Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja

Ilustraciones

Autores:
Fandiño Toro, Hermes Alexander
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79684
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79684
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
620 - Ingeniería y operaciones afines
Termografía
Esfuerzo térmico
Fotoelasticidad
Termografía infrarroja
Termoelasticidad
Campo de esfuerzos
Procesamiento digital de imágenes
Desplazamiento de franjas
Photoelasticity
Infrared thermography
Stress field
Digital image processing
Fringe pattern displacement
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_560d45d7b55a08d9ccf3140249098fca
oai_identifier_str oai:repositorio.unal.edu.co:unal/79684
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja
dc.title.translated.eng.fl_str_mv Analysis oriented towards visual inspection based on photoelasticity and infrared thermography
title Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja
spellingShingle Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
620 - Ingeniería y operaciones afines
Termografía
Esfuerzo térmico
Fotoelasticidad
Termografía infrarroja
Termoelasticidad
Campo de esfuerzos
Procesamiento digital de imágenes
Desplazamiento de franjas
Photoelasticity
Infrared thermography
Stress field
Digital image processing
Fringe pattern displacement
title_short Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja
title_full Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja
title_fullStr Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja
title_full_unstemmed Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja
title_sort Análisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarroja
dc.creator.fl_str_mv Fandiño Toro, Hermes Alexander
dc.contributor.advisor.none.fl_str_mv Branch Bedoya, John William
Restrepo Martinez, Alejandro
dc.contributor.author.none.fl_str_mv Fandiño Toro, Hermes Alexander
dc.contributor.researchgroup.spa.fl_str_mv GIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial
GPIMA: Grupo de Promoción e Investigación en Mecánica Aplicada
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
620 - Ingeniería y operaciones afines
topic 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
620 - Ingeniería y operaciones afines
Termografía
Esfuerzo térmico
Fotoelasticidad
Termografía infrarroja
Termoelasticidad
Campo de esfuerzos
Procesamiento digital de imágenes
Desplazamiento de franjas
Photoelasticity
Infrared thermography
Stress field
Digital image processing
Fringe pattern displacement
dc.subject.lemb.none.fl_str_mv Termografía
Esfuerzo térmico
dc.subject.proposal.spa.fl_str_mv Fotoelasticidad
Termografía infrarroja
Termoelasticidad
Campo de esfuerzos
Procesamiento digital de imágenes
Desplazamiento de franjas
dc.subject.proposal.eng.fl_str_mv Photoelasticity
Infrared thermography
Stress field
Digital image processing
Fringe pattern displacement
description Ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-23T14:13:09Z
dc.date.available.none.fl_str_mv 2021-06-23T14:13:09Z
dc.date.issued.none.fl_str_mv 2021-06-21
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79684
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79684
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv J. C. Briñez, A. R. Martı́nez, and J. W. Branch, “Computational hybrid phase shifting technique applied to digital photoelasticity,” Optik, vol. 157, pp. 287–297, 2018.
R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Transactions on Consumer electronics, vol. 51, no. 4, pp. 1260–1267, 2005.
S. Yamanaka, “Solid state color camera,” Oct. 18 1977. US Patent 4,054,906.
E. Rodriguez and F. Filisko, “Temperature changes in poly (methyl methacrylate) and high-density polyethylene during rapid compressive deformation,” Polymer Engineering & Science, vol. 26, no. 15, pp. 1060–1065, 1986.
R. Vergara-Puello, H. A. Fandiño-Toro, and A. Restrepo-Martı́nez, “Stresses analysis through digital photoelasticity and infrared thermography in an epoxy sample affected by cyclic loads: A cost-effective proposal,” in Optics and Photonics for Information Processing XIV, vol. 11509, p. 115090B, International Society for Optics and Photonics, 2020.
D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” JOSA A, vol. 11, no. 1, pp. 107–117, 1994.
M. Ekman and A. Nurse, “Absolute determination of the isochromatic parameter by load-stepping photoelasticity,” Experimental mechanics, vol. 38, no. 3, pp. 189–195, 1998.
E. Patterson and Z. Wang, “Towards full field automated photoelastic analysis of complex components,” Strain, vol. 27, no. 2, pp. 49–53, 1991.
M. Rahman, N. Schott, and L. K. Sadhu, “Glass transition of abs in 3d printing,” in COMSOL Conference, Boston, MA, 2016.
J. Gough Phil. Mem., 2nd series, vol. 1, p. 288.
M. H. Belgen, “Structural stress measurements with an infrared radiometer(structural stress measurements in terms of induced temperature increments, using ir radiometer),” ISA transactions, vol. 6, pp. 49–53, 1967.
A. Wong, N. Rajic, and Q. Nguyen, “50th anniversary article: Seeing stresses through the thermoelastic lens—a retrospective and prospective from an australian viewpoint,” Strain, vol. 51, no. 1, pp. 1–15, 2015.
C. Middleton, A. Gaio, R. Greene, and E. Patterson, “Towards automated tracking of initiation and propagation of cracks in aluminium alloy coupons using thermoelastic stress analysis,” Journal of Nondestructive Evaluation, vol. 38, no. 1, p. 18, 2019.
A. Garinei and R. Marsili, “Thermoelastic stress analysis of the contact between a flat plate and a cylinder,” Measurement, vol. 52, pp. 102–110, 2014.
I. Ubero-Martı́nez, L. Rodrı́guez-Tembleque, J. Cifuentes-Rodrı́guez, and J. Vallepuga-Espinosa, “Non-linear interface thermal conditions in three-dimensional thermoelastic contact problems,” Computers & Structures, vol. 241, p. 106354, 2020.
G. Allevi, M. Cibeca, R. Fioretti, R. Marsili, R. Montanini, and G. Rossi, “Qualification of additively manufactured aerospace brackets: A comparison between thermoelastic stress analysis and theoretical results,” Measurement, vol. 126, pp. 252–258, 2018.
F. Di Carolo, R. De Finis, D. Palumbo, and U. Galietti, “A thermoelastic stress analysis general model: Study of the influence of biaxial residual stress on aluminium and titanium,” Metals, vol. 9, no. 6, p. 671, 2019.
Z. S. Hosseini, M. Dadfarnia, B. P. Somerday, P. Sofronis, and R. O. Ritchie, “On the theoretical modeling of fatigue crack growth,” Journal of the Mechanics and Physics of Solids, vol. 121, pp. 341–362, 2018.
A. Vivekanandan and K. Ramesh, “Study of crack interaction effects under thermal loading by digital photoelasticity and finite elements,” Experimental Mechanics, vol. 60, no. 3, pp. 295–316, 2020.
R. Greene and E. Patterson, “An integrated approach to the separation of principal surface stresses using combined thermo-photo-elasticity,” Experimental mechanics, vol. 46, no. 1, pp. 19–29, 2006.
