Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)

ilustraciones, fotografías, gráficos

Autores:
Cano Gil, Juan David
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85923
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85923
https://repositorio.unal.edu.co/
Palabra clave:
590 - Animales
570 - Biología
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
Especies endémicas - Colombia
Especies vulnerables - Colombia
Peces de agua dulce - Colombia
Panaque cochliodon
Nutrición animal
Flora microbiana
Microbiomas
Peces de agua dulce - Digestión
Panaque cochliodon
cucha de ojos azules
microbiota intestinal
Metagenómica
gen ADN 16S
blue-eyed pleco
metagenomics
bacterial 16S rRNA
intestinal microbiota
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_55631d8026adae3a1ff9f5bb43f61a2f
oai_identifier_str oai:repositorio.unal.edu.co:unal/85923
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
dc.title.translated.eng.fl_str_mv Characterization of the microbial diversity associated with the gastrointestinal tract of the Panaque cochliodon (Blue-eyed Panaque)
title Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
spellingShingle Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
590 - Animales
570 - Biología
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
Especies endémicas - Colombia
Especies vulnerables - Colombia
Peces de agua dulce - Colombia
Panaque cochliodon
Nutrición animal
Flora microbiana
Microbiomas
Peces de agua dulce - Digestión
Panaque cochliodon
cucha de ojos azules
microbiota intestinal
Metagenómica
gen ADN 16S
blue-eyed pleco
metagenomics
bacterial 16S rRNA
intestinal microbiota
title_short Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
title_full Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
title_fullStr Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
title_full_unstemmed Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
title_sort Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
dc.creator.fl_str_mv Cano Gil, Juan David
dc.contributor.advisor.none.fl_str_mv David Ruales, Carlos Arturo
Pardo Carrasco, Sandra Clemencia
Gutiérrez Ramírez, Luz Adriana
dc.contributor.author.none.fl_str_mv Cano Gil, Juan David
dc.contributor.researchgroup.spa.fl_str_mv Producción, Desarrollo y Transformación Agropecuaria (GIPDTA).
dc.contributor.orcid.spa.fl_str_mv Cano Gil, Juan David (0000000245747509)
dc.contributor.cvlac.spa.fl_str_mv Cano Gil, Juan David (0001821334)
dc.subject.ddc.spa.fl_str_mv 590 - Animales
570 - Biología
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
topic 590 - Animales
570 - Biología
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
Especies endémicas - Colombia
Especies vulnerables - Colombia
Peces de agua dulce - Colombia
Panaque cochliodon
Nutrición animal
Flora microbiana
Microbiomas
Peces de agua dulce - Digestión
Panaque cochliodon
cucha de ojos azules
microbiota intestinal
Metagenómica
gen ADN 16S
blue-eyed pleco
metagenomics
bacterial 16S rRNA
intestinal microbiota
dc.subject.agrovoc.none.fl_str_mv Especies endémicas - Colombia
Especies vulnerables - Colombia
Peces de agua dulce - Colombia
Panaque cochliodon
Nutrición animal
Flora microbiana
Microbiomas
dc.subject.lemb.none.fl_str_mv Peces de agua dulce - Digestión
dc.subject.proposal.spa.fl_str_mv Panaque cochliodon
cucha de ojos azules
microbiota intestinal
Metagenómica
gen ADN 16S
dc.subject.proposal.eng.fl_str_mv blue-eyed pleco
metagenomics
bacterial 16S rRNA
intestinal microbiota
description ilustraciones, fotografías, gráficos
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-16T14:30:17Z
dc.date.available.none.fl_str_mv 2024-04-16T14:30:17Z
dc.date.issued.none.fl_str_mv 2024-04-10
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv DataPaper
Image
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85923
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85923
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Abdul Rahman, N., Parks, D., Willner, DL Engelbrektson, A., Goffredi, S., Warnecke, F., & Hugenholtz. (2015). Un estudio molecular de los géneros de termitas de Australia y América del Norte indica que la herencia vertical es la fuerza principal que da forma a los microbiomas intestinales de las termitas. Microbioma, 3(1), 1–16. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-0067-8
Abriouel, H., Franz, C. M. A. P., Omar, N. Ben, & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
Askarian, F., Zhou, Z., Olsen, R. E., Sperstad, S., & Ringø, E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326–329, 1–8. https://doi.org/https://doi.org/10.1016/j.aquaculture.2011.10.016
Austin, B. (2006). The Bacterial Microflora of Fish, Revised. TheScientificWorldJOURNAL, 6, 325830. https://doi.org/10.1100/tsw.2006.181
Bird, A. R., Conlon, M. A., Christophersen, C. T., & Topping, D. L. (2010). Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes, 1(4), 423–431. https://doi.org/10.3920/BM2010.0041
Bledsoe, J. W., Peterson, B. C., Swanson, K. S., & Small, B. C. (2016). Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PLoS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166379
Borges, N., Keller-Costa, T., Sanches-Fernandes, G. M. M., Louvado, A., Gomes, N. C. M., & Costa, R. (2021). Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annual Review of Animal Biosciences, 9, 423–452. https://doi.org/10.1146/annurev-animal-062920-113114
Carnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.03.037
Castañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/https://doi.org/10.1016/j.aquaculture.2019.734325
Chu, T.-W., Chen, C.-N., & Pan, C.-Y. (2020). Antimicrobial status of tilapia (Oreochromis niloticus) fed Enterococcus avium originally isolated from goldfish intestine. Aquaculture Reports, 17, 100397. https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100397
Clements, K. D., Angert, E. R., Montgomery, W. L., & Choat, J. H. (2014). Intestinal microbiota in fishes: what’s known and what’s not. Molecular Ecology, 23(8), 1891–1898. https://doi.org/https://doi.org/10.1111/mec.12699
Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. Biotech, 5(1), 81–86. https://doi.org/https://doi.org/10.1007/s13205-014-0205-1
David-Ruales, C. ., Betancur-Gonzales, E. ., & Cano-Gil, J. . (2021). Adaptación al cautiverio y estandarización de una tecnica no invasiva (ecografía) para la determinación del género y la evaluación de la madurez gonadal de la especie Panaque cochliodon (Cucha de ojos azules) del río Magdalena. Rev. Lasallista de Investigación, 267.
David-Ruales, Guerra, M. O., Cano, J. D., & Betancur, E. M. (2022). Clove Oil (Eugenol®) as an Anesthetic in the Species Panaque Cochliodon-Steindachner, 1879 (Blue-Eyed Pleco. Revista Lasallista de Investigacion, 19(1), 182–194. https://doi.org/10.22507/rli.v19n1a11
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V, Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820
Deng, Z., Jiang, Y., Chen, K., Gao, F., & Liu, X. (2020). Petroleum Depletion Property and Microbial Community Shift After Bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00353
Di Maiuta, N., Schwarzentruber, P., Schenker, M., & Schoelkopf, J. (2013). Microbial population dynamics in the faeces of wood‐eating loricariid catfishes. Letters in Applied Microbiology, 56(6), 401–407. https://doi.org/10.1111/lam.12061
Domínguez-Arrizabalaga, M Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests. Toxins, 12(7). https://doi.org/https://doi.org/10.3390/toxins12070430
Fishelson, L., Montgomery, W. L., & Myrberg, A. (1985). A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science, 229, 49–51.
Gerking, S. D., Division, A., & Brace, H. (1994). Feeding Ecology of fish (A. S. UNIVERSITY (ed.)). Library of Congress Cataloging-in-Publication Data.
German, D. (2009). Inside the guts of wood-eating catfishes: can they digest wood? Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1011–1023. https://api.semanticscholar.org/CorpusID:7512400
German, D., & Bittong, R. (2009). Digestive enzymes and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1025–1042. https://doi.org/10.1007/s00360-009-0383-z
Givens, C., Ransom, B., Bano, N., & Hollibaugh, J. (2015). Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology Progress Series, 518, 209–223. https://doi.org/10.3354/meps11034
Gómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52(2), 145–154. https://doi.org/10.1111/j.1574-695X.2007.00343.x
Green, G. B. H., Williams, M. B., Chehade, S. B., Flowers, J. T., Morrow, C. D., Lawrence, A. L., Bej, A. K., & Watts, S. A. (2023). Body Metrics and the Gut Microbiome in Response to Macronutrient Limitation in the Zebrafish Danio rerio. Current Developments in Nutrition, 7(4), 100065. https://doi.org/https://doi.org/10.1016/j.cdnut.2023.100065
Grosell, M., Farrell, A. P., & Brauner, C. J. (2010). The Multifunctional Gut of Fish. In Fish Physiology (1st ed., Vol. 30). Academic Press; 1er edición (5 Octubre 2010).
Gutiérrez-Ramirez, L. A., David-Ruales, C. A., Montoya-Campuzano, O. I., & Betancur-Gonzalez, E. M. (2016). Efecto de la inclusión en la dieta de probióticos microencapsulados sobre algunos parámetros zootécnicