Categorification of Chern-Weil theory and equivariant cohomology

diagramas

Autores:
Pineda Montoya, Santiago
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83348
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83348
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
510 - Matemáticas::516 - Geometría
Geometría diferencial
Geometry, differential
Sistemas locales
Álgebra homotópica
Homomorfismo de Chern-Weil
Cohomología equivariante
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_578fdee94e87c847ee7c4ac11d4c0301
oai_identifier_str oai:repositorio.unal.edu.co:unal/83348
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Categorification of Chern-Weil theory and equivariant cohomology
dc.title.translated.spa.fl_str_mv Categorificación de la teoría de Chern-Weil y la cohomología equivariante
title Categorification of Chern-Weil theory and equivariant cohomology
spellingShingle Categorification of Chern-Weil theory and equivariant cohomology
510 - Matemáticas
510 - Matemáticas::516 - Geometría
Geometría diferencial
Geometry, differential
Sistemas locales
Álgebra homotópica
Homomorfismo de Chern-Weil
Cohomología equivariante
title_short Categorification of Chern-Weil theory and equivariant cohomology
title_full Categorification of Chern-Weil theory and equivariant cohomology
title_fullStr Categorification of Chern-Weil theory and equivariant cohomology
title_full_unstemmed Categorification of Chern-Weil theory and equivariant cohomology
title_sort Categorification of Chern-Weil theory and equivariant cohomology
dc.creator.fl_str_mv Pineda Montoya, Santiago
dc.contributor.advisor.none.fl_str_mv Quintero Vélez, Alexander
Arias Abad, Camilo
dc.contributor.author.none.fl_str_mv Pineda Montoya, Santiago
dc.contributor.orcid.spa.fl_str_mv Arias Abad, Camilo [0000-0003-3624-9396]
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
510 - Matemáticas::516 - Geometría
topic 510 - Matemáticas
510 - Matemáticas::516 - Geometría
Geometría diferencial
Geometry, differential
Sistemas locales
Álgebra homotópica
Homomorfismo de Chern-Weil
Cohomología equivariante
dc.subject.lemb.none.fl_str_mv Geometría diferencial
Geometry, differential
dc.subject.proposal.spa.fl_str_mv Sistemas locales
Álgebra homotópica
Homomorfismo de Chern-Weil
Cohomología equivariante
description diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-06-28
dc.date.accessioned.none.fl_str_mv 2023-02-07T14:02:58Z
dc.date.available.none.fl_str_mv 2023-02-07T14:02:58Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83348
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83348
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv M. Sugawara. On a condition that a space is an H-space, Math. J. Okayama Univ., 6:109–129, 1957
J. Stasheff. Homotopy associativity of h-spaces. i, Transactions of the American Mathematical Society 108 (01 1963), 275–292
J. Stasheff. Homotopy associativity of h-spaces. ii, Transactions of the American Mathematical Society 108 (08 1963), 275
J. Stasheff. Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, Quantum groups Number 1510 in Lecture Notes in Math. Springer, Berlin, 1992
T. Lada, J. Stasheff. Introduction to sh Lie algebras for physicists, Int. J. Theo. Phys. 32 (1993), 1087–1103
B. Zwiebach. Closed string field theory: Quantum action and the B-V master equation, Nucl.Phys. B390 (1993) 33
Holstein, Julian V. Morita cohomology, Cambridge University Press, 2015
Jonathan Block and Aaron M. Smith. The higher Riemann-Hilbert correspondence, Adv. Math., 2014
Abad, Camilo Arias and Schatz, Florian. The ¨ A• de Rham theorem and integration of representations up to homotopy, Int. Math. Res. Notices, 2013
Abad, Camilo Arias and Schatz, Florian. Flat Z-graded connections and loop spaces, International Mathematics ¨ Research Notices, 2018
C. Arias Abad, A. Quintero Velez and S. V ´ elez V ´ asquez. An ´ A•-version of the Poincare lemma. Pacific Journal ´ of Mathematics, 2019
S.S. Chern. Differential geometry of fiber bundles. Proceedings of the International Congress of Mathematicians, Cambridge, Mass., vol. 2, pages 397-411, Amer. Math. Soc., Providence, R. I. 1950
A. Weil. Geom ´ etrie diff ´ erentielle des espaces fibres. unpublished, 1949
H. Cartan. La transgression dans un groupe de Lie et dans un fibre principal. Colloque de topologie (espaces ´ fibres) (Bruxelles), Centre belge de recherches math ´ ematiques, Georges Thone, Li ´ ege, Masson et Cie., Paris, ` 1950
H. Cartan. Notions d’algebre diff ` erentiel le; application aux groupes de Lie et aux vari ´ et ´ es o ´ u op ` ere un groupe de ` Lie. Colloque de topologie (espaces fibres) (Bruxelles), Georges Thone, Li ´ ege, Masson et Cie., Paris, 1950.
