 1930.[27] T. Kihara, Nippon Sugaku-Buturegakukaisi, 17, 11, 1943.[28] T. Kihara, Virial Coefficients and Models of Molecules in Gases, Rev. Mod. Phys. 25, 831, 1953.[29] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.[30] G. C. Maitland, M. Rigby, E. B. Smith, W. A. Wakeham, Intermolecular Forces: Their Origin and Determination, International Series of Monographs on Chemistry No. 3, Clarendon Press, Oxford, 1981.[31] D. Chandler, Liquids: Condensed, disordered, and sometimes complex, PNAS, 106, 15111-15112, 2009.[32] R. W. Zwanzig, High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases, J. Chem. Phys., 22, 1420, 1954.[33] J.A. Barker, D. Henderson, Perturbation Theory and Equation of State for Fluids: The Square-Well Potential, J. Chem. Phys. 47 (1967) 2856-2861.[34] J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids. II. A successful theory of liquids, J. Chem. Phys. 47 (1967) 4714-4721.[35] J. A. Barker, D. Henderson, Theories of Liquids, Ann. Rev. Phys. Chem. 23, 439, 1972.[36] J. D. Weeks, D. Chandler, H. C. Andersen, Perturbation Theory of the Thermodynamic Properties of Simple Liquids, J. Chem. Phys., 55, 5422, 1971.[37] J. S. Rowlinson, The statistical mechanics of systems with steep intermolecular potentials Mol. Phys. 8, 107, 1964.[38] J. S. Rowlinson, An equation of state of gases at high temperatures and densities, Mol. Phys. 7, 349, 1964.[39] J. S. Rowlinson, Molecular theory of liquids and liquid mixtures, Ber. Bunsenges Phys. Chem. 85, 970, 1981.[40] L. S. Ornstein, F. Zernike, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Acad. Sci., Amsterdam, 17 (1914) 793-806.[41] J. K. Percus, G. J. Yevick, J. K. Percus, G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev., 110 (1) (1958) 1-13.[42] J.A. Barker, D. Henderson, what is "liquid"? Understanding the states of matter, Rev. mod. Phys., 48, 587, 1976.[43] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700.[44] L. Benavides, A. Gil-Villegas, The thermodynamics of molecules with discrete potentials, Molecular Physics, 97, 12, 1225, 1999.[45] A. Lang, G. Kahl, C. N. Likos, H. Lowen, M. Watzlawek, Structure and thermodynamics of square-well and square-shoulder fluids, J. Phys.: Condens. Matter, 11, 10143, 1999.[46] C. Rascón, E. Velasco, L. Mederos, G. Nevascués, Phase diagrams of systems of particles interacting via repulsive potentials, J. Chem. Phys. 106,16, 6689, 1997.[47] A. Vidales, L. Benavides, A. Gil-Villegas, Perturbation theory for mixtures of discrete potential fluids, Molecular Physics, 99, 9, 703, 2001[48] L. A. Cervantes, G. Jaime-Muñoz, A. L. Benavides, J. Torres-Arenas, F. Sartre, Discrete perturbation theory for continuous soft-core potential fluids, J. Chem. Phys., 142, 114501, 2015.[49] J. Gross, G. Sadowski, Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, Fluid. Phase. Equilib. 168, 183, 2000.[50] J. Gross, G. Sadowski, Ind. Eng. Chem. Res., Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, 40, 1244, 2001.[51] J. A. Barker, D. Henderson, in proceeding of the fourth symposium on thermophycical properties, edited by J.R. Moszynski (ASTM, New York), page 30.[52] J. P. Hansen, I. R. McDonald, Theory of simple liquids, Ed. Academic Press, London, 1976.[53] L. Berthier, G. Tarjus, Nonperturbative Effect of Attractive Forces in Viscous Liquids, Phys. Lett. 103, 170601, 2009.[54] L. Berthier, G. Tarjus, The role of attractive forces in viscous liquids, J. Chem. Phys., 134, 214503, 2011.[55] S. Toxvaerd, J. C. Dyre, Communication: Shifted forces in molecular dynamics, J. Chem. Phys., 134, 081102, 2011.[56] S. Toxvaerd and J. C. Dyre, Role of the first coordination shell in determining the equilibrium structure and dynamics of simple liquids, J. Chem. Phys., 135, 134501, 2011.[57] H. Touba, G. A. Mansoori, Subcritical and Supercritical Water Radial Distribution Function, Inter. J. Journal of Thermophys., 18, 5, 1217, 1997.[58] Y.S. Wei, R. J. Sadus, Equations of state for the calculation of fluid‐phase equilibria, AIChE Journal, 46, 1, 2000.[59] J. Reščič, Y. V. Kalyuzhnyi, P. T. Cummings, Shielded attractive shell model again: resummed thermodynamic perturbation theory for central force potential, J. Phys. Condens. Matter, 28 (41), 414011, 2016.[60] R. Elliot, Lessons learned from theory and simulation of step potentials, Fluid Phase Equilib. 