Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.

ilustraciones

Autores:
Arango Restrepo, Juan Pablo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79806
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79806
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía biomasica
Fotobiorreactor
Control predictivo basado en modelo
Optimización
Gasifier
Photobioreactor
Carbon dioxide emissions
Process dynamics
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_57674833a838e6649e32a811f7550f20
oai_identifier_str oai:repositorio.unal.edu.co:unal/79806
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.
dc.title.translated.eng.fl_str_mv Analysis of the economic commitment and co2 capture in a gasifying plant in continuous operation coupled to a photobioreactor for the generation of energy and biomass from a static and dynamic point of view.
title Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.
spellingShingle Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía biomasica
Fotobiorreactor
Control predictivo basado en modelo
Optimización
Gasifier
Photobioreactor
Carbon dioxide emissions
Process dynamics
title_short Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.
title_full Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.
title_fullStr Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.
title_full_unstemmed Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.
title_sort Análisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.
dc.creator.fl_str_mv Arango Restrepo, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Espinosa Oviedo, Jairo José
Gómez Pérez, Cesar Augusto
dc.contributor.author.none.fl_str_mv Arango Restrepo, Juan Pablo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Automática de la Universidad Nacional GAUNAL
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energía biomasica
Fotobiorreactor
Control predictivo basado en modelo
Optimización
Gasifier
Photobioreactor
Carbon dioxide emissions
Process dynamics
dc.subject.lemb.none.fl_str_mv Energía biomasica
dc.subject.proposal.spa.fl_str_mv Fotobiorreactor
Control predictivo basado en modelo
Optimización
dc.subject.proposal.eng.fl_str_mv Gasifier
Photobioreactor
Carbon dioxide emissions
Process dynamics
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-15T16:05:55Z
dc.date.available.none.fl_str_mv 2021-07-15T16:05:55Z
dc.date.issued.none.fl_str_mv 2021-07-13
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79806
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79806
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2017). Biomass Conversion Technologies. Report to NNFCC. In Greenhouse Gas Balances of Bioenergy Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-08-101036-5.00008-2 Adams, P. W. R., & McManus, M. C. (2014). Small-scale biomass gasification CHP utilisation in industry: Energy and environmental evaluation. Sustainable Energy Technologies and Assessments, 6, 129–140. https://doi.org/10.1016/j.seta.2014.02.002 Asprilla, D. (2016). Estudio de sistemas hìbridos de energìa renovable (solar- gasificaciòn de biomasa) como alternativa para satisfacer necesidades energèticas en zonas no interconectadas del Cepartamento del Choco. Universidad Nacional de Colombia- Medellin, Colombia, 1-82. Babu, B. V., & Sheth, P. N. (2006). Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor. Energy Conversion and Management, 47(15–16), 2602–2611. https://doi.org/10.1016/j.enconman.2005.10.032 Baird, H. S., & Lopresti, D. P. (2005). Lecture Notes in Computer Science: Preface. In Lecture Notes in Computer Science (Vol. 3517). Basu, P. (2010). Pyrolysis and Torrefaction. In Biomass Gasification Design Handbook. https://doi.org/10.1016/b978-0-12-374988-8.00003-9 Bates, R., & Dölle, K. (2017). Syngas Use in Internal Combustion Engines - A Review. Advances in Research, 10(1), 1–8. https://doi.org/10.9734/air/2017/32896 Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S., & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Computers and Electronics in Agriculture, 76(2), 131–147. https://doi.org/10.1016/j.compag.2011.01.015 Borja Padilla, R., Fiestas Ros De Ursinos, J. A., Durán Barrantes, M. M., & Luque González, M. (1991). Aerobic purification of condensed water from thermal concentration process of olive mill wastewater. Grasas y Aceites, 42(6), 422–427. https://doi.org/10.3989/gya.1991.v42.i6.1205 Botero, H., Alvarez, H., & Gómez, L. (2013). Estimación de Estado y Control de un Gasificador de Carb’on en Lecho Fluidizado Presurizado. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 10(3), 279–290. https://doi.org/10.1016/j.riai.2013.05.003 Cambero, C., Sowlati, T., & Pavel, M. (2016). Economic and life cycle environmental optimization of forest-based biorefinery supply chains for bioenergy and biofuel production. Chemical Engineering Research and Design, 107, 218–235. https://doi.org/10.1016/j.cherd.2015.10.040 Carlos E., G., David M., P., & Manfred, M. (1989). Model Predictive Control : Theory and Practice a Survey. Automatica, 25(3), 335–338. https://doi.org/10.1016/0005-1098(89)90002-2 Carvalho, A. P., & Malcata, F. X. (2005). Optimization of ω-3 fatty acid production by microalgae: Crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Marine Biotechnology, 7(4), 381–388. https://doi.org/10.1007/s10126-004-4047-4 Çengel, Yunus A., and M. A. B. (2015). Termodinámica. Mc Graw-Hill Interamericana. Chagas, M. F., Cavalett, O., Klein, B. C., Filho, R. M., & Bonomi, A. (2016). Life cycle assessment of technologies for greenhouse gas emissions reduction in sugarcane biorefineries. Chemical Engineering Transactions, 50, 421–426. https://doi.org/10.3303/CET1650071 Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015 Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J., & Chang, J. S. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62. https://doi.org/10.1016/j.biortech.2017.01.006 del Rio-Chanona, E. A., Zhang, D., & Vassiliadis, V. S. (2016). Model-based real-time optimisation of a fed-batch cyanobacterial hydrogen production process using economic model predictive control strategy. Chemical Engineering Science, 142, 289–298. https://doi.org/10.1016/j.ces.2015.11.043 DemirbaÅŸ, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42, 1357–1378. Duan, T. H., Lu, C. P., Xiong, S., Fu, Z. Bin, & Chen, Y. Z. (2016). Pyrolysis and gasification modelling of underground coal gasification and the optimisation of CO2 as a gasification agent. Fuel, 183, 557–567. https://doi.org/10.1016/j.fuel.2016.06.118 Estrada, E. M., Norena, L., Sarrazola, A., & Espinosa, J. (2018). MOSTRO: A multi-objective system for traffic optimization. 2017 IEEE 3rd Colombian Conference on Automatic Control, CCAC 2017 - Conference Proceedings, 2018-Janua, 1–6. https://doi.org/10.1109/CCAC.2017.8276381 Fózer, D., Volanti, M., Passarini, F., Varbanov, P. S., Klemeš, J. J., & Mizsey, P. (2020). Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification. Applied Energy, 280(March), 115923. https://doi.org/10.1016/j.apenergy.2020.115923 Frank P.. Incropera, & DeWitt, D. P. (1985). Solutions Manual to Accompany" Fundamentals of Heat and Mass Transfer" and" Introduction to Heat Transfert". J. Wiley & sons. Fundacion Energia. (2007). Tecnologías de captura y almacenamiento de CO2. Tecnologías de Captura y Almacenamiento de CO2, 24. Galanti, L., & Massardo, A. F. (2011). Micro gas turbine thermodynamic and economic analysis up to 500 kWe size. Applied Energy, 88(12), 4795–4802. https://doi.org/10.1016/j.apenergy.2011.06.022 Gómez-Pérez, C. A., Espinosa Oviedo, J. J., Montenegro Ruiz, L. C., & van Boxtel, A. J. B. (2017). Twisted tubular photobioreactor fluid dynamics evaluation for energy consumption minimization. Algal Research, 27. https://doi.org/10.1016/j.algal.2017.08.019 Gómez Pérez, Cesar A. (2018). Photobioreactor optimization for microalgae culture. Universidad Nacional de Colombia Sede Medellín, Facultad de Minas- Escuela de Procesos y Energía. https://repositorio.unal.edu.co/handle/unal/62174 Grima, E. M., Camacho, F. G., Pérez, J. A. S., Fernéndez, F. G. A., & Sevilla, J. M. F. (1997). Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme and Microbial Technology, 21(5), 375–381. https://doi.org/10.1016/S0141-0229(97)00012-4 He, L., Yang, W., Guan, C., Yan, H., & Fu, P. (2017). Microalgal cultivation and hydrodynamic characterization using a novel tubular photobioreactor with helical blade rotors. Bioprocess and Biosystems Engineering, 40(12), 1743–1751. https://doi.org/10.1007/s00449-017-1829-4 Henao, C. A. (2006). Síntesis y Optimización de Procesos Químicos. Universidad Pontificia Bolivariana, sede Medellín. Hossein Sahraei, M., & Ricardez-Sandoval, L. A. (2014). Controllability and optimal scheduling of a CO2 capture plant using model predictive control. International Journal of Greenhouse Gas Control, 30, 58–71. https://doi.org/10.1016/j.ijggc.2014.08.017 Huang, J., Kang, S., Wan, M., Li, Y., Qu, X., Feng, F., Wang, J., Wang, W., Shen, G., & Li, W. (2014). Numerical and experimental study on the performance of flat-plate photobioreactors with different inner structures for microalgae cultivation. Journal of Applied Phycology, 27(1), 49–58. https://doi.org/10.1007/s10811-014-0281-y Juneja, A., & Murthy, G. S. (2018). Model predictive control coupled with economic and environmental constraints for optimum algal production. Bioresource Technology, 250(September 2017), 556–563. https://doi.org/10.1016/j.biortech.2017.11.047 Kumabe, K., Fujimoto, S., Yanagida, T., Ogata, M., Fukuda, T., Yabe, A., & Minowa, T. (2008). Environmental and economic analysis of methanol production process via biomass gasification. Fuel, 87(7), 1422–1427. https://doi.org/10.1016/j.fuel.2007.06.008 Lehr, F., & Posten, C. (2009). Closed photo-bioreactors as tools for biofuel production. Current Opinion in Biotechnology, 20(3), 280–285. https://doi.org/10.1016/j.copbio.2009.04.004 Limon, D., Alvarado, I., Alamo, T., & Camacho, E. F. (2005). MPC for tracking of piece-wise constant references for constrained linear systems. IFAC Proceedings Volumes (IFAC-PapersOnline), 38(1), 135–140. https://doi.org/10.1016/j.automatica.2008.01.023 Luo, H. P., & Al-Dahhan, M. H. (2004). Analyzing and Modeling of Photobioreactors by Combining First Principles of Physiology and Hydrodynamics. Biotechnology and Bioengineering, 85(4), 382–393. https://doi.org/10.1002/bit.10831 Mongkhonsiri, G., Charoensuppanimit, P., Anantpinijwatna, A., Gani, R., & Assabumrungrat, S. (2020). Process development of sustainable biorefinery system integrated into the existing pulping process. Journal of Cleaner Production, 255. https://doi.org/10.1016/j.jclepro.2020.120278 Pires, J. C. M., Alvim-Ferraz, M. C. M., & Martins, F. G. (2017). Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renewable and Sustainable Energy Reviews, 79(November 2016), 248–254. https://doi.org/10.1016/j.rser.2017.05.064 Prunescu, R. M., Blanke, M., Jakobsen, J. G., & Sin, G. (2017). Model-based plantwide optimization of large scale lignocellulosic bioethanol plants. Biochemical Engineering Journal, 124, 13–25. https://doi.org/10.1016/j.bej.2017.04.008 Rakesh, S., & Karthikeyan, S. (1999). Economic feasibility of microalgal biodiesel production via indigenously designed tubular photobioreactor. Journal of FARM SCIENCES, 32(2). Rentizelas, A., Karellas, S., Kakaras, E., & Tatsiopoulos, I. (2009). Comparative techno-economic analysis of ORC and gasification for bioenergy applications. Energy Conversion and Management, 50(3), 674–681. https://doi.org/10.1016/j.enconman.2008.10.008 Romeo, L., & Bolea, I. (2015). Captura de CO 2 en procesos postcombustión. Boletín Del Grupo Español Del Carbón, 35, 8–11. Sadollah, A., Eskandar, H., Bahreininejad, A., & Kim, J. H. (2015). Water cycle algorithm for solving multi-objective optimization problems. Soft Computing, 19(9), 2587–2603. https://doi.org/10.1007/s00500-014-1424-4 Salguero-Rodríguez, Y., Gómez-Perez, C. A., & Oviedo, J. J. E. (2018). Tubular photobioreactor model for light - Dark cycles control. 2017 IEEE 3rd Colombian Conference on Automatic Control, CCAC 2017 - Conference Proceedings, 2018-Janua, 1–6. https://doi.org/10.1109/CCAC.2017.8276448 Shabangu, S., Woolf, D., Fisher, E. M., Angenent, L. T., & Lehmann, J. (2014). Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel, 117(PART A), 742–748. https://doi.org/10.1016/j.fuel.2013.08.053 Sharma, S., Celebi, A. D., & Maréchal, F. (2017). Robust multi-objective optimization of gasifier and solid oxide fuel cell plant for electricity production using wood. Energy, 137, 811–822. https://doi.org/10.1016/j.energy.2017.04.146 Taal, M., Bulatov, I., Klemeš, J., & Stehlík, P. (2003). Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Applied Thermal Engineering, 23(14), 1819–1835. https://doi.org/10.1016/S1359-4311(03)00136-4 Tebbani, S., Lopes, F., Filali, R., Dumur, D., & Pareau, D. (2014). Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor. Bioprocess and Biosystems Engineering, 37(1), 83–97. https://doi.org/10.1007/s00449-013-0928-0 Thomassen, G., Egiguren Vila, U., Van Dael, M., Lemmens, B., & Van Passel, S. (2016). A techno-economic assessment of an algal-based biorefinery. Clean Technologies and Environmental Policy, 18(6), 1849–1862. https://doi.org/10.1007/s10098-016-1159-2 Thomassen, G., Van Dael, M., & Van Passel, S. (2018). The potential of microalgae biorefineries in Belgium and India: An environmental techno-economic assessment. Bioresource Technology, 267(July), 271–280. https://doi.org/10.1016/j.biortech.2018.07.037 Tian, H., Lu, Q., Gopaluni, R. B., Zavala, V. M., & Olson, J. A. (2019). An economic model predictive control framework for mechanical pulping processes. Control Engineering Practice, 85(August 2018), 100–109. https://doi.org/10.1016/j.conengprac.2019.01.008
Valencia Arroyave, F. (2012). Game theory based distributed model predictive control: an approach to large-scale systems control. Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Mecatrónica, 1-128. https://repositorio.unal.edu.co/handle/unal/11043 Wu, L., Zhou, W., Cheng, H., Su, Y., & Li, X. (2007). The study of structure optimization of blast furnace cast steel cooling stave based on heat transfer analysis. Applied Mathematical Modelling, 31(7), 1249–1262. https://doi.org/10.1016/j.apm.2006.04.016 Xiang, Y., Cai, L., Guan, Y., Liu, W., He, T., & Li, J. (2019). Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures. Energy, 179, 571–580. https://doi.org/10.1016/j.energy.2019.05.011 Zeng, J., & Liu, J. (2015). Economic model predictive control of wastewater treatment processes. Industrial and Engineering Chemistry Research, 54(21), 5710–5721. https://doi.org/10.1021/ie504995n Zhang, W., Gao, J. T., Zhang, Y. C., & Qin, S. (2006). Optimization of conditions for cell cultivation of Porphyra haitanensis conchocelis in a bubble-column bioreactor. World Journal of Microbiology and Biotechnology, 22(7), 655–660. https://doi.org/10.1007/s11274-005-9050-z Zhao, H., Shen, J., Li, Y., & Bentsman, J. (2017). A Stable Multi-Objective Economic MPC Scheme for Boiler-Turbine Units. IFAC-PapersOnLine, 50(1), 11070–11075. https://doi.org/10.1016/j.ifacol.2017.08.2489
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 152 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional De Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Automatización Industrial
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Automática
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79806/2/1088322724.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79806/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79806/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79806/4/1088322724.2021.pdf.jpg
bitstream.checksum.fl_str_mv c7863131215ac03b32eb03957f3313aa
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
600d1c87785d70515df466d2be3ced55
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089755122466816
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Espinosa Oviedo, Jairo José90957698010b1a11a5ea00e0f7e9be49600Gómez Pérez, Cesar Augusto1f85334915b36700c1a6ee70c51deafe600Arango Restrepo, Juan Pablobf456fa22dcbda7495cfbdf9fabe601bGrupo de Automática de la Universidad Nacional GAUNAL2021-07-15T16:05:55Z2021-07-15T16:05:55Z2021-07-13https://repositorio.unal.edu.co/handle/unal/79806Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEn el presente trabajo de grado se muestra el análisis en estado estacionario y transitorio de una planta de gasificación con acople de fotobiorreactor, esto con el objetivo de verificar si los ingresos generados por la comercialización de microalgas pueden favorecer tanto la reducción de emisiones de dióxido de carbono y el beneficio económico en un proceso que involucra conversión de la biomasa. Respecto a la parte dinámica se propone una nueva estrategia de control multi-objetivo basada en teoría de juegos, con el fin de operar el sistema entre regiones de operación económicas y de reducción de emisiones con una sintonía simple. En el primer capítulo se muestra una recopilación de los resultados obtenidos por diversos autores en la relación contraproducente que existe entre la reducción de emisiones de dióxido de carbono y el beneficio económico de un proceso, además de una breve introducción de los conceptos básicos. En el segundo capítulo se muestran los modelos matemáticos del fotobiorreactor, el gasificador y la configuración de la planta completa con el objetivo de evaluar las dinámicas de ambos procesos, en los capítulos 3 y 4 se encuentra la relación que existe entre economía de proceso y reducción de emisiones de dióxido de carbono para la planta seleccionada desde el diseño y el control de procesos, además de proponer métodos para el tratamiento de dicha relación. Finalizando el capítulo 4 se muestra la construcción de una región de Pareto dinámica teniendo en cuenta criterios de operación económicos y de reducción de emisiones de dióxido de carbono, para luego proponer un controlador multi-objetivo que sea capaz de operar en dicha región, y haga que ambos criterios de operación negocien. (Tomado de la fuente)In this study we presented the analysis in steady and transitory state of a gasification plant with a photobioreactor. The aim was to verify whether the income generated by the commercialization of microalgae can impact the counter producer relationship between emission reduction and economic benefit in a process that involves conversion of biomass. Regarding the transitory state, a new multi-objective control strategy based on game theory is proposed to operate the system between regions of economic and reduction of emissions operation with a simple tuning. The first chapter shows the state of the art of the counterproductive relationship between the reduction of carbon dioxide emissions and the economic benefit of a process, as well as a brief introduction of the background concepts. The second chapter shows the mathematical models of the photobioreactor, the gasifier and the configuration of the plant to evaluate the dynamics of both processes. Chapters 3 and 4 provide the relationship between process economy and reduction of carbon dioxide emissions for the selected plant from the design and control of processes point of view, as well as the approached methods to proposed this relationship. At the end of chapter 4, the construction of a Pareto dynamic region is shown taking into account economic operating criteria and the reduction of carbon dioxide emissions, to then propose a multi-objective controller that is capable of operate in the Pareto region, and make both operating criteria negotiate. (Tomado de la fuente)MaestríaMagister en Ingeniería- Automatización IndustrialControl y sistemas dinámicos152 páginasapplication/pdfspaUniversidad Nacional De ColombiaMedellín - Minas - Maestría en Ingeniería - Automatización IndustrialDepartamento de Ingeniería Eléctrica y AutomáticaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaEnergía biomasicaFotobiorreactorControl predictivo basado en modeloOptimizaciónGasifierPhotobioreactorCarbon dioxide emissionsProcess dynamicsAnálisis del compromiso económico y de captura de co2 en una planta de gasificador operado en continuo acoplado a un fotobiorreactor para generación de energía y biomasa desde un punto de vista estático y dinámico.Analysis of the economic commitment and co2 capture in a gasifying plant in continuous operation coupled to a photobioreactor for the generation of energy and biomass from a static and dynamic point of view.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2017). Biomass Conversion Technologies. Report to NNFCC. In Greenhouse Gas Balances of Bioenergy Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-08-101036-5.00008-2 Adams, P. W. R., & McManus, M. C. (2014). Small-scale biomass gasification CHP utilisation in industry: Energy and environmental evaluation. Sustainable Energy Technologies and Assessments, 6, 129–140. https://doi.org/10.1016/j.seta.2014.02.002 Asprilla, D. (2016). Estudio de sistemas hìbridos de energìa renovable (solar- gasificaciòn de biomasa) como alternativa para satisfacer necesidades energèticas en zonas no interconectadas del Cepartamento del Choco. Universidad Nacional de Colombia- Medellin, Colombia, 1-82. Babu, B. V., & Sheth, P. N. (2006). Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor. Energy Conversion and Management, 47(15–16), 2602–2611. https://doi.org/10.1016/j.enconman.2005.10.032 Baird, H. S., & Lopresti, D. P. (2005). Lecture Notes in Computer Science: Preface. In Lecture Notes in Computer Science (Vol. 3517). Basu, P. (2010). Pyrolysis and Torrefaction. In Biomass Gasification Design Handbook. https://doi.org/10.1016/b978-0-12-374988-8.00003-9 Bates, R., & Dölle, K. (2017). Syngas Use in Internal Combustion Engines - A Review. Advances in Research, 10(1), 1–8. https://doi.org/10.9734/air/2017/32896 Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S., & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Computers and Electronics in Agriculture, 76(2), 131–147. https://doi.org/10.1016/j.compag.2011.01.015 Borja Padilla, R., Fiestas Ros De Ursinos, J. A., Durán Barrantes, M. M., & Luque González, M. (1991). Aerobic purification of condensed water from thermal concentration process of olive mill wastewater. Grasas y Aceites, 42(6), 422–427. https://doi.org/10.3989/gya.1991.v42.i6.1205 Botero, H., Alvarez, H., & Gómez, L. (2013). Estimación de Estado y Control de un Gasificador de Carb’on en Lecho Fluidizado Presurizado. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 10(3), 279–290. https://doi.org/10.1016/j.riai.2013.05.003 Cambero, C., Sowlati, T., & Pavel, M. (2016). Economic and life cycle environmental optimization of forest-based biorefinery supply chains for bioenergy and biofuel production. Chemical Engineering Research and Design, 107, 218–235. https://doi.org/10.1016/j.cherd.2015.10.040 Carlos E., G., David M., P., & Manfred, M. (1989). Model Predictive Control : Theory and Practice a Survey. Automatica, 25(3), 335–338. https://doi.org/10.1016/0005-1098(89)90002-2 Carvalho, A. P., & Malcata, F. X. (2005). Optimization of ω-3 fatty acid production by microalgae: Crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Marine Biotechnology, 7(4), 381–388. https://doi.org/10.1007/s10126-004-4047-4 Çengel, Yunus A., and M. A. B. (2015). Termodinámica. Mc Graw-Hill Interamericana. Chagas, M. F., Cavalett, O., Klein, B. C., Filho, R. M., & Bonomi, A. (2016). Life cycle assessment of technologies for greenhouse gas emissions reduction in sugarcane biorefineries. Chemical Engineering Transactions, 50, 421–426. https://doi.org/10.3303/CET1650071 Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015 Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J., & Chang, J. S. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62. https://doi.org/10.1016/j.biortech.2017.01.006 del Rio-Chanona, E. A., Zhang, D., & Vassiliadis, V. S. (2016). Model-based real-time optimisation of a fed-batch cyanobacterial hydrogen production process using economic model predictive control strategy. Chemical Engineering Science, 142, 289–298. https://doi.org/10.1016/j.ces.2015.11.043 DemirbaÅŸ, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42, 1357–1378. Duan, T. H., Lu, C. P., Xiong, S., Fu, Z. Bin, & Chen, Y. Z. (2016). Pyrolysis and gasification modelling of underground coal gasification and the optimisation of CO2 as a gasification agent. Fuel, 183, 557–567. https://doi.org/10.1016/j.fuel.2016.06.118 Estrada, E. M., Norena, L., Sarrazola, A., & Espinosa, J. (2018). MOSTRO: A multi-objective system for traffic optimization. 2017 IEEE 3rd Colombian Conference on Automatic Control, CCAC 2017 - Conference Proceedings, 2018-Janua, 1–6. https://doi.org/10.1109/CCAC.2017.8276381 Fózer, D., Volanti, M., Passarini, F., Varbanov, P. S., Klemeš, J. J., & Mizsey, P. (2020). Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification. Applied Energy, 280(March), 115923. https://doi.org/10.1016/j.apenergy.2020.115923 Frank P.. Incropera, & DeWitt, D. P. (1985). Solutions Manual to Accompany" Fundamentals of Heat and Mass Transfer" and" Introduction to Heat Transfert". J. Wiley & sons. Fundacion Energia. (2007). Tecnologías de captura y almacenamiento de CO2. Tecnologías de Captura y Almacenamiento de CO2, 24. Galanti, L., & Massardo, A. F. (2011). Micro gas turbine thermodynamic and economic analysis up to 500 kWe size. Applied Energy, 88(12), 4795–4802. https://doi.org/10.1016/j.apenergy.2011.06.022 Gómez-Pérez, C. A., Espinosa Oviedo, J. J., Montenegro Ruiz, L. C., & van Boxtel, A. J. B. (2017). Twisted tubular photobioreactor fluid dynamics evaluation for energy consumption minimization. Algal Research, 27. https://doi.org/10.1016/j.algal.2017.08.019 Gómez Pérez, Cesar A. (2018). Photobioreactor optimization for microalgae culture. Universidad Nacional de Colombia Sede Medellín, Facultad de Minas- Escuela de Procesos y Energía. https://repositorio.unal.edu.co/handle/unal/62174 Grima, E. M., Camacho, F. G., Pérez, J. A. S., Fernéndez, F. G. A., & Sevilla, J. M. F. (1997). Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme and Microbial Technology, 21(5), 375–381. https://doi.org/10.1016/S0141-0229(97)00012-4 He, L., Yang, W., Guan, C., Yan, H., & Fu, P. (2017). Microalgal cultivation and hydrodynamic characterization using a novel tubular photobioreactor with helical blade rotors. Bioprocess and Biosystems Engineering, 40(12), 1743–1751. https://doi.org/10.1007/s00449-017-1829-4 Henao, C. A. (2006). Síntesis y Optimización de Procesos Químicos. Universidad Pontificia Bolivariana, sede Medellín. Hossein Sahraei, M., & Ricardez-Sandoval, L. A. (2014). Controllability and optimal scheduling of a CO2 capture plant using model predictive control. International Journal of Greenhouse Gas Control, 30, 58–71. https://doi.org/10.1016/j.ijggc.2014.08.017 Huang, J., Kang, S., Wan, M., Li, Y., Qu, X., Feng, F., Wang, J., Wang, W., Shen, G., & Li, W. (2014). Numerical and experimental study on the performance of flat-plate photobioreactors with different inner structures for microalgae cultivation. Journal of Applied Phycology, 27(1), 49–58. https://doi.org/10.1007/s10811-014-0281-y Juneja, A., & Murthy, G. S. (2018). Model predictive control coupled with economic and environmental constraints for optimum algal production. Bioresource Technology, 250(September 2017), 556–563. https://doi.org/10.1016/j.biortech.2017.11.047 Kumabe, K., Fujimoto, S., Yanagida, T., Ogata, M., Fukuda, T., Yabe, A., & Minowa, T. (2008). Environmental and economic analysis of methanol production process via biomass gasification. Fuel, 87(7), 1422–1427. https://doi.org/10.1016/j.fuel.2007.06.008 Lehr, F., & Posten, C. (2009). Closed photo-bioreactors as tools for biofuel production. Current Opinion in Biotechnology, 20(3), 280–285. https://doi.org/10.1016/j.copbio.2009.04.004 Limon, D., Alvarado, I., Alamo, T., & Camacho, E. F. (2005). MPC for tracking of piece-wise constant references for constrained linear systems. IFAC Proceedings Volumes (IFAC-PapersOnline), 38(1), 135–140. https://doi.org/10.1016/j.automatica.2008.01.023 Luo, H. P., & Al-Dahhan, M. H. (2004). Analyzing and Modeling of Photobioreactors by Combining First Principles of Physiology and Hydrodynamics. Biotechnology and Bioengineering, 85(4), 382–393. https://doi.org/10.1002/bit.10831 Mongkhonsiri, G., Charoensuppanimit, P., Anantpinijwatna, A., Gani, R., & Assabumrungrat, S. (2020). Process development of sustainable biorefinery system integrated into the existing pulping process. Journal of Cleaner Production, 255. https://doi.org/10.1016/j.jclepro.2020.120278 Pires, J. C. M., Alvim-Ferraz, M. C. M., & Martins, F. G. (2017). Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renewable and Sustainable Energy Reviews, 79(November 2016), 248–254. https://doi.org/10.1016/j.rser.2017.05.064 Prunescu, R. M., Blanke, M., Jakobsen, J. G., & Sin, G. (2017). Model-based plantwide optimization of large scale lignocellulosic bioethanol plants. Biochemical Engineering Journal, 124, 13–25. https://doi.org/10.1016/j.bej.2017.04.008 Rakesh, S., & Karthikeyan, S. (1999). Economic feasibility of microalgal biodiesel production via indigenously designed tubular photobioreactor. Journal of FARM SCIENCES, 32(2). Rentizelas, A., Karellas, S., Kakaras, E., & Tatsiopoulos, I. (2009). Comparative techno-economic analysis of ORC and gasification for bioenergy applications. Energy Conversion and Management, 50(3), 674–681. https://doi.org/10.1016/j.enconman.2008.10.008 Romeo, L., & Bolea, I. (2015). Captura de CO 2 en procesos postcombustión. Boletín Del Grupo Español Del Carbón, 35, 8–11. Sadollah, A., Eskandar, H., Bahreininejad, A., & Kim, J. H. (2015). Water cycle algorithm for solving multi-objective optimization problems. Soft Computing, 19(9), 2587–2603. https://doi.org/10.1007/s00500-014-1424-4 Salguero-Rodríguez, Y., Gómez-Perez, C. A., & Oviedo, J. J. E. (2018). Tubular photobioreactor model for light - Dark cycles control. 