A. Borel. Seminar on transformation groups. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960
C. Arias Abad, S. Pineda Montoya and A. Quintero Velez. Chern-Weil theory for ´ •-local systems. arXiv:2105.00461, submitted for publication
C. Arias Abad, S. Pineda Montoya and A. Quintero Velez. Equivariant de Rham Theorem for ´ •-local systems. In preparation
C. Arias Abad, A. Quintero Velez. Singular chains on Lie groups and the Cartan relations II. preprint
C. Arias Abad. Singular chains on Lie groups and the Cartan relations I. arXiv:1908.10460, submitted for publication
Eckhard Meinrenken. Clifford algebras and Lie theory, Springer, 2013
Guillemin, Victor W and Sternberg, Shlomo. Supersymmetry and equivariant de Rham theory, Springer Science & Business Media, 2013
Reinhold, Ben. L-•-algebras and their cohomology, Emergent Scientist, 2019
Keller, Bernhard. On differential graded categories, International Congress of Mathematicians. Vol. II, 2006
J. Block, A. Smith. The Riemann-Hilbert correspondence for infinity local systems, Advances in Mathematics, 2009
Arias Abad, Camilo and Crainic, Marius. Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. (Crelle’s Journal), 2012
P. Seidel. Fukaya categories and Picard Lefschetz theory, Zurich Lectures in Advanced Mathematics, EMS, 2008
Mehta, Rajan Amit and Zambon, Marco. L•-algebra actions, Differ. Geom. Appl., 2012
Loring W. TU. Introductory Lectures on Equivariant Cohomology, Princeton University Press, 2020
MathOverflow. Why does the singular simplicial space geometrically realize to the original space?. https://mathoverflow.net/questions/171662/why-does-the-singular-simplicial-space-geometrically-realize-tothe-original-spa
Goerss, Paul G. and Jardine, John F. Simplicial homotopy theory, Springer Science & Business Media, 2009
Joyal, Andre and Tierney, Myles. Notes on simplicial homotopy theory, ´ http://mat.uab.cat/ kock/crm/hocat/advanced-course/Quadern47.pdf, 2008
Ruschoff, Christian. Notes on simplicial homotopy theory, https://www.mathi.uni- ¨ heidelberg.de/ rueschoff/ss17sset/sset.pdf, 2017
Jardine, John Frederick. Simplicial presheaves, Journal of Pure and Applied Algebra, 1987
Hatcher, Allen. Algebraic topology, Cambridge University Press, 2005
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 92 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83348/6/1035425041.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83348/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83348/7/1035425041.2022.pdf.jpg
bitstream.checksum.fl_str_mv a69ac1c198c43fc428b1305a90d8b6c4
eb34b1cf90b7e1103fc9dfd26be24b4a
09f2c645131fd977e27044350458fbb2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089890586951680
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quintero Vélez, Alexanderef7b285211024ca34a4305c09822e9bbArias Abad, Camilo13850311a020fe0b3dfcaf92c87c406ePineda Montoya, Santiagobed72974b97883bae9501e93ca1d1cd2Arias Abad, Camilo [0000-0003-3624-9396]2023-02-07T14:02:58Z2023-02-07T14:02:58Z2022-06-28https://repositorio.unal.edu.co/handle/unal/83348Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramasEsta tesis contempla la generalización de resultados de geomtría diferencial clásica en el contexto de los sistemas locales homotópicos. En particular, se realiza la construcción del homomorfismo de Chern-Weil y el teorema