416, 27-41, 2016[61] K. E. Gubbins, Perturbation theories of the thermodynamics of polar and associating liquids: A historical perspective, Fluid Phase Equilib., 416, 3-17, 2016[62] W. Zmpitas, J. Gross, A new equation of state for linear hard chains: Analysis of a third-order expansion of Wertheims Thermodynamic Perturbation Theory, Fluid Phase Equilib. 416, 18-26, 2016.[63] T. H. Westen, An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility, J. Chem. Phys., 142, 244903, 2015.[64] A. S. V. Ramana, Generalized coupling parameter expansion: Application to square well and Lennard-Jones fluids, J. Chem. Phys., 139, 044106, 2013.[65] D. Pini, A. Parola, J. Colombo, L. Reatto, An investigation of the SCOZA for narrow square-well potentials and in the sticky limit, Mol. Phys. 109, 1343, 2011.[66] Y. Duda, C. Lira-Galena, Thermodynamics of asphaltene structure and aggregation, Fluid Phase Equilib. 241, 257-267, 2006.[67] O. Redlich, J. N. S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev., 44, 233, 1949.[68] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 27, 1197, 1972.[69] D. Y. Peng, D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59, 1976.[70] N. F. Carnahan, K. E. Starling, Equation of State for Nonattracting Rigid Spheres, J. Chem. Phys., 51, 635, 1969.[71] M. Khanpour, G. A. Parsafar, A simple method of generating equations of state for hard sphere fluid, Chem. Phys., 333, 208, 2007.[72] A. C. Mulero, C. Galán, F. Cuadros, Equations of state for hard spheres. A review of accuracy and applications, Phys.Chem. Phys., 3, 4991-4999, 2001.[73] M. du Rand, I. Nieuwoudt, C. E. Schwarz, j. h. Knoetze, A practical equation of state for non‐spherical and asymmetric systems for application at high pressures. Part 1: Development of the pure component model, The Canadian Journal of Chemical Engineering, 90, 584-596, 2012.[74] J. Wu, J.M. Prausnitz, Phase equilibria for systems containing hydrocarbons, water, and salt: An extended Peng− Robinson equation of state, Ind. Eng. Chem. Res., 37, 1634, 1998.[75] S.B. Kiselev, Cubic crossover equation of state, Fluid Phase Equilib., 147, 7, 1998.[76] A. Bakhshandeh, H. Behnejad, Crossover parametric equation of state for asymmetric fluids, Chem. Phys., 409, 32, 2012.[77] L. Yelash, M. Müller, W. Paul, K. Binder, A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach, J. Chem. Phys., 123, 014908, 2005.[78] U. K. Deiters, Private Communication, 2009.[79] M. A. Van Schilt, R. M. Wering, W. J. van Meerendonk, M. F. Kemmere, J. T. F. Keurentjes, High-Pressure Phase Behavior of the System PCHC−CHO−CO2 for the Development of a Solvent-Free Alternative toward Polycarbonate Production, Ind. Eng. Chem. Res., 44, 3363, 2005.[80] S. Mohebbinia, K. Sepehrnoori, R. T. Johns, A. Kazemi-Nia-Korrani, Simulation of Asphaltene Precipitation During Gas Injection Using PC-SAFT EOS, SPE Annual Technical Conference and Exhibition, Amsterdam, Netherlands, 2014.[81] T. Laffite, A. Apostolakau, C. Avendaño, A. Galindo, C. S. Adjiman, E. Muller, G. Jackson, Accurate statistical associating fluid theory for chain molecules formed from Mie segments, J. Chem. Phys., 139, 154504, 2013.[82] S. Dufal, T. Lafitte, A. Galingo, G. Jackson, A. J. Haslam, Developing intermolecular‐potential models for use with the SAFT‐VR Mie equation of state, AIChE J., 61(9), 2891-2912, 2015.[83] V. Szewczyk, E. Béhar, Compositional model for predicting asphaltenes flocculation, Fluid Phase Equilib. 158-160, 459, 1999.[84] S. Ashoori, M. Sharifi, M. Masoumi, The relationship between SARA fractions and crude oil stability, Egyptian J. Petrol. 26, 209, 2017.[85] K. J. Leontaritis, G. A. Mansoori, Asphaltene flocculation during oil production and processing: A thermodynamic collodial model, SPE International Symposium on Oilfield Chemistry, 4-6 february, 1987.[86] A. I. Victorov, A. Firoozabadi, Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids, AIChE J., 42 (6), 1753, 1996.[87] H. Pan, A. Firoozabadi, H. Pan, A. Firoozabadi, AIChE J., 46 (2), 416, 2000, AIChE J., 46 (2), 416, 2000.[88] A. K. Gupta, A model for asphaltene flocculation using an equation of state. MSc. thesis, University of Calgary, 1986. [89] L. X. Nghiem, M. S. Hassam, R. Nutakki, A. E. D. George, Efficient Modelling of Asphaltene Precipitation, 3-6 October; Houston, TX: Society of Petroleum Engineers, 1993.[90] L. X. Nghiem, D. A. Coombe, Modelling asphaltene precipitation during primary depletion, SPE J., 2 (2), 170, 1997.