T.-W. Lin, L. Rowe, A. Kaczkowski, G. Horn, and H. T. Johnson, “Polarization-resolved imaging for both photoelastic and photoluminescence characterization of photovoltaic silicon wafers,” Experimental Mechanics, vol. 56, no. 8, pp. 1339–1350, 2016.
I. Matyash, I. Minailova, and B. Serdega, “Research of mechanical stresses in irradiated tin-doped silicon crystals,” Materials Science in Semiconductor Processing, vol. 71, pp. 263–267, 2017.
O. Oliinyk, B. Tsyganok, B. Serdega, and I. Matiash, “Investigation of nonstationary thermo-photo-elastic effect using the polarization modulation of radiation,” in Proceedings of the 2011 34th International Spring Seminar on Electronics Technology (ISSE), pp. 294–298, IEEE, 2011.
S. Mrzljak, M. Trautmann, G. Wagner, and F. Walther, “Influence of aluminum surface treatment on tensile and fatigue behavior of thermoplastic-based hybrid laminates,” Materials, vol. 13, no. 14, p. 3080, 2020.
F. Furgiuele, P. Magaro, C. Maletta, and E. Sgambitterra, “Functional and structural fatigue of pseudoelastic niti: Global vs local thermo-mechanical response,” Shap. Mem. Superelasticity, vol. 6, pp. 242–255, 2020.
J. Freire, V. Paiva, G. Gonzáles, R. Vieira, J. Diniz, A. Ribeiro, and A. Almeida, “Fatigue monitoring of a dented pipeline specimen using infrared thermography, dic and fiber optic strain gages,” in Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3, pp. 57–66, Springer, 2020.
K. E. Donne, R. D. Thomas, C. Davies, and G. Calvert, “Photoelastic stress and thermographic measurements of automotive windscreen defects generated by projectile impact,” Quality and Reliability Engineering International, vol. 24, no. 8, pp. 897–902, 2008.
E. Umezaki and M. Abe, “Development of system for simultaneous measurement of stress and temperature,” in Key Engineering Materials, vol. 326, pp. 163–166, Trans Tech Publ, 2006.
O. Janssens, M. Loccufier, and S. Van Hoecke, “Thermal imaging and vibration-based multisensor fault detection for rotating machinery,” IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 434–444, 2018.
O. Janssens, M. Loccufier, R. Van de Walle, and S. Van Hoecke, “Data-driven imbalance and hard particle detection in rotating machinery using infrared thermal imaging,” Infrared Physics & Technology, vol. 82, pp. 28–39, 2017.
G. Everett, “Comparison between the thermoelastic method and other experimental techniques for stress measurement,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, vol. 1084, pp. 54–58, International Society for Optics and Photonics, 1989.
B. Foust and R. Rowlands, “Thermoelastic determination of individual stresses in a diametrally loaded disk,” Strain, vol. 47, no. 2, pp. 146–153, 2011.
S.-J. Lin, D. Matthys, and R. Rowlands, “Separating stresses thermoelastically in a central circularly perforated plate using an airy stress function,” Strain, vol. 45, no. 6, pp. 516–526, 2009.
D. Palumbo and U. Galietti, “Data correction for thermoelastic stress analysis on titanium components,” Experimental Mechanics, vol. 56, no. 3, pp. 451–462, 2016.
J. Thatcher, D. Crump, C. Devivier, P. Bailey, and J. Dulieu-Barton, “Low cost infrared thermography for automated crack monitoring in fatigue testing,” Optics and Lasers in Engineering, vol. 126, p. 105914, 2020.
L. H. Groom and A. G. Zink, “Techniques in experimental mechanics applicable to forest products research,” Gen. Tech. Rep. SO-125. New Orleans, LA: US Dept of Agriculture, Forest Service, Southern Forest Experiment Station. 45 p., vol. 125, 1994.
N. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quantitative InfraRed Thermography Journal, vol. 11, no. 2, pp. 207–221, 2014.
J. Freire, R. Waugh, R. Fruehmann, and J. Dulieu-Barton, “Using thermoelastic stress analysis to detect damaged and hot spot areas in structural components,” J. Mech. Eng. Autom, vol. 5, pp. 623–634, 2015.
G. Pitarresi, R. Cappello, and G. Catalanotti, “Quantitative thermoelastic stress analysis by means of low-cost setups,” Optics and Lasers in Engineering, vol. 134, p. 106158, 2020.
M. Weihrauch, C. Middleton, R. Greene, and E. Patterson, “Low-cost thermoelastic stress analysis,” in Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, Volume 6, pp. 15–19, Springer, 2020.
W. Wang, R. Fruehmann, and J. Dulieu-Barton, “Application of digital image correlation to address complex motions in thermoelastic stress analysis,” Strain, vol. 51, no. 5, pp. 405–418, 2015.
K. Ramesh and S. Sasikumar, “Digital photoelasticity: Recent developments and diverse applications,” Optics and Lasers in Engineering, p. 106186, 2020.
A. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of rgb photoelasticity,” Optics and Lasers in Engineering, vol. 68, pp. 58–73, 2015.
M. Scafidi, G. Pitarresi, A. Toscano, G. Petrucci, S. Alessi, and A. Ajovalasit, “Review of photoelastic image analysis applied to structural birefringent materials: glass and polymers,” Optical Engineering, vol. 54, no. 8, p. 081206, 2015.
A. Baldi, F. Bertolino, and F. Ginesu, “A temporal phase unwrapping algorithm for photoelastic stress analysis,” Optics and lasers in engineering, vol. 45, no. 5, pp. 612–617, 2007.
J.-T. Wu and M.-J. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Optical Engineering, vol. 54, no. 8, p. 081207, 2015.
S. Xia and M. Mello, “Phase-multiplied photoelastic and series interferometer arrangement for full-field stress measurement in single crystals,” Experimental mechanics, vol. 51, no. 4, pp. 653–666, 2011.
Y. Ju, Z. Zheng, H. Xie, J. Lu, L. Wang, and K. He, “Experimental visualisation methods for three-dimensional stress fields of porous solids,” Experimental Techniques, vol. 41, no. 4, pp. 331–344, 2017.
M. S.-B. Fernández, “Data acquisition techniques in photoelasticity,” Experimental Techniques, vol. 35, no. 6, pp. 71–79, 2011.
D. F. Woolard and M. K. Hinders, “Coatings for combined thermoelastic and photoelastic stress measurement,” in Nondestructive Evaluation of Bridges and Highways III, vol. 3587, pp. 88–96, International Society for Optics and Photonics, 1999.
D. Woolard, M. Hinders, and C. Welch, “Combined thermoelastic and photoelastic full-field stress measurement,” in Review of Progress in Quantitative Nondestructive Evaluation, pp. 1431–1438, Springer, 1999.
R. Greene, A. Clarke, S. Turner, and E. Patterson, “Some applications of combined thermoelastic-photoelastic stress analysis,” The Journal of Strain Analysis for Engineering Design, vol. 42, no. 3, pp. 173–182, 2007.
J. C. Briñez-de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Computational analysis of bayer colour filter arrays and demosaicking algorithms in digital photoelasticity,” Optics and Lasers in Engineering, vol. 122, pp. 195–208, 2019.
J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Fast fourier transform as color variation descriptor for imaging the stress field from photoelasticity videos,” in Imaging Systems and Applications, pp. JW2A–46, Optical Society of America, 2019.
H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-bedoya, “Texture analysis for evaluating the bayer and demosaicking effects in photoelasticity images,” in Computational Optical Sensing and Imaging, pp. JW2A–50, Optical Society of America, 2019.
H. Fandiño-Toro, J. Briñez-De León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis,” Optical Engineering, vol. 57, no. 9, p. 093105, 2018. 13, 56
M. Hunter, B. Godde, and B. Olk, “Effects of absolute luminance and luminance contrast on visual search in low mesopic environments,” Attention, Perception, & Psychophysics, vol. 80, no. 5, pp. 1265–1277, 2018.
F. Bianconi, A. Álvarez-Larrán, and A. Fernández, “Discrimination between tumour epithelium and stroma via perception-based features,” Neurocomputing, vol. 154, pp. 119–126, 2015.
H. Aben and C. Guillemet, Photoelasticity of glass. Springer Science & Business Media, 2012.
D. Mahler and F. Peyton, “Photoelasticity as a research technique for analyzing stresses in dental structures,” Journal of dental research, vol. 34, no. 6, pp. 831–838, 1955.
S. M. Yang, S. Hong, and S. Y. Kim, “Wavelength dependent in-plane birefringence of transparent flexible films determined by using transmission ellipsometry,” Japanese Journal of Applied Physics, vol. 57, no. 5S, p. 05GB03, 2018.
K. E. Daniels, J. E. Kollmer, and J. G. Puckett, “Photoelastic force measurements in granular materials,” Review of Scientific Instruments, vol. 88, no. 5, p. 051808, 2017.
P. S. Theocaris and E. E. Gdoutos, Matrix theory of photoelasticity, vol. 11. Springer, 2013.
A. Sarma, S. Pillai, G. Subramanian, and T. Varadan, “Computerized image processing for whole-field determination of isoclinics and isochromatics,” Experimental Mechanics, vol. 32, no. 1, pp. 24–29, 1992.
W. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik - International Journal for Light and Electron Optics, vol. 126, no. 19, pp. 1981–1985, 2015.
M. Hariprasad, K. Ramesh, and B. Prabhune, “Evaluation of conformal and non-conformal contact parameters using digital photoelasticity,” Experimental Mechanics, vol. 58, no. 8, pp. 1249–1263, 2018.
W. Samad and J. Considine, “Sensitivity analysis of hybrid thermoelastic techniques,” in Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9, pp. 29–36, Springer, 2017.
K. V. N. Surendra and K. Y. Simha, “Digital image analysis around isotropic points for photoelastic pattern recognition,” Optical Engineering, vol. 54, no. 8, p. 081209, 2015.
T. Kihara, “Measurement of applied stresses and residual stresses on a residual stress model by applying two different loads,” Experimental mechanics, vol. 51, no. 8, pp. 1275–1283, 2011.
M. Ayatollahi, M. Mirsayar, and M. Dehghany, “Experimental determination of stress field parameters in bi-material notches using photoelasticity,” Materials & Design, vol. 32, no. 10, pp. 4901–4908, 2011.
C. A. Magalhães, A. L. M. A. Magalhães, et al., “Computational methods of phase shifting to stress measurement with photoelasticity using plane polariscope,” Optik, vol. 130, pp. 213–226, 2017.
K. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Optical Engineering, vol. 54, no. 8, p. 081205, 2015.
Y. V. Tokovyy, K.-M. Hung, and C.-C. Ma, “Determination of stresses and displacements in a thin annular disk subjected to diametral compression,” Journal of Mathematical Sciences, vol. 165, no. 3, pp. 342–354, 2010.
X. P. Maldague, “Introduction to ndt by active infrared thermography,” Materials Evaluation, vol. 60, no. 9, pp. 1060–1073, 2002.
F. Di Carolo, L. Savino, D. Palumbo, A. Del Vecchio, U. Galietti, and M. De Cesare, “Standard thermography vs free emissivity dual color novel cira physics technique in the near-mid ir ranges: Studies for different emissivity class materials from low to high temperatures typical of aerospace re-entry,” International Journal of Thermal Sciences, vol. 147, p. 106123, 2020.
R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors, vol. 14, no. 7, pp. 12305–12348, 2014.
N. Rajic and D. Rowlands, “Thermoelastic stress analysis with a compact low-cost microbolometer system,” Quantitative infrared thermography journal, vol. 10, no. 2, pp. 135–158, 2013.
J. Dulieu-Barton and P. Stanley, “Development and applications of thermoelastic stress analysis,” The Journal of Strain Analysis for Engineering Design, vol. 33, no. 2, pp. 93–104, 1998.
X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: A systematic survey,” in Visual Communications and Image Processing 2008, vol. 6822, p. 68221J, International Society for Optics and Photonics, 2008.
H. S. Malvar, L.-w. He, and R. Cutler, “High-quality linear interpolation for demosaicing of bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. iii–485, IEEE, 2004.
J. Wu, M. Anisetti, W. Wu, E. Damiani, and G. Jeon, “Bayer demosaicking with polynomial interpolation,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5369–5382, 2016.
Z. Dengwen, S. Xiaoliu, and D. Weiming, “Colour demosaicking with directional filtering and weighting,” IET Image Processing, vol. 6, no. 8, pp. 1084–1092, 2012.
J. E. Adams Jr, “Interactions between color plane interpolation and other image processing functions in electronic photography,” in Cameras and Systems for Electronic Photography and Scientific Imaging, vol. 2416, pp. 144–151, International Society for Optics and Photonics, 1995.
B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE transactions on image processing, vol. 11, no. 9, pp. 997–1013, 2002.
Y. M. Lu, M. Karzand, and M. Vetterli, “Demosaicking by alternating projections: theory and fast one-step implementation,” IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2085–2098, 2010.
D. Ramji, C. A. Palagan, A. Nithya, A. Appathurai, and E. J. Alex, “Soft computing based color image demosaicing for medical image processing,” Multimedia Tools and Applications, vol. 79, no. 15, pp. 10047–10063, 2020.
A. Stojkovic, I. Shopovska, H. Luong, J. Aelterman, L. Jovanov, and W. Philips, “The effect of the color filter array layout choice on state-of-the-art demosaicing,” Sensors, vol. 19, no. 14, p. 3215, 2019.
C. Bonanomi, S. Balletti, M. Lecca, M. Anisetti, A. Rizzi, and E. Damiani, “I3d: a new dataset for testing denoising and demosaicing algorithms,” Multimedia Tools and Applications, vol. 79, no. 13, pp. 8599–8626, 2020.
A. Restrepo-Martinez and J. C. Briñez, “Dynamic color descriptor based frenet-serret to classify stress zones from pixel variations recorded in photoelasticity videos,” in Optics and Photonics for Information Processing XIII, vol. 11136, p. 111360G, International Society for Optics and Photonics, 2019.
H. Fandiño-Toro, J. de Briñez-de León, A. Restrepo-Martı́nez, and J. W. Bedoya, Branch-Bedoya, “Relevance analysis for texture descriptors in studies of dynamic photoelasticity,” in Laser Applications to Chemical, Security and Environmental Analysis, pp. JM4A–37, Optical Society of America, 2018.
H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja,” Visión electrónica, vol. 11, no. 1, pp. 89–98, 2017.
H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity,” in Applications of Digital Image Processing XL, vol. 10396, p. 103962D, International Society for Optics and Photonics, 2017.
Y. Caulier, K. P. Spinnler, T. M. Wittenberg, and S. Bourennane, “Specific features for the analysis of fringe images,” Optical Engineering, vol. 47, no. 5, p. 057201, 2008.
C. Yan, N. Sang, and T. Zhang, “Local entropy-based transition region extraction and thresholding,” Pattern Recognition Letters, vol. 24, no. 16, pp. 2935–2941, 2003.
N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
L. Goldstein, J. Thompson, J. Schroeder, and J. Slattery, “Stress-optic coefficients of znse,” Applied optics, vol. 14, no. 10, pp. 2432–2434, 1975.
J. Szczesniak, D. Cuddeback, and J. Corelli, “Stress-induced birefringence of solids transparent to 1-to 12-μm light,” Journal of Applied Physics, vol. 47, no. 12, pp. 5356–5359, 1976.
C. Chen, J. Szczesniak, and J. Corelli, “Infrared stress birefringence in kbr, kcl, lif, and znse,” Journal of Applied Physics, vol. 46, no. 1, pp. 303–309, 1975.
W. Jun and A. Asundi, “Strain contouring with gabor filters: filter bank design,” Applied optics, vol. 41, no. 34, pp. 7229 7236, 2002.
A. K. Asundi and J. Wang, “Strain contouring using gabor filters: principle and algorithm,” OptEn, vol. 41, pp. 1400–1405, 2002.
R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–621, 1973.
F. R. De Siqueira, W. R. Schwartz, and H. Pedrini, “Multi-scale gray level co-occurrence matrices for texture description,” Neurocomputing, vol. 120, pp. 336–345, 2013.
L. Nanni, A. Lumini, and S. Brahnam, “Survey on lbp based texture descriptors for image classification,” Expert Systems with Applications, vol. 39, no. 3, pp. 3634–3641, 2012.
F. Van Der Heijden, R. P. Duin, D. De Ridder, and D. M. Tax, Classification, parameter estimation and state estimation: an engineering approach using MATLAB. John Wiley & Sons, 2005.
T. Sakagami, S. Kubo, Y. Fujinami, and Y. Kojima, “Experimental stress separation technique using thermoelasticity and photoelasticity and its application to fracture mechanics,” JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 47, no. 3, pp. 298–304, 2004.
S. Barone and E. Patterson, “Full-field separation of principal stresses by combined thermo-and photoelasticity,” Experimental Mechanics, vol. 36, no. 4, pp. 318–324, 1996.
M. Solaguren-Beascoa Fernández, J. Alegre Calderón, P. Bravo Diez, and I. Cuesta Segura, “Stress-separation techniques in photoelasticity: a review,” The Journal of Strain Analysis for Engineering Design, vol. 45, no. 1, pp. 1–17, 2010.
S. Yoneyama and K. Sakaue, “Instantaneous phase-stepping photoelasticity and hybrid stress analysis for a curving crack under thermal load,” in Imaging Methods for Novel Materials and Challenging Applications, Volume 3, pp. 391–402, Springer, 2013.
Y. K. Godovsky, “Thermomechanics of glassy and crystalline polymers,” in Thermophysical Properties of Polymers, pp. 127–162, Springer, 1992.
F. Valiorgue, A. Brosse, P. Naisson, J. Rech, H. Hamdi, and J. M. Bergheau, “Emissivity calibration for temperatures measurement using thermography in the context of machining,” Applied Thermal Engineering, vol. 58, no. 1-2, pp. 321–326, 2013.
X. P. Maldague, Nondestructive evaluation of materials by infrared thermography. Springer Science & Business Media, 2012.
A. Rühl, S. Kolling, V. Mende, and B. Kiesewetter, “Computational design of a heated pmma window validated by infrared thermography,” Glass Structures & Engineering, vol. 1, no. 2, pp. 375–383, 2016.
J. Gu, S. C. Tam, Y. L. Lam, Q. Zheng, and X. Wei, “Laser-induced temperature-rise measurement by infrared imaging,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing V, vol. 3933, pp. 388–395, International Society for Optics and Photonics, 2000.
J. A. Quiroga and A. González-Cano, “Method of error analysis for phase-measuring algorithms applied to photoelasticity,” Applied optics, vol. 37, no. 20, pp. 4488–4495, 1998.
J. Briñez-De León, J. W. Branch-Bedoya, and A. Restrepo-Martı́nez, “Toward photoelastic sensors: a hybrid proposal for imaging the stress field through load stepping methods,” in OSA Imaging and Applied Optics Congress. (CTh3C.4), Optical Society of America, 2020.
A. E1933-14, “Standard practice for measuring and compensating for emissivity using infrared imaging radiometers,” 2018.
H. Fandiño-Toro, J. Rendón-Arango, J. Briñez-de León, and A. Restrepo-Martı́nez, “Thermal transient stepping: a powerful thermal-based approach for evaluating the stress field by using digital photoelasticity,” in Optics and Photonics for Information Processing XIV, vol. 11509, p. 1150909, International Society for Optics and Photonics, 2020.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 210 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79684/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79684/5/84451661.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79684/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79684/7/84451661.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
d7c208682d4d6f15817e69a76ca4b825
4460e5956bc1d1639be9ae6146a50347
b035ca7186bc506b0c7a15fa919d9f0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090054460506112
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Branch Bedoya, John William7e38ec86da58a9547c188086b39efee8600Restrepo Martinez, Alejandroc38fd71e89a4f975138c9d1a6f368978600Fandiño Toro, Hermes Alexander0ce7c35b931080bb87b65c981c239f76GIDIA: Grupo de Investigación y Desarrollo en Inteligencia ArtificialGPIMA: Grupo de Promoción e Investigación en Mecánica Aplicada2021-06-23T14:13:09Z2021-06-23T14:13:09Z2021-06-21https://repositorio.unal.edu.co/handle/unal/79684Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLa fotoelasticidad es una técnica de inspección visual para determinar el campo de esfuerzos de un objeto bajo carga. A pesar de que permite análisis no invasivos, no destructivos y de campo completo, el desempeño de los estudios de fotoelasticidad depende de múltiples aspectos experimentales. Un aspecto clave es la generación de un conjunto de imágenes con patrones de franja, ya que el campo de esfuerzos se obtiene luego de procesar este conjunto de imágenes. Para que sea posible la evaluación del campo de esfuerzos, estos patrones de franja deben exhibir cierto grado de desplazamiento entre ellos, lo cual se logra modificando el estado de esfuerzos de la pieza bajo inspección. En esta tesis se evalúa la concentración de esfuerzos de modelos birrefringentes sometidos a carga mecánicas y térmicas. Esta evaluación se hace analizando cambios en las concentración de esfuerzos, al modificar la fuente de iluminación del polariscopio empleado; y mediante la estimulación térmica de los modelos birrefringentes bajo carga. Como resultado de analizar las interacciones entre desplazamientos de franja y temperatura, se logran tres estrategias para integrar fotoelasticidad y termografía infrarroja. Los resultados de los análisis efectuados en esta tesis son: (1) teóricamente es posible extender el análisis fotoelástico a espectro electromagnético infrarrojo, lo cual sería útil para tratar algunos problemas de sobremodulación que pueden ocurrir en el espectro visible; (2) se puede utilizar un único experimento de aplicación de carga cíclica, para determinar simultáneamente los campos de esfuerzos y de temperatura de un modelo birrefringente bajo carga; (3) se pueden integrar la fotoelasticidad y la termografía infrarroja, para determinar campos de esfuerzos de muestras birrefringentes bajo carga, incluso en aplicaciones estáticas. En este último caso, la termografía es útil para determinar la magnitud del estímulo térmico, que a su vez permita determinar el campo de esfuerzos de la muestra inspeccionada. (Tomado de la fuente)Digital photoelasticity is an imaging technique for visualizing the stress field of loaded objects. Despite their advantages over other techniques for stress analysis, photoelasticity-based studies are non-trivial to develop and, their effectiveness depends on several theoretical and experimental aspects, one being the generation of a proper set of images with fringe patterns displacements. This, because the processing of these images produces the required stress field. In this thesis, the fringe displacements at the surface of a loaded sample are modified by a thermal stimulation. After analyzing the interactions between fringe patterns displacements and temperature, three strategies to integrate photoelasticity and infrared thermography are proposed. The results of the analyzes carried out are: (1) theoretically it is possible to extend the photoelastic analysis to the infrared, which can help with some over modulation problems that can appear in the visible region of the electromagnetic spectrum; (2) a single experiment based on cyclic load can be used to simultaneously reconstruct the stress and temperature fields of a birefringent loaded sample and, (3) photoelasticity and infrared thermography can be integrated to calculate stress fields even in static applications. In the latter case, infrared thermography serves to determine the temperatures steps that, in turn, lead to obtaining the required stress field. (Tomado de la fuente)DoctoradoDoctor en IngenieríaTermografía Digital210 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::003 - Sistemas620 - Ingeniería y operaciones afinesTermografíaEsfuerzo térmicoFotoelasticidadTermografía infrarrojaTermoelasticidadCampo de esfuerzosProcesamiento digital de imágenesDesplazamiento de franjasPhotoelasticityInfrared thermographyStress fieldDigital image processingFringe pattern displacementAnálisis orientado hacia la inspección visual basado en fotoelasticidad y termografía infrarrojaAnalysis oriented towards visual inspection based on photoelasticity and infrared thermographyTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDJ. C. Briñez, A. R. Martı́nez, and J. W. Branch, “Computational hybrid phase shifting technique applied to digital photoelasticity,” Optik, vol. 157, pp. 287–297, 2018.R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Transactions on Consumer electronics, vol. 51, no. 4, pp. 1260–1267, 2005.S. Yamanaka, “Solid state color camera,” Oct. 18 1977. US Patent 4,054,906.E. Rodriguez and F. Filisko, “Temperature changes in poly (methyl methacrylate) and high-density polyethylene during rapid compressive deformation,” Polymer Engineering & Science, vol. 26, no. 15, pp. 1060–1065, 1986.R. Vergara-Puello, H. A. Fandiño-Toro, and A. Restrepo-Martı́nez, “Stresses analysis through digital photoelasticity and infrared thermography in an epoxy sample affected by cyclic loads: A cost-effective proposal,” in Optics and Photonics for Information Processing XIV, vol. 11509, p. 115090B, International Society for Optics and Photonics, 2020.D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” JOSA A, vol. 11, no. 1, pp. 107–117, 1994.M. Ekman and A. Nurse, “Absolute determination of the isochromatic parameter by load-stepping photoelasticity,” Experimental mechanics, vol. 38, no. 3, pp. 189–195, 1998.E. Patterson and Z. Wang, “Towards full field automated photoelastic analysis of complex components,” Strain, vol. 27, no. 2, pp. 49–53, 1991.M. Rahman, N. Schott, and L. K. Sadhu, “Glass transition of abs in 3d printing,” in COMSOL Conference, Boston, MA, 2016.J. Gough Phil. Mem., 2nd series, vol. 1, p. 288.M. H. Belgen, “Structural stress measurements with an infrared radiometer(structural stress measurements in terms of induced temperature increments, using ir radiometer),” ISA transactions, vol. 6, pp. 49–53, 1967.A. Wong, N. Rajic, and Q. Nguyen, “50th anniversary article: Seeing stresses through the thermoelastic lens—a retrospective and prospective from an australian viewpoint,” Strain, vol. 51, no. 1, pp. 1–15, 2015.C. Middleton, A. Gaio, R. Greene, and E. Patterson, “Towards automated tracking of initiation and propagation of cracks in aluminium alloy coupons using thermoelastic stress analysis,” Journal of Nondestructive Evaluation, vol. 38, no. 1, p. 18, 2019.A. Garinei and R. Marsili, “Thermoelastic stress analysis of the contact between a flat plate and a cylinder,” Measurement, vol. 52, pp. 102–110, 2014.I. Ubero-Martı́nez, L. Rodrı́guez-Tembleque, J. Cifuentes-Rodrı́guez, and J. Vallepuga-Espinosa, “Non-linear interface thermal conditions in three-dimensional thermoelastic contact problems,” Computers & Structures, vol. 241, p. 106354, 2020.G. Allevi, M. Cibeca, R. Fioretti, R. Marsili, R. Montanini, and G. Rossi, “Qualification of additively manufactured aerospace brackets: A comparison between thermoelastic stress analysis and theoretical results,” Measurement, vol. 126, pp. 252–258, 2018.F. Di Carolo, R. De Finis, D. Palumbo, and U. Galietti, “A thermoelastic stress analysis general model: Study of the influence of biaxial residual stress on aluminium and titanium,” Metals, vol. 9, no. 6, p. 671, 2019.Z. S. Hosseini, M. Dadfarnia, B. P. Somerday, P. Sofronis, and R. O. Ritchie, “On the theoretical modeling of fatigue crack growth,” Journal of the Mechanics and Physics of Solids, vol. 121, pp. 341–362, 2018.A. Vivekanandan and K. Ramesh, “Study of crack interaction effects under thermal loading by digital photoelasticity and finite elements,” Experimental Mechanics, vol. 60, no. 3, pp. 295–316, 2020.R. Greene and E. Patterson, “An integrated approach to the separation of principal surface stresses using combined thermo-photo-elasticity,” Experimental mechanics, vol. 46, no. 1, pp. 19–29, 2006.T.-W. Lin, L. Rowe, A. Kaczkowski, G. Horn, and H. T. Johnson, “Polarization-resolved imaging for both photoelastic and photoluminescence characterization of photovoltaic silicon wafers,” Experimental Mechanics, vol. 56, no. 8, pp. 1339–1350, 2016.I. Matyash, I. Minailova, and B. Serdega, “Research of mechanical stresses in irradiated tin-doped silicon crystals,” Materials Science in Semiconductor Processing, vol. 71, pp. 263–267, 2017.O. Oliinyk, B. Tsyganok, B. Serdega, and I. Matiash, “Investigation of nonstationary thermo-photo-elastic effect using the polarization modulation of radiation,” in Proceedings of the 2011 34th International Spring Seminar on Electronics Technology (ISSE), pp. 294–298, IEEE, 2011.S. Mrzljak, M. Trautmann, G. Wagner, and F. Walther, “Influence of aluminum surface treatment on tensile and fatigue behavior of thermoplastic-based hybrid laminates,” Materials, vol. 13, no. 14, p. 3080, 2020.F. Furgiuele, P. Magaro, C. Maletta, and E. Sgambitterra, “Functional and structural fatigue of pseudoelastic niti: Global vs local thermo-mechanical response,” Shap. Mem. Superelasticity, vol. 6, pp. 242–255, 2020.J. Freire, V. Paiva, G. Gonzáles, R. Vieira, J. Diniz, A. Ribeiro, and A. Almeida, “Fatigue monitoring of a dented pipeline specimen using infrared thermography, dic and fiber optic strain gages,” in Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3, pp. 57–66, Springer, 2020.K. E. Donne, R. D. Thomas, C. Davies, and G. Calvert, “Photoelastic stress and thermographic measurements of automotive windscreen defects generated by projectile impact,” Quality and Reliability Engineering International, vol. 24, no. 8, pp. 897–902, 2008.E. Umezaki and M. Abe, “Development of system for simultaneous measurement of stress and temperature,” in Key Engineering Materials, vol. 326, pp. 163–166, Trans Tech Publ, 2006.O. Janssens, M. Loccufier, and S. Van Hoecke, “Thermal imaging and vibration-based multisensor fault detection for rotating machinery,” IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 434–444, 2018.O. Janssens, M. Loccufier, R. Van de Walle, and S. Van Hoecke, “Data-driven imbalance and hard particle detection in rotating machinery using infrared thermal imaging,” Infrared Physics & Technology, vol. 82, pp. 28–39, 2017.G. Everett, “Comparison between the thermoelastic method and other experimental techniques for stress measurement,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, vol. 1084, pp. 54–58, International Society for Optics and Photonics, 1989.B. Foust and R. Rowlands, “Thermoelastic determination of individual stresses in a diametrally loaded disk,” Strain, vol. 47, no. 2, pp. 146–153, 2011.S.-J. Lin, D. Matthys, and R. Rowlands, “Separating stresses thermoelastically in a central circularly perforated plate using an airy stress function,” Strain, vol. 45, no. 6, pp. 516–526, 2009.D. Palumbo and U. Galietti, “Data correction for thermoelastic stress analysis on titanium components,” Experimental Mechanics, vol. 56, no. 3, pp. 451–462, 2016.J. Thatcher, D. Crump, C. Devivier, P. Bailey, and J. Dulieu-Barton, “Low cost infrared thermography for automated crack monitoring in fatigue testing,” Optics and Lasers in Engineering, vol. 126, p. 105914, 2020.L. H. Groom and A. G. Zink, “Techniques in experimental mechanics applicable to forest products research,” Gen. Tech. Rep. SO-125. New Orleans, LA: US Dept of Agriculture, Forest Service, Southern Forest Experiment Station. 45 p., vol. 125, 1994.N. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quantitative InfraRed Thermography Journal, vol. 11, no. 2, pp. 207–221, 2014.J. Freire, R. Waugh, R. Fruehmann, and J. Dulieu-Barton, “Using thermoelastic stress analysis to detect damaged and hot spot areas in structural components,” J. Mech. Eng. Autom, vol. 5, pp. 623–634, 2015.G. Pitarresi, R. Cappello, and G. Catalanotti, “Quantitative thermoelastic stress analysis by means of low-cost setups,” Optics and Lasers in Engineering, vol. 134, p. 106158, 2020.M. Weihrauch, C. Middleton, R. Greene, and E. Patterson, “Low-cost thermoelastic stress analysis,” in Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, Volume 6, pp. 15–19, Springer, 2020.W. Wang, R. Fruehmann, and J. Dulieu-Barton, “Application of digital image correlation to address complex motions in thermoelastic stress analysis,” Strain, vol. 51, no. 5, pp. 405–418, 2015.K. Ramesh and S. Sasikumar, “Digital photoelasticity: Recent developments and diverse applications,” Optics and Lasers in Engineering, p. 106186, 2020.A. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of rgb photoelasticity,” Optics and Lasers in Engineering, vol. 68, pp. 58–73, 2015.M. Scafidi, G. Pitarresi, A. Toscano, G. Petrucci, S. Alessi, and A. Ajovalasit, “Review of photoelastic image analysis applied to structural birefringent materials: glass and polymers,” Optical Engineering, vol. 54, no. 8, p. 081206, 2015.A. Baldi, F. Bertolino, and F. Ginesu, “A temporal phase unwrapping algorithm for photoelastic stress analysis,” Optics and lasers in engineering, vol. 45, no. 5, pp. 612–617, 2007.J.-T. Wu and M.-J. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Optical Engineering, vol. 54, no. 8, p. 081207, 2015.S. Xia and M. Mello, “Phase-multiplied photoelastic and series interferometer arrangement for full-field stress measurement in single crystals,” Experimental mechanics, vol. 51, no. 4, pp. 653–666, 2011.Y. Ju, Z. Zheng, H. Xie, J. Lu, L. Wang, and K. He, “Experimental visualisation methods for three-dimensional stress fields of porous solids,” Experimental Techniques, vol. 41, no. 4, pp. 331–344, 2017.M. S.-B. Fernández, “Data acquisition techniques in photoelasticity,” Experimental Techniques, vol. 35, no. 6, pp. 71–79, 2011.D. F. Woolard and M. K. Hinders, “Coatings for combined thermoelastic and photoelastic stress measurement,” in Nondestructive Evaluation of Bridges and Highways III, vol. 3587, pp. 88–96, International Society for Optics and Photonics, 1999.D. Woolard, M. Hinders, and C. Welch, “Combined thermoelastic and photoelastic full-field stress measurement,” in Review of Progress in Quantitative Nondestructive Evaluation, pp. 1431–1438, Springer, 1999.R. Greene, A. Clarke, S. Turner, and E. Patterson, “Some applications of combined thermoelastic-photoelastic stress analysis,” The Journal of Strain Analysis for Engineering Design, vol. 42, no. 3, pp. 173–182, 2007.J. C. Briñez-de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Computational analysis of bayer colour filter arrays and demosaicking algorithms in digital photoelasticity,” Optics and Lasers in Engineering, vol. 122, pp. 195–208, 2019.J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Fast fourier transform as color variation descriptor for imaging the stress field from photoelasticity videos,” in Imaging Systems and Applications, pp. JW2A–46, Optical Society of America, 2019.H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-bedoya, “Texture analysis for evaluating the bayer and demosaicking effects in photoelasticity images,” in Computational Optical Sensing and Imaging, pp. JW2A–50, Optical Society of America, 2019.H. Fandiño-Toro, J. Briñez-De León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis,” Optical Engineering, vol. 57, no. 9, p. 093105, 2018. 13, 56M. Hunter, B. Godde, and B. Olk, “Effects of absolute luminance and luminance contrast on visual search in low mesopic environments,” Attention, Perception, & Psychophysics, vol. 80, no. 5, pp. 1265–1277, 2018.F. Bianconi, A. Álvarez-Larrán, and A. Fernández, “Discrimination between tumour epithelium and stroma via perception-based features,” Neurocomputing, vol. 154, pp. 119–126, 2015.H. Aben and C. Guillemet, Photoelasticity of glass. Springer Science & Business Media, 2012.D. Mahler and F. Peyton, “Photoelasticity as a research technique for analyzing stresses in dental structures,” Journal of dental research, vol. 34, no. 6, pp. 831–838, 1955.S. M. Yang, S. Hong, and S. Y. Kim, “Wavelength dependent in-plane birefringence of transparent flexible films determined by using transmission ellipsometry,” Japanese Journal of Applied Physics, vol. 57, no. 5S, p. 05GB03, 2018.K. E. Daniels, J. E. Kollmer, and J. G. Puckett, “Photoelastic force measurements in granular materials,” Review of Scientific Instruments, vol. 88, no. 5, p. 051808, 2017.P. S. Theocaris and E. E. Gdoutos, Matrix theory of photoelasticity, vol. 11. Springer, 2013.A. Sarma, S. Pillai, G. Subramanian, and T. Varadan, “Computerized image processing for whole-field determination of isoclinics and isochromatics,” Experimental Mechanics, vol. 32, no. 1, pp. 24–29, 1992.W. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik - International Journal for Light and Electron Optics, vol. 126, no. 19, pp. 1981–1985, 2015.M. Hariprasad, K. Ramesh, and B. Prabhune, “Evaluation of conformal and non-conformal contact parameters using digital photoelasticity,” Experimental Mechanics, vol. 58, no. 8, pp. 1249–1263, 2018.W. Samad and J. Considine, “Sensitivity analysis of hybrid thermoelastic techniques,” in Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9, pp. 29–36, Springer, 2017.K. V. N. Surendra and K. Y. Simha, “Digital image analysis around isotropic points for photoelastic pattern recognition,” Optical Engineering, vol. 54, no. 8, p. 081209, 2015.T. Kihara, “Measurement of applied stresses and residual stresses on a residual stress model by applying two different loads,” Experimental mechanics, vol. 51, no. 8, pp. 1275–1283, 2011.M. Ayatollahi, M. Mirsayar, and M. Dehghany, “Experimental determination of stress field parameters in bi-material notches using photoelasticity,” Materials & Design, vol. 32, no. 10, pp. 4901–4908, 2011.C. A. Magalhães, A. L. M. A. Magalhães, et al., “Computational methods of phase shifting to stress measurement with photoelasticity using plane polariscope,” Optik, vol. 130, pp. 213–226, 2017.K. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Optical Engineering, vol. 54, no. 8, p. 081205, 2015.Y. V. Tokovyy, K.-M. Hung, and C.-C. Ma, “Determination of stresses and displacements in a thin annular disk subjected to diametral compression,” Journal of Mathematical Sciences, vol. 165, no. 3, pp. 342–354, 2010.X. P. Maldague, “Introduction to ndt by active infrared thermography,” Materials Evaluation, vol. 60, no. 9, pp. 1060–1073, 2002.F. Di Carolo, L. Savino, D. Palumbo, A. Del Vecchio, U. Galietti, and M. De Cesare, “Standard thermography vs free emissivity dual color novel cira physics technique in the near-mid ir ranges: Studies for different emissivity class materials from low to high temperatures typical of aerospace re-entry,” International Journal of Thermal Sciences, vol. 147, p. 106123, 2020.R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors, vol. 14, no. 7, pp. 12305–12348, 2014.N. Rajic and D. Rowlands, “Thermoelastic stress analysis with a compact low-cost microbolometer system,” Quantitative infrared thermography journal, vol. 10, no. 2, pp. 135–158, 2013.J. Dulieu-Barton and P. Stanley, “Development and applications of thermoelastic stress analysis,” The Journal of Strain Analysis for Engineering Design, vol. 33, no. 2, pp. 93–104, 1998.X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: A systematic survey,” in Visual Communications and Image Processing 2008, vol. 6822, p. 68221J, International Society for Optics and Photonics, 2008.H. S. Malvar, L.