2017 IEEE 3rd Colombian Conference on Automatic Control, CCAC 2017 - Conference Proceedings, 2018-Janua, 1–6. https://doi.org/10.1109/CCAC.2017.8276448 Shabangu, S., Woolf, D., Fisher, E. M., Angenent, L. T., & Lehmann, J. (2014). Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel, 117(PART A), 742–748. https://doi.org/10.1016/j.fuel.2013.08.053 Sharma, S., Celebi, A. D., & Maréchal, F. (2017). Robust multi-objective optimization of gasifier and solid oxide fuel cell plant for electricity production using wood. Energy, 137, 811–822. https://doi.org/10.1016/j.energy.2017.04.146 Taal, M., Bulatov, I., Klemeš, J., & Stehlík, P. (2003). Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Applied Thermal Engineering, 23(14), 1819–1835. https://doi.org/10.1016/S1359-4311(03)00136-4 Tebbani, S., Lopes, F., Filali, R., Dumur, D., & Pareau, D. (2014). Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor. Bioprocess and Biosystems Engineering, 37(1), 83–97. https://doi.org/10.1007/s00449-013-0928-0 Thomassen, G., Egiguren Vila, U., Van Dael, M., Lemmens, B., & Van Passel, S. (2016). A techno-economic assessment of an algal-based biorefinery. Clean Technologies and Environmental Policy, 18(6), 1849–1862. https://doi.org/10.1007/s10098-016-1159-2 Thomassen, G., Van Dael, M., & Van Passel, S. (2018). The potential of microalgae biorefineries in Belgium and India: An environmental techno-economic assessment. Bioresource Technology, 267(July), 271–280. https://doi.org/10.1016/j.biortech.2018.07.037 Tian, H., Lu, Q., Gopaluni, R. B., Zavala, V. M., & Olson, J. A. (2019). An economic model predictive control framework for mechanical pulping processes. Control Engineering Practice, 85(August 2018), 100–109. https://doi.org/10.1016/j.conengprac.2019.01.008Valencia Arroyave, F. (2012). Game theory based distributed model predictive control: an approach to large-scale systems control. Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Mecatrónica, 1-128. https://repositorio.unal.edu.co/handle/unal/11043 Wu, L., Zhou, W., Cheng, H., Su, Y., & Li, X. (2007). The study of structure optimization of blast furnace cast steel cooling stave based on heat transfer analysis. Applied Mathematical Modelling, 31(7), 1249–1262. https://doi.org/10.1016/j.apm.2006.04.016 Xiang, Y., Cai, L., Guan, Y., Liu, W., He, T., & Li, J. (2019). Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures. Energy, 179, 571–580. https://doi.org/10.1016/j.energy.2019.05.011 Zeng, J., & Liu, J. (2015). Economic model predictive control of wastewater treatment processes. Industrial and Engineering Chemistry Research, 54(21), 5710–5721. https://doi.org/10.1021/ie504995n Zhang, W., Gao, J. T., Zhang, Y. C., & Qin, S. (2006). Optimization of conditions for cell cultivation of Porphyra haitanensis conchocelis in a bubble-column bioreactor. World Journal of Microbiology and Biotechnology, 22(7), 655–660. https://doi.org/10.1007/s11274-005-9050-z Zhao, H., Shen, J., Li, Y., & Bentsman, J. (2017). A Stable Multi-Objective Economic MPC Scheme for Boiler-Turbine Units. IFAC-PapersOnLine, 50(1), 11070–11075. https://doi.org/10.1016/j.ifacol.2017.08.2489EspecializadaEnergética 2030ORIGINAL1088322724.2021.pdf1088322724.2021.pdfTesis Maestría en Ingeniería - Automatización industrialapplication/pdf3027630https://repositorio.unal.edu.co/bitstream/unal/79806/2/1088322724.2021.pdfc7863131215ac03b32eb03957f3313aaMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79806/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79806/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1088322724.2021.pdf.jpg1088322724.2021.pdf.jpgGenerated Thumbnailimage/jpeg2397https://repositorio.unal.edu.co/bitstream/unal/79806/4/1088322724.2021.pdf.jpg600d1c87785d70515df466d2be3ced55MD54unal/79806oai:repositorio.unal.edu.co:unal/798062024-07-24 23:41:45.45Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==