[91] B. F. Kohse, L. X. Nghiem, H. Maeda, K. Ohno, Modelling Phase Behavior Includingthe Effect of Pressure and Temperature on Asphaltene Precipitation, SPE Asia Pacific Oil and Gas Conference and Exhibition, 16-18 October; Brisbane, Australia: Society of Petroleum Engineers, 2000.[92] N. Lindeloff, R. H. Heidemann, S. I. Andersen, E. H. Stenby, A thermodynamic mixedsolid asphaltene precipitation model, Pet. Sci. Technol. 16 (3-4), 307, 1998.[93] J. L. Du, D. Zhang, A Thermodynamic Model for the Prediction of Asphaltene Precipitation, Pet. Sci. Technol. 22 (7-8), 1023, 2004.[94] O. Sabbagh, K. Akbarzadeh, A. Badamchi-Zadeh, W. Y. Svrcek, H. Y. Yarranton, Applying the PR-EoS to Asphaltene Precipitation from n-Alkane Diluted Heavy Oils and Bitumens, Energy & Fuels, 20 (2): 625, 2006.[95] G.M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, D. P. Tassios, Ind. Eng. Chem. Res., An equation of state for associating fluids, 35 (11), 4310, 1996.[96] Z. Li, A. Firoozabadi, Modeling Asphaltene Precipitation by n-Alkanes from Heavy Oils and Bitumens Using Cubic-Plus-Association Equation of State, Energy & Fuels, 24 (2): 1106, 2010.[97] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548, 2012.[98] X. Zhang, N. Pedrosa, T. Moorwood, Modeling asphaltene phase behavior: comparison of methods for flow assurance studies, Energy & Fuels, 26(5), 2611-2620, 2012.[99] M. S. Wertheim, Fluids with highly directional attractive forces. IV. Equilibrium polymerization, J. Stat. Phys. 42 (3-4), 477, 1986.[100] M.S. Wertheim, Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations, J. Stat. Phys. 35 (1-2), 35, 1984.[101] M. S. Wertheim, Fluids with highly directional attractive forces. I. Statistical thermodynamics, J. Stat. Phys. 35 (1-2), 19, 1984.[102] M. S. Wertheim, Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres, J. Chem. Phys., 85 (5), 2929, 1986.[103] M. S. Wertheim, Thermodynamic perturbation theory of polymerization, J. Chem. Phys. 87 (12), 7323, 1987.[104] M. S. Wertheim, Fluids with highly directional attractive forces. III. Multiple attraction sites, J. Stat. Phys. 42 (3-4), 459, 1986.[105] W.G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, SAFT: Equation-of-state solution model for associating fluids, Fluid Phase Equilib., 52, 31, 1989.[106] W. G. Chapman, G. Jackson, K. E. Gubbins, Phase equilibria of associating fluids: chain molecules with multiple bonding sites, Mol. Phys. 65 (5), 1079, 1988.[107] S. H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules, Ind. Eng. Chem. Res., 29 (11), 2294, 1990.[108] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 1. Pure Alkanes, Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4737, 1996.[109] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 2. Binary Mixtures of n-Alkanes, 1-Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4746, 1996.[110] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, Statistical associating fluid theory for chain molecules with attractive potentials of variable range, J. Chem. Phys., 106 (10), 4168, 1997.[111] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular‐thermodynamic framework for asphaltene‐oil equilibria, AIChE J., 44 (5), 1188, 1998.[112] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular thermodynamics of asphaltene precipitation in reservoir fluids, AIChE J., 46 (1), 197, 2000.[113] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gil-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J., 50 (10), 2552, 2004.[114] A. A. Alhammadi, F. M. Vargas, W. G. Chapman, Comparison of Cubic-Plus-Association and Perturbed-Chain Statistical Associating Fluid Theory Methods for Modeling Asphaltene Phase Behavior and Pressure–Volume–Temperature Properties, Energy & Fuels, 29, 2864, 2015.[115] A. Arya, X. Liang, N. von Solms, G. M. Kontogeorgis, Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State, Energy & Fuels, 30(8), 6835, 2016.[116] D. P. Ting, G. J. Hirasaki, W. G. Chapman, Modeling of asphaltene phase behavior with the SAFT equation of state, Pet. Sci. Technol. 21 (3-4), 647, 2003.[117] D. L. Gonzalez, D. P. Ting, G. J. Hirasaki, W. G. Chapman, Prediction of asphaltene instability under gas injection with the PC-SAFT equation of state, Energy & Fuels, 19 (4), 1230, 2005.