Online Kernel Matrix Factorization
Abstract. The problem of effciently applying a kernel-induced feature space factorization to a large-scale data sets is addressed in this thesis. Kernel matrix factorization methods have showed good performances solving machine learning and data analysis problems. However, the present growth of the...
- Autores:
-
Páez Torres, Andrés Esteban
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/55377
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/55377
http://bdigital.unal.edu.co/50780/
- Palabra clave:
- 51 Matemáticas / Mathematics
62 Ingeniería y operaciones afines / Engineering
Kernel matrix factorization
Large-scale machine learning
Online kernel learning
Factorización de matrices de kernel
Aprendizaje de máquina a gran escala
Aprendizaje de kernel en línea
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_56816ddb4c2aafd0726e9d5169bd4993 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/55377 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio AugustoPáez Torres, Andrés Esteban82a1e518-8381-4f6f-95ca-ef342639bb593002019-07-02T11:18:28Z2019-07-02T11:18:28Z2015https://repositorio.unal.edu.co/handle/unal/55377http://bdigital.unal.edu.co/50780/Abstract. The problem of effciently applying a kernel-induced feature space factorization to a large-scale data sets is addressed in this thesis. Kernel matrix factorization methods have showed good performances solving machine learning and data analysis problems. However, the present growth of the amount of information available implies the problems can not be solved with conventional methods, due their high time and memory requirements. To solve this problem, a new kernel matrix factorization method is proposed called online kernel matrix factorization (OKMF). This method overcomes the time and memory limitations with two strategies. The first is imposing a budget restriction, i.e., restricting the number of samples needed to represent the feature space base. The second is using stochastic gradient descent to compute the factorization, allowing OKMF to scale linearly in time to large-scale data sets. Experimental results show OKMF is competitive with other kernel methods and is capable to scale to a large-scale data sets.El problema de aplicar una factorización de un espacio de características inducido por kernel es abordado en esta tesis. Los métodos de factorización de kernel han mostrado buen rendimiento solucionando problemas de aprendizaje de máquina y problemas de análisis de datos. Sin embargo, el presente crecimiento de la cantidad de información disponible implica que los problemas no pueden ser resueltos con métodos convencionales, debido a sus grandes requerimientos de tiempo y memoria. Con el fin de resolver este problema, un nuevo método de factorización de kernel es propuesto, llamado online kernel matrix factorization (OKMF). Este método solventa los problemas de tiempo y memoria usando dos estrategias. La primera es imponer una restricción de presupuesto, esto es, restringir el número de ejemplos necesarios para representar la base del espacio de características. La segunda es usar gradiente descendente estocástico para calcular la factorización, permitiendo a OKMF escalar linealmente en tiempo a grandes conjuntos de datos. Resultados experimentales muestran que OKMF es competitivo con otros métodos de kernel y es capaz de escalar a grandes conjuntos de datos.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialPáez Torres, Andrés Esteban (2015) Online Kernel Matrix Factorization. Maestría thesis, Universidad Nacional de Colombia- Bogotá.51 Matemáticas / Mathematics62 Ingeniería y operaciones afines / EngineeringKernel matrix factorizationLarge-scale machine learningOnline kernel learningFactorización de matrices de kernelAprendizaje de máquina a gran escalaAprendizaje de kernel en líneaOnline Kernel Matrix FactorizationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1020751189.2015.pdfapplication/pdf1053118https://repositorio.unal.edu.co/bitstream/unal/55377/1/1020751189.2015.pdf5fcd7d4d6ed11a4cd96fa121a7b51bf1MD51THUMBNAIL1020751189.2015.pdf.jpg1020751189.2015.pdf.jpgGenerated Thumbnailimage/jpeg3980https://repositorio.unal.edu.co/bitstream/unal/55377/2/1020751189.2015.pdf.jpgd4850b3c1a1993e1e9ceb26c40e7ba7dMD52unal/55377oai:repositorio.unal.edu.co:unal/553772024-03-17 23:07:56.519Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Online Kernel Matrix Factorization |
title |
Online Kernel Matrix Factorization |
spellingShingle |
Online Kernel Matrix Factorization 51 Matemáticas / Mathematics 62 Ingeniería y operaciones afines / Engineering Kernel matrix factorization Large-scale machine learning Online kernel learning Factorización de matrices de kernel Aprendizaje de máquina a gran escala Aprendizaje de kernel en línea |
title_short |
Online Kernel Matrix Factorization |
title_full |
Online Kernel Matrix Factorization |
title_fullStr |
Online Kernel Matrix Factorization |
title_full_unstemmed |
Online Kernel Matrix Factorization |
title_sort |
Online Kernel Matrix Factorization |
dc.creator.fl_str_mv |
Páez Torres, Andrés Esteban |
dc.contributor.author.spa.fl_str_mv |
Páez Torres, Andrés Esteban |
dc.contributor.spa.fl_str_mv |
González Osorio, Fabio Augusto |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 62 Ingeniería y operaciones afines / Engineering |
topic |
51 Matemáticas / Mathematics 62 Ingeniería y operaciones afines / Engineering Kernel matrix factorization Large-scale machine learning Online kernel learning Factorización de matrices de kernel Aprendizaje de máquina a gran escala Aprendizaje de kernel en línea |
dc.subject.proposal.spa.fl_str_mv |
Kernel matrix factorization Large-scale machine learning Online kernel learning Factorización de matrices de kernel Aprendizaje de máquina a gran escala Aprendizaje de kernel en línea |
description |
Abstract. The problem of effciently applying a kernel-induced feature space factorization to a large-scale data sets is addressed in this thesis. Kernel matrix factorization methods have showed good performances solving machine learning and data analysis problems. However, the present growth of the amount of information available implies the problems can not be solved with conventional methods, due their high time and memory requirements. To solve this problem, a new kernel matrix factorization method is proposed called online kernel matrix factorization (OKMF). This method overcomes the time and memory limitations with two strategies. The first is imposing a budget restriction, i.e., restricting the number of samples needed to represent the feature space base. The second is using stochastic gradient descent to compute the factorization, allowing OKMF to scale linearly in time to large-scale data sets. Experimental results show OKMF is competitive with other kernel methods and is capable to scale to a large-scale data sets. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T11:18:28Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T11:18:28Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/55377 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/50780/ |
url |
https://repositorio.unal.edu.co/handle/unal/55377 http://bdigital.unal.edu.co/50780/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Departamento de Ingeniería de Sistemas e Industrial |
dc.relation.references.spa.fl_str_mv |
Páez Torres, Andrés Esteban (2015) Online Kernel Matrix Factorization. Maestría thesis, Universidad Nacional de Colombia- Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/55377/1/1020751189.2015.pdf https://repositorio.unal.edu.co/bitstream/unal/55377/2/1020751189.2015.pdf.jpg |
bitstream.checksum.fl_str_mv |
5fcd7d4d6ed11a4cd96fa121a7b51bf1 d4850b3c1a1993e1e9ceb26c40e7ba7d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089307448672256 |