Clasificación de patrones usando AMNFIS
El presente trabajo introduce un enfoque novedoso para resolver problemas de clasificación no lineales usando un sistema de inferencia neuro-difuso adaptativo multidimensional (AMNFIS por sus siglas en inglés) desarrollado inicialmente el contexto de control de procesos, y posteriormente para el pro...
- Autores:
-
Valencia Gómez, Deyber Arley
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/69599
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/69599
http://bdigital.unal.edu.co/71577/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
inteligencia artificial
redes neuronales
clasificación de patrones
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | El presente trabajo introduce un enfoque novedoso para resolver problemas de clasificación no lineales usando un sistema de inferencia neuro-difuso adaptativo multidimensional (AMNFIS por sus siglas en inglés) desarrollado inicialmente el contexto de control de procesos, y posteriormente para el pronóstico de series de tiempo no lineales. En relación a otros sistemas neuro difusos y las versiones previas de AMNFIS, el modelo presentado en este trabajo ha sido modificado para resolver problemas de clasificación binaria. El objetivo de este trabajo es determinar si el modelo AMNFIS puede ser superior a otros tipos de redes neuronales para resolver problemas de clasificación. Para ello, se evaluaron tres problemas no lineales comúnmente usados para comparación de modelos. Los resultados obtenidos para AMNFIS son comparados contra los resultados obtenidos usando diferentes tipos de redes neuronales artificiales. La evidencia empírica indica que AMNFIS es el segundo mejor modelo considerado para el primer problema mientras que para los otros dos problemas restantes, es el modelo más preciso. |
---|