[118] D. L. Gonzalez, G. J. Hirasaki, J. Creek, W. G. Chapman, Modeling of Asphaltene Precipitation Due to Changes in Composition Using the Perturbed Chain Statistical Associating Fluid Theory Equation of State, Energy & Fuels, 21 (3), 1231, 2007.[119] S. R. Panuganti, F. M. Vargas, D. L. Gonzalez, A. S. Kurup, W. G. Chapman, PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior, Fuel, 93, 658, 2012.[120] S. Punnapala, F. M. Vargas, Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation prediction, Fuel, 108, 417, 2013.[121] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib., 12, 235-251, 1983.[122] S. S. Chen, A. Kreglewski, Ver. Bunsen-Ges., A. Kreglewski, Applications of the augmented van der Waals theory of fluids. I. pure fluids, 81 (10), 1048, 1977.[123] D. Gonzalez, M. García, O. Diaz, Unusual asphaltene phase behavior of fluids from lake of Maracaibo, Venezuela, SPE 153602-PP, 2012.[124] O. L. Boshkova, U. K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int J Thermophys, 31, 227-252, 2010.[125] L. Verlet, J. Weis, Perturbation theory for the thermodynamic properties of simple liquids, Phys. A, 5, 939, 1972.[126] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988[127] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).[128] Y. Tang, J. Chem. Phys., Direct correlation function for the square-well potential, 127, 164504, 2007.[129] Y. Tang, Erratum: “Direct correlation function for the square-well potential” [J. Chem. Phys. 127, 164504 (2007)], J. Chem. Phys., 133, 119903, 2010.[130] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A parametrisation of the direct correlation function for the square-shoulder fluid, Physica A, 108 (2), 141-150, 2010.[131] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A modified soft-core fluid model for the direct correlation function of the square-shoulder and square-well fluidsPhysica A, 390, 3637-3644, 2011.[132] S. P. Hlushak, P.A. Hlushak, A. Trokhymchuk, An improved first-order mean spherical approximation theory for the square-shoulder fluid, J. Chem. Phys., 138, 164107, 2013.[133] M. Khnpour, R. Hashim, Phys. Chem. of Liquids, Pair correlation function from the Barker–Henderson perturbation theory of fluids: the structure of square-well and square-shoulder potentials, 51 (2), 203-217, 2013.[134] S. B. Yuste, A. Santos, M. López de Haro, Structure of the square-shoulder fluid, Mol. Phys. 109 (6), 987-995, 2011.[135] W.A. Cañas-Marín, D.L. Gonzalez, B.A. Hoyos, Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5743, 2019.[136] J. Gross, G. Sadowski, Reply to Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5744, 2019.[137] M. Sabeti, A. Rahimbakhsh, M. Nikookar, A.H. Mohammadi, Estimation of asphaltene precipitation and equilibrium properties of hydrocarbon fluid phases using the PC-SAFT equation of state, Journal of Molecular Liquids. 209 (2015) 447-460. DOI: 10.1016/j.fluid.2019.04.037.[138] W. A. Cañas-Marín, D. L. Gonzalez, B. A. Hoyos, A theoretically modified PC- SAFT equation of state for predicting asphaltene onset pressures at low temperatures, Fluid Phase Equilib. 495 (2019) 1-11. DOI: 10.1016/j.fluid.2019.04.037.[139] B-J. Zhang, Calculating thermodynamic properties from perturbation theory: I. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilib. 1, 154, 1999.[140] X. Zhou, F.B. Thomas, R.G. Moore, Modelling of Solid Precipitation from Reservoir Fluid, J. Can. Petrol. Tech. 35 (1996) 37-45. DOI:10.2118/96-10-03.[141] C. Browarzik, D. Browarzik, Modeling the Onset of Asphaltene Flocculation at High Pressure by an Association Model, Petrol. Sci. Tech. 27 (2005) 795-810. DOI:10.1081/LFT-200033121.[142] P.D. Ting, Thermodynamic Stability and Phase Behavior of Asphaltenes in Oil and of other Highly Asymmetric Mixtures, PhD Thesis, Rice University, 2003.[143] D.L. Gonzalez, F. M. Vargas, G. J Hirasaki, W. G. Chapman, Modeling Study of CO2-Induced Asphaltene Precipitation. Energy Fuels 22 (2) (2008) 757–762. DOI:10.1021/ef700369u.[144] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548-1561, 2012. DOI: 10.1080/10916466.2010.506465.[145] M. I. L. Abutaqiya, C. J. Sisco, F. M. Vargas, A Linear Extrapolation of Normalized Cohesive Energy (LENCE) for Fast and Accurate Prediction of the Asphaltene Onset Pressure, Fluid Phase Equilibria 483 (2019) 52–69. DOI: 10.1016/j.fluid.2018.10.025.[146] X. Liang, G. M. Kontogeorgis, New Variant of the Universal Constants in the Perturbed Chain-Statistical Associating Fluid Theory Equation of State. Ind. Eng. Chem. Res. 54 (4) (2015) 1373–1384. DOI: 10.1021/ie503925h.[147] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700. DOI: 10.1063/1.1461360.[148] B. Saager, R. Hennenberg, J. Fischer, Construction and application of physically based equations of state: Part I. Modification of the BACK equation, Fluid Phase Equilibria 72 (1992) 41-66. DOI: 10.1016/0378-3812(92)85018-4.[149] B-J, Zhang, S. Liang, Y. Lu, Calculating thermodynamic properties from perturbation theory II. An analytic representation for the square-well chain fluid, Fluid Phase Equilibria 180 (2001) 183–194. DOI: 10.1016/S0378-3812(01)00346-6.[150] S. Lian, B-J, Zhang, S. Han, W. Hu, Z. Jin, Calculating thermodynamic properties from perturbation theory III. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilibria 200 (2002) 337–348, DOI: 10.1016/S0378-3812(02)00044-4.[151] G.P. Oskui, M.A. Jumaa, W.A. Abuhaimed, Laboratory Investigation of Asphaltene Precipitation Problems During CO2/Hydrocarbon Injection Project for EOR Application in Kwaiti Reservoirs, SPE 126267 (2009) 1-11. DOI: 10.2118/126267-MS.[152] M. Hassanvand, B. Shahsavani, A. Anooshe, Study of temperature effect on asphaltene precipitation by visual and quantitative methods, JPTAF, 3 (2012) 8-18. DOI: 10.5897/JPTAF11.035.[153] A.K.M. Jamaluddin, N. Joshi, F. Iwere, O. Gurpinar, An Investigation of Asphaltene Instability Under Nitrogen Injection, SPE 74393 (2002) 1-10. DOI: 10.2118/74393-MS.[154] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gill-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J 50 (2004) 2552-2570. DOI: 10.1002/aic.10243.[155] D.L. Gonzalez, E. Mahmoodaghdam, F.H. Lim, N.B. Joshi, Effects of Gas Additions to Deepwater Gulf of Mexico Reservoir Oil: Experimental Investigation of Asphaltene Precipitation and Deposition. Presented at SPE Annual Technical Conference and Exhibition, 8-10 October, San Antonio, Texas, USA, 2012. DOI: 10.2118/159098-MS.[156] O.C. Mullins, E.Y. Sheu, A. Hammami, A.G. Marshall, Asphaltene, Heavy Oils, and Petroleomics, Springer, 2007.[157] M. Tavakkoli, A. Chen, F. M. Vargas, Rethinking the modeling approach for asphaltene precipitation using the PC-SAFT Equation of State, Fluid Phase Equilibria 416 (2016) 120–129, DOI: 10.1016/j.fluid.2015.11.003.[158] D.L. Gonzalez, Modeling of Asphaltene Precipitation and Deposition Tendency using the PC-SAFT Equation of State, PhD Thesis, Rice University, 2008.[159] W.A. Burgess, B.A. Bangbade, I.K. Gamwo, Experimental and predictive PC-SAFT modeling results for density and isothermal compressibility for two oil samples at elevated temperatures and pressures, Fuel (2018) 385-395, DOI: 10.1016/j.fuel.2017.12.101.[160] L.C.C. Marques, J.O. Pereira, A. D. Bueno, V.S. Marques, E.F. Lucas, C.R.E. Mansur, A.L.C. Machado, G. González, A Study of Asphaltene-Resin Interactions, J. Braz.Chem. Soc,. 23 (2012) 1880-1888. DOI: 10.1590/S0103-50532012005000060.[161] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib. 12 (1983) 235-251. DOI: 10.1016/0378-3812(83)80064-8.[162] I. Nezbeda, K. Aim, Perturbed hard sphere equations of state of real liquids. II. Effective hard-sphere diameters and residual properties, Fluid Phase Equilib. 17 (1984) 1-18. DOI: 10.1016/0378-3812(84)80010-2.[163] W. A. Cañas-Marín, B. A. Hoyos, D. L. Gonzalez, Role of the soft- core repulsion upon the prediction of characteristic curves with PC- SAFT, Fluid Phase Equilib. 499 (2019) 112247. DOI: 10.1016/j.fluid.2019.112247.[164] P. Bahrami, R. Karrat, S. Mahdavi, H. Firoozinia, Prediction of the gas injection effect on the asphaltene phase envelope, Oil & Gas Science and Technology-Rev. IFP Energies Nouvelles 70 (2015) 1075-1086. DOI: 10.2516/ogst/2014037.[165] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, A temperature-and density-dependent effective diameter for PC- SAFT, Journal of Molecular Liquids, 300 (2020) 112277.[166] F. del Rio, D.A. Lonngi, The mean distance of closet approach in the theory of liquids, Phys. Letters. 56A (6) (1976) 463-464. DOI: 10.1016/0375-9601(76)90729-5.[167] S. Gormsen, J.M. Mollerup, Calculation of effective hard sphere diameters from perturbation theory, Fluid Phase Equilib. 65 (1992) 127–135, DOI: 10.1016/0378-3812(92)87012-C.[168] L. Verlet, J-J. Weis, Equilibrium theory of simple liquids, Phys. Rev. A, 5 (2) (1972) 939-952. DOI: 10.1103/PhysRevA.5.939.[169] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988.[170] D. Henderson, E. W. Grundke, Direct correlation function: Hard sphere fluid, J. Chem. Phys. 63 (1975) 601-607. DOI: 10.1063/1.431378.[171] T. Wang, T. Davis, Molecular theory of simple dense fluid structure and thermodynamics, Chem. Eng. Commun. 4 (1980) 343-352. DOI: 10.1080/00986448008935914.[172] H. Nikoofard, T. Rezaye, A. H. Amin, The static structure factor of monatomic liquids using an analytical expression for the hard-sphere correlation function, PCAIJ. 8(4) (2013) 126-131. ISSN: 0974 – 7524.[173] A. M. Bratkovsky, V. G. Vaks, A. V. Trefilov, On the accuracy of the liquid theory approximate methods for calculating the structure factors in liquid metals, J. Phys. F: Met. Phys. 12 (1982) 611-632. DOI: 10.1088/0305-4608/12/4/004,[174] M. Giordano, D. de Angelis, A. Forlani, The one-component plasma liquid: and equation for the strongly coupled limit. J. Phys. C: Solid State phys. 17 (1984) 4089-4100. DOI: 10.1088/0022-3719/17/23/010.[175] A. D. Law, D. M. A. Buzza, Determination of interaction potentials of colloidal monolayers from the inversion of pair correlation functions: A two-dimensional predictor-corrector method, J. Chem. Phys. 131 (2009) 094704. DOI: 10.1063/1.3216568.[176] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44. DOI: 10.1016/S0378-3812(00)00346-0.[177] R. P. Brent, Chapter 4: An Algorithm with Guaranteed Convergence for Finding a Zero of a Function, Algorithms for Minimization without Derivatives, Englewood Cliffs, NJ: Prentice-Hall, ISBN 0-13-0223, 1973.[178] P. Ungerer, B. Faissat, C. Leibovici, H. Zhou, E. Behar, G. Morachini, J. P. Courcy, High pressure-high temperature reservoir fluids: investigation of synthetic condensate gases containing a solid hydrocarbon, Fluid Phase Equilib. 111 (1995) 287- 311. DOI: 10.1016/S0301-9322(97)88277-8.[179] S. Jiu-Xun, simple analytic expression with high precision for Barker-Henderson diameter, Chin. Phys. Lett. 20 (2003) 180-182. DOI: 10.1088/0256-307X/20/2/302.[180] S. Zarei, F. Feyzi, Boyle temperature from SAFT, PC-SAFT and SAFT-VR equations of state, Journal of Molecular Liquids. 187 (2013) 144-128. DOI: 10.1016/j.molliq.2013.06.010.[181] X. Liang, B. Maribo-Mogensen, K. Thomsen, W. Yan, G. M. Kontogeorgis, Approach to improve speed of sound calculation within PC-SAFT framework. Ind. Eng. Chem. Res. 51 (2012) 14903-14914. DOI: 10.1021/ie3018127I.[182] I. Polishuk, P. Privat, J.N., Jaubert, Novel methodology for analysis and evaluation of SAFT-type equation of state, Ind. Eng. Chem. Res. 2013, S2, 13875. DOI: 10.1021/ie4020155.[183] P. Paricaud, Extension of the BMCSL equation of state for hard spheres to the metastable disordered region: Application to the SAFT approach, J. Chem. Phys. 143 (2015) 044507. DOI:10.1063/1.4927148.[184] J. Gross, G. Sadowski, Reply to comment on “Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules”, Ind. Eng. Chem. Res. 58 (2019) 5744-5745. DOI: 10.1021/acs.iecr.9b01515.[185] C.P. Hicks, C.L. Young, Gas-liquid critical properties of binary mixtures, Chem. Rev. 75(2) (1975) 119-175. DOI: 10.1021/cr60294a001.[186] E. F. Gholoum, G. P. Oskui, M. Salman, Investigation of Asphaltenes Precipitation Onset Conditions for Kuwaiti Reservoirs, SPE Paper 81571, SPE 13th Middle East Oil Show & Conference, Bahrain, 2003. DOI: 10.2118/81571-MS.[187] F. Nascimento, G.M.N. Costa, S.A.B. Vieira de Melo, A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope, Fluid Phase Equilibria 494 (2019) 74–92. DOI: 10.1016/j.fluid.2015.11.003. 10.1016/j.fluid.2019.04.027.[188] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Comparison of four different PC- SAFT versions to predict liquid- liquid equilibria of polymer and asphaltene systems at low temperatures, Fluid Phase Equilib. 521 (2020) 112646.[189] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178.[190] O.L. Boshkova, U.K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int. J Thermophys. 31 (2010) 227-252. DOI: 10.1007/s10765-010-0727-7. DOI: 10.1007/s10765-010-0727-7.[191] A.K.M. Jamaluddin, J. Creek, C.S. Kabir, J.D. McFeeden, D. D´Cruz, M.T. Joseph, N. Joshi, B. Ross, A comparison of various laboratory techniques to measure thermodynamic asphaltene instability, SPE 72154 (2001) 1-17. DOI: 10.2118/72154-MS.[192] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Prediction of extreme asphaltene onset pressures with PC- SAFT for petroleum reservoir fluids, Fluid Phase Equilib. 