equivariante de de Rham en el contexto de las categorias diferenciales graduadas conformadas por los sistemas locales homotópicos. (Texto tomado de la fuente)Let G be a compact connected Lie group acting on a smooth manifold M. We show that the DG categories Loc∞(BG) and Loc∞(MG) of ∞-local systems on the classifying space of G and the homotopy quotient of M, respectively, can be described infinitesimally as the categories InfLoc∞(g) of basic g-L∞ spaces and InfLoc∞(g,M) of g graded G-equivariant vector bundles, respectively. Moreover, we show that, given a principal bundle π : P → X with structure group G and any connection θ on P, there are DG functors C Wθ : InfLoc∞(g) −→ Loc∞(X), and Cθ : InfLoc∞(g,M) −→ Loc∞((P× M)/G), that corresponds to the pullback functor by the classifying map of P. An A∞-natural isomorphism relates the functors associated with different connections. This construction categorizes the ChernWeil homomorphism, which is recovered by applying the functor C Wθ to the endomorphisms of the constant local system. Finally, we obtain a categorification of the equivariant de Rham theorem for infinity local systems, namely, the A∞-fuctor DR : InfLoc∞(g,M) → Loc∞(MG).DoctoradoDoctor en Ciencias - MatemáticasÁrea Curricular en Matemáticas92 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en Ciencias - MatemáticasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín510 - Matemáticas510 - Matemáticas::516 - GeometríaGeometría diferencialGeometry, differentialSistemas localesÁlgebra homotópicaHomomorfismo de Chern-WeilCohomología equivarianteCategorification of Chern-Weil theory and equivariant cohomologyCategorificación de la teoría de Chern-Weil y la cohomología equivarianteTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaM. Sugawara. On a condition that a space is an H-space, Math. J. Okayama Univ., 6:109–129, 1957J. Stasheff. Homotopy associativity of h-spaces. i, Transactions of the American Mathematical Society 108 (01 1963), 275–292J. Stasheff. Homotopy associativity of h-spaces. ii, Transactions of the American Mathematical Society 108 (08 1963), 275J. Stasheff. Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, Quantum groups Number 1510 in Lecture Notes in Math. Springer, Berlin, 1992T. Lada, J. Stasheff. Introduction to sh Lie algebras for physicists, Int. J. Theo. Phys. 32 (1993), 1087–1103B. Zwiebach. Closed string field theory: Quantum action and the B-V master equation, Nucl.Phys. B390 (1993) 33Holstein, Julian V. Morita cohomology, Cambridge University Press, 2015Jonathan Block and Aaron M. Smith. The higher Riemann-Hilbert correspondence, Adv. Math., 2014Abad, Camilo Arias and Schatz, Florian. The ¨ A• de Rham theorem and integration of representations up to homotopy, Int. Math. Res. Notices, 2013Abad, Camilo Arias and Schatz, Florian. Flat Z-graded connections and loop spaces, International Mathematics ¨ Research Notices, 2018C. Arias Abad, A. Quintero Velez and S. V ´ elez V ´ asquez. An ´ A•-version of the Poincare lemma. Pacific Journal ´ of Mathematics, 2019S.S. Chern. Differential geometry of fiber bundles. Proceedings of the International Congress of Mathematicians, Cambridge, Mass., vol. 2, pages 397-411, Amer. Math. Soc., Providence, R. I. 1950A. Weil. Geom ´ etrie diff ´ erentielle des espaces fibres. unpublished, 1949H. Cartan. La transgression dans un groupe de Lie et dans un fibre principal. Colloque de topologie (espaces ´ fibres) (Bruxelles), Centre belge de recherches math ´ ematiques, Georges Thone, Li ´ ege, Masson et Cie., Paris, ` 1950H. Cartan. Notions d’algebre diff ` erentiel le; application aux groupes de Lie et aux vari ´ et ´ es o ´ u op ` ere un groupe de ` Lie. Colloque de topologie (espaces fibres) (Bruxelles), Georges Thone, Li ´ ege, Masson et Cie., Paris, 1950.A. Borel. Seminar on transformation groups. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960C. Arias Abad, S. Pineda Montoya and A. Quintero Velez. Chern-Weil theory for ´ •-local systems. arXiv:2105.00461, submitted for publicationC. Arias Abad, S. Pineda Montoya and A. Quintero Velez. Equivariant de Rham Theorem for ´ •-local systems. In preparationC. Arias Abad, A. Quintero Velez. Singular chains on Lie groups and the Cartan relations II. preprintC. Arias Abad. Singular chains on Lie groups and the Cartan relations I. arXiv:1908.10460, submitted for publicationEckhard Meinrenken. Clifford algebras and Lie theory, Springer, 2013Guillemin, Victor W and Sternberg, Shlomo. Supersymmetry and equivariant de Rham theory, Springer Science & Business Media, 2013Reinhold, Ben. L-•-algebras and their cohomology, Emergent Scientist, 2019Keller, Bernhard. On differential graded categories, International Congress of Mathematicians. Vol. II, 2006J. Block, A. Smith. The Riemann-Hilbert correspondence for infinity local systems, Advances in Mathematics, 2009Arias Abad, Camilo and Crainic, Marius. Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. (Crelle’s Journal), 2012P. Seidel. Fukaya categories and Picard Lefschetz theory, Zurich Lectures in Advanced Mathematics, EMS, 2008Mehta, Rajan Amit and Zambon, Marco. L•-algebra actions, Differ. Geom. Appl., 2012Loring W. TU. Introductory Lectures on Equivariant Cohomology, Princeton University Press, 2020MathOverflow. Why does the singular simplicial space geometrically realize to the original space?. https://mathoverflow.net/questions/171662/why-does-the-singular-simplicial-space-geometrically-realize-tothe-original-spaGoerss, Paul G. and Jardine, John F. Simplicial homotopy theory, Springer Science & Business Media, 2009Joyal, Andre and Tierney, Myles. Notes on simplicial homotopy theory, ´ http://mat.uab.cat/ kock/crm/hocat/advanced-course/Quadern47.pdf, 2008Ruschoff, Christian. Notes on simplicial homotopy theory, https://www.mathi.uni- ¨ heidelberg.de/ rueschoff/ss17sset/sset.pdf, 2017Jardine, John Frederick. Simplicial presheaves, Journal of Pure and Applied Algebra, 1987Hatcher, Allen. Algebraic topology, Cambridge University Press, 2005ColfuturoInvestigadoresORIGINAL1035425041.2022.pdf1035425041.2022.pdfTesis de Doctorado en matemáticasapplication/pdf704347https://repositorio.unal.edu.co/bitstream/unal/83348/6/1035425041.2022.pdfa69ac1c198c43fc428b1305a90d8b6c4MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83348/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1035425041.2022.pdf.jpg1035425041.2022.pdf.jpgGenerated Thumbnailimage/jpeg4311https://repositorio.unal.edu.co/bitstream/unal/83348/7/1035425041.2022.pdf.jpg09f2c645131fd977e27044350458fbb2MD57unal/83348oai:repositorio.unal.edu.co:unal/833482023-08-15 23:04:39.105Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=