-w. He, and R. Cutler, “High-quality linear interpolation for demosaicing of bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. iii–485, IEEE, 2004.J. Wu, M. Anisetti, W. Wu, E. Damiani, and G. Jeon, “Bayer demosaicking with polynomial interpolation,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5369–5382, 2016.Z. Dengwen, S. Xiaoliu, and D. Weiming, “Colour demosaicking with directional filtering and weighting,” IET Image Processing, vol. 6, no. 8, pp. 1084–1092, 2012.J. E. Adams Jr, “Interactions between color plane interpolation and other image processing functions in electronic photography,” in Cameras and Systems for Electronic Photography and Scientific Imaging, vol. 2416, pp. 144–151, International Society for Optics and Photonics, 1995.B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE transactions on image processing, vol. 11, no. 9, pp. 997–1013, 2002.Y. M. Lu, M. Karzand, and M. Vetterli, “Demosaicking by alternating projections: theory and fast one-step implementation,” IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2085–2098, 2010.D. Ramji, C. A. Palagan, A. Nithya, A. Appathurai, and E. J. Alex, “Soft computing based color image demosaicing for medical image processing,” Multimedia Tools and Applications, vol. 79, no. 15, pp. 10047–10063, 2020.A. Stojkovic, I. Shopovska, H. Luong, J. Aelterman, L. Jovanov, and W. Philips, “The effect of the color filter array layout choice on state-of-the-art demosaicing,” Sensors, vol. 19, no. 14, p. 3215, 2019.C. Bonanomi, S. Balletti, M. Lecca, M. Anisetti, A. Rizzi, and E. Damiani, “I3d: a new dataset for testing denoising and demosaicing algorithms,” Multimedia Tools and Applications, vol. 79, no. 13, pp. 8599–8626, 2020.A. Restrepo-Martinez and J. C. Briñez, “Dynamic color descriptor based frenet-serret to classify stress zones from pixel variations recorded in photoelasticity videos,” in Optics and Photonics for Information Processing XIII, vol. 11136, p. 111360G, International Society for Optics and Photonics, 2019.H. Fandiño-Toro, J. de Briñez-de León, A. Restrepo-Martı́nez, and J. W. Bedoya, Branch-Bedoya, “Relevance analysis for texture descriptors in studies of dynamic photoelasticity,” in Laser Applications to Chemical, Security and Environmental Analysis, pp. JM4A–37, Optical Society of America, 2018.H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja,” Visión electrónica, vol. 11, no. 1, pp. 89–98, 2017.H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity,” in Applications of Digital Image Processing XL, vol. 10396, p. 103962D, International Society for Optics and Photonics, 2017.Y. Caulier, K. P. Spinnler, T. M. Wittenberg, and S. Bourennane, “Specific features for the analysis of fringe images,” Optical Engineering, vol. 47, no. 5, p. 057201, 2008.C. Yan, N. Sang, and T. Zhang, “Local entropy-based transition region extraction and thresholding,” Pattern Recognition Letters, vol. 24, no. 16, pp. 2935–2941, 2003.N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.L. Goldstein, J. Thompson, J. Schroeder, and J. Slattery, “Stress-optic coefficients of znse,” Applied optics, vol. 14, no. 10, pp. 2432–2434, 1975.J. Szczesniak, D. Cuddeback, and J. Corelli, “Stress-induced birefringence of solids transparent to 1-to 12-μm light,” Journal of Applied Physics, vol. 47, no. 12, pp. 5356–5359, 1976.C. Chen, J. Szczesniak, and J. Corelli, “Infrared stress birefringence in kbr, kcl, lif, and znse,” Journal of Applied Physics, vol. 46, no. 1, pp. 303–309, 1975.W. Jun and A. Asundi, “Strain contouring with gabor filters: filter bank design,” Applied optics, vol. 41, no. 34, pp. 7229 7236, 2002.A. K. Asundi and J. Wang, “Strain contouring using gabor filters: principle and algorithm,” OptEn, vol. 41, pp. 1400–1405, 2002.R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–621, 1973.F. R. De Siqueira, W. R. Schwartz, and H. Pedrini, “Multi-scale gray level co-occurrence matrices for texture description,” Neurocomputing, vol. 120, pp. 336–345, 2013.L. Nanni, A. Lumini, and S. Brahnam, “Survey on lbp based texture descriptors for image classification,” Expert Systems with Applications, vol. 39, no. 3, pp. 3634–3641, 2012.F. Van Der Heijden, R. P. Duin, D. De Ridder, and D. M. Tax, Classification, parameter estimation and state estimation: an engineering approach using MATLAB. John Wiley & Sons, 2005.T. Sakagami, S. Kubo, Y. Fujinami, and Y. Kojima, “Experimental stress separation technique using thermoelasticity and photoelasticity and its application to fracture mechanics,” JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 47, no. 3, pp. 298–304, 2004.S. Barone and E. Patterson, “Full-field separation of principal stresses by combined thermo-and photoelasticity,” Experimental Mechanics, vol. 36, no. 4, pp. 318–324, 1996.M. Solaguren-Beascoa Fernández, J. Alegre Calderón, P. Bravo Diez, and I. Cuesta Segura, “Stress-separation techniques in photoelasticity: a review,” The Journal of Strain Analysis for Engineering Design, vol. 45, no. 1, pp. 1–17, 2010.S. Yoneyama and K. Sakaue, “Instantaneous phase-stepping photoelasticity and hybrid stress analysis for a curving crack under thermal load,” in Imaging Methods for Novel Materials and Challenging Applications, Volume 3, pp. 391–402, Springer, 2013.Y. K. Godovsky, “Thermomechanics of glassy and crystalline polymers,” in Thermophysical Properties of Polymers, pp. 127–162, Springer, 1992.F. Valiorgue, A. Brosse, P. Naisson, J. Rech, H. Hamdi, and J. M. Bergheau, “Emissivity calibration for temperatures measurement using thermography in the context of machining,” Applied Thermal Engineering, vol. 58, no. 1-2, pp. 321–326, 2013.X. P. Maldague, Nondestructive evaluation of materials by infrared thermography. Springer Science & Business Media, 2012.A. Rühl, S. Kolling, V. Mende, and B. Kiesewetter, “Computational design of a heated pmma window validated by infrared thermography,” Glass Structures & Engineering, vol. 1, no. 2, pp. 375–383, 2016.J. Gu, S. C. Tam, Y. L. Lam, Q. Zheng, and X. Wei, “Laser-induced temperature-rise measurement by infrared imaging,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing V, vol. 3933, pp. 388–395, International Society for Optics and Photonics, 2000.J. A. Quiroga and A. González-Cano, “Method of error analysis for phase-measuring algorithms applied to photoelasticity,” Applied optics, vol. 37, no. 20, pp. 4488–4495, 1998.J. Briñez-De León, J. W. Branch-Bedoya, and A. Restrepo-Martı́nez, “Toward photoelastic sensors: a hybrid proposal for imaging the stress field through load stepping methods,” in OSA Imaging and Applied Optics Congress. (CTh3C.4), Optical Society of America, 2020.A. E1933-14, “Standard practice for measuring and compensating for emissivity using infrared imaging radiometers,” 2018.H. Fandiño-Toro, J. Rendón-Arango, J. Briñez-de León, and A. Restrepo-Martı́nez, “Thermal transient stepping: a powerful thermal-based approach for evaluating the stress field by using digital photoelasticity,” in Optics and Photonics for Information Processing XIV, vol. 11509, p. 1150909, International Society for Optics and Photonics, 2020.EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79684/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54ORIGINAL84451661.2021.pdf84451661.2021.pdfTesis de Doctorado en Ingeniería - Sistemas e Informáticaapplication/pdf78135038https://repositorio.unal.edu.co/bitstream/unal/79684/5/84451661.2021.pdfd7c208682d4d6f15817e69a76ca4b825MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79684/6/license_rdf4460e5956bc1d1639be9ae6146a50347MD56THUMBNAIL84451661.2021.pdf.jpg84451661.2021.pdf.jpgGenerated Thumbnailimage/jpeg4059https://repositorio.unal.edu.co/bitstream/unal/79684/7/84451661.2021.pdf.jpgb035ca7186bc506b0c7a15fa919d9f0fMD57unal/79684oai:repositorio.unal.edu.co:unal/796842024-07-23 23:33:34.952Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==