522 (2020) 112769.[193] C.H. Whitson, M.R. Brule, Phase Behavior. SPE monograph series vol. 20 (2000).[194] K.S. Pedersen, P.L. Christensen, Phase behavior of petroleum reservoir fluids. CRC press. Taylor & Francis Group (2007).[195] C. S. Agger, H. Sorensen, Algorithm for constructing complete asphaltene PT and Px phase diagrams, Ind. Eng. Chem. Res. 57 (1) (2017) 392-400. DOI: 10.1021/acs.iecr.7b04246.[196] R. R. Boesen, H. Sorensen, K. S. Pedersen, Asphaltene predictions using screening methods and equations of state, SPE 190401-MS (2018) 1-19. DOI: 10.2118/190401-MS.[197] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197-1203.[198] M. Robles, M. López de Haro, A. Santos, Note: Equation of state and the freezing point in the hard-sphere model. J. Chem. Phys. 140 (2014) 136101.[199] H.S. Kang, C.S. Lee, T. Ree, A perturbation theory of classical equilibrium fluids. J. Chem. Phys. 82(1) (1985) 414-423.[200] C.F. Leibovici, J. Neoschil, A solution of Rachford-Rice equations for multiphase systems, Fluid Phase Equilib. 112 (1995) 217–221. DOI: 10.1016/0378-3812(95)02797-I.[201] M.L. Michelsen, Calculation of multiphase equilibrium. Comput. Chem. Eng. 18 (7) (1994) 545-550. DOI: 10.1016/0098-1354(93)E0017-4.[202] M.L. Michelsen, The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9 (1) (1982) 1-19. DOI: 10.1016/0378-3812(82)85001-2.[203] W.A. Cañas-Marín, J.D. Ortiz-Arango, U.E. Guerrero-Aconcha, Improved two-sided tangent plane initialization and two-phase-split calculations. Ind. Eng. Chem. Res. 46 (2007) 5429-5436. DOI: 10.1021/ie061361b.[204] M.A. Trebble, A preliminary evaluation of two and three phase flash initialization procedures. Fluid Phase Equilib. 53 (1989) 113–122. DOI: 10.1016/0378-3812(89)80078-0.[205] M.L. Michelsen, J.M. Mollerup, Thermodynamic models: Fundamentals & computational aspects. Tie-Line Publications (2004).[206] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Role of the soft-core repulsion upon density-and temperature-dependent effective diameters from two thermodynamic perturbation theories, Fluid Phase Equilib. 528 (2021) 112849. DOI: 10.1016/j.fluid.2020.112849.[207] D. Henderson, Rowlinson´s concept of an effective hard sphere diameter, J. Chem. Eng. Data. 55(10) (2010) 4507-4508.[208] B. J. Alder, C.E. Hecht, Studies in Molecular Dynamics. VII. Hard‐Sphere Distribution Functions and an Augmented van der Waals Theory. J. Chem. Phys. 50 (1969) 2032-2037.[209] D.M. Heyes, Thermodynamics and elastic moduli of fluids with steeply repulsive potentials. J. Chem. Phys. 107(6) (1997) 1963-1969.[210] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178.[211] G.A. Parsafar, C. Izanloo, Deriving analytical expressions for the ideal curves and using the curves to obtain the temperature dependence of equation-of-state parameters. Int. J Thermophys. 27 (5) (2006) 1564-1589.[212] U.K. Deiters, A. Neumaier, Computer simulation of the characteristic curves of pure fluids. J. Chem. Eng. Data. 61 (8) (2016) 2720-2728.[213] U.K. Deiters, K.M. De Reuck, Guidelines for publication of equations of state-I. Pure fluids. Pure & Appl. Chem., 68 (6) (1997) 1237-1249.[214] L. Boltzmann, Lectures on gas theory, University of California Press, Berkeley, CA, 1964.[215] M. Shokouhi, G.A. Parsafar, A new equation of state derived by the statistical mechanical perturbation theory, Fluid Phase Equilib. 264 (2008) 1-11.[216] C.M. Silva, H. Liu, E.A. Macedo, Comparison between different explicit expressions of the effective hard sphere diameter of Lennard-Jones fluids: Application to self-diffusion coefficients, Ind. Eng. Chem. Res. 37 (1998) 221-227.[217] U.K. Deiters, The equation of state of soft repulsive spherical molecules, Molecular Physics. 74 (1) (1991) 153-160.[218] U.K. Deiters, S.L. Randzio, The equation of state for molecules with shifted Lennard-Jones pair potentials, Fluid Phase Equilib. 103 (1995) 199-212.[219] R.L. Cotterman, B.J., Schwardz, J.M. Prausnitz, Molecular thermodynamics for fluids al low and high densities. Part I. Pure fluids containing small or large molecules, AIChE J. 32 (11) (1986) 1787-1798.[220] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44.[221] Y. Tang, B.C.-Y. Liu, On the mean spherical approximation for the Lennard-Jones fluid, Fluid Phase Equilib. 190 (2001) 149-158.[222] I. Polishuk, Standardized critical point-based numerical solution of statistical association fluid theory parameters: The perturbed chain-statistical association fluid theory equation of state revisited, Ind. Eng. Chem. Res. 53 (2014) 14127-14141.[223] Ch. Tegeler, R. Span, W. Wagner, A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa. Journal of Physical and chemical Reference Data, 28 (3) (1999) 779-850.[224] R. Span, E. Lemmon, R. Jacobsen, W. Wagner, A, Yokozeki, A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. Journal of Physical and chemical Reference Data, 29 (6) (2000) 1361-1433.[225] R. Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and chemical Reference Data, 25 (6) (1996) 1509-1596.[226] M. Shokouhi, G.A. Parsafar, The effect of steepness of soft-core square-well potential model on some fluid properties. Molecular Physics, 106 (1) (2008) 103-112.[227] D. Ghie Chae, F.H. Ree, T. Ree, Radial distribution functions and equation of state of the hard-disk fluid, J. Chem. Phys, 50 (4) (1969) 1581-1589.[228] D. Henderson, A simple equation of state for hard discs, Molecular Physics, 30 (3) (1975) 971-972.[229] A. Santos, M. López de Haro, S. Bravo Yuste, An accurate and simple equation of state for hard disks, J. Chem. Phys, 103 (11) (1995) 4622-4625.[230] D.P. Fraser, M.J. Zuckerman, O.G. Mouritsen, Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom, Phys. Rev. A, 43 (12) (1991) 6642-6656.[231] S. Luding, A. Santos. Molecular dynamics and theory for the contact values of the radial distribution functions of hard-disk fluid mixtures, J. Chem. Phys, 121 (17) (1995) 8458-8465.[232] A. Santos, S.B. Yuste, M. López de Aro, V. Ogarko. Equation of state of polydisperse hard-disk mixtures in the high-density regime, Phys. Rew. E, 96 (2017) 0626031- 06260311.[233] P.M. Ndiaye, C. Dariva, J.V. Oliveira, F.W. Tavares, Improving the SAFT-EoS by using an effective WCA segmaent diameter, Fluid Phase Equilib., 194-197 (2002) 531-539. [234] S. Beret, J.M. Prausnitz, Perturbed Hard-Chain Theory: An Equation of State for Fluids Containig Small or Large Molecules, AIChE J., 21 (1975) 1123-1132.[235] C-H. Kim, P. Vimalchand, M.D. Donohue, S.I. Sandler, Local composition model for chainlike molecules: A new simplified version of the perturbed hard chain theory, AIChE J., 32 (10) (1986) 1726-1734.[236] A. Galindo, P.J. Whitehead, G. Jackson, A.N. Burgess, Predicting the high-pressure phase equilibria of water + n-alkanes using a simplified SAFT theory with transferable intermolecular interaction parameters, J. chem. Phys., 100 (1996) 6781-6792.[237] C.J. Sisco, M.I.L. Abutaqiya, F.M. Vargas, Cubi-Plus-Chain (CPC). I: A Statistical Association Fluid Theory-Based Chain Modification to the Cubic Equation of State for Large Nonpolar Molecules, Ind. Eng. Chem. Res., 58 (2019) 7341-7351.[238] M.I.L. Abutaqiya, C.J. Sisco, Y. Khemka, M.A. Safa, E.F. Gholum, A.M. Rashed, R. Gharbi, S. Santhanagopalan, M. AL-Qahtani, E. AL-Kandari, Accurate Modeling of Asphatene Onset Pressure in Crude Oils Under Gas Injection Using Peng-Robinson Equation of State, Energy Fuels, 34 (2020) 4055-4070.[239] D. Gonzalez, P. Gramin, P. Haldipur, M. Pietrobon, H. Zeng, Experimental study to understand formation damage due to asphaltene deposition in a deepwater field, SPWLA Formation Testing SIG, 2020 Weminar series.[240] K.J. Leontaritis, G.A. Mansoori, T-S, Jiang, Asphaltene Deposition in Oil Recovery: A Survey of Field Experiences and Field Approaches, Proceeding of International Conference on Advanced Technologies (ICAT), IL, USA, 1986.[241] H. Belhaj, H.A. Khalifeh, N. Al-Huraibi, Asphaltene Stability in Crude Oil during Production Process, J. Pet. Environ. Biotechnol., 4(3) (2013) 1-5.[242] F. Gonzalez, Private Communication, 2021.ORIGINAL71730033.2021.pdf71730033.2021.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf9943661https://repositorio.unal.edu.co/bitstream/unal/79496/4/71730033.2021.pdf3bc0d05258946849f8743f755338e393MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79496/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79496/6/license_rdf4460e5956bc1d1639be9ae6146a50347MD56THUMBNAIL71730033.2021.pdf.jpg71730033.2021.pdf.jpgGenerated Thumbnailimage/jpeg4799https://repositorio.unal.edu.co/bitstream/unal/79496/7/71730033.2021.pdf.jpg7da39b22a6fa174c7b7db5a3a7f813bfMD57unal/79496oai:repositorio.unal.edu.co:unal/794962024-08-11 01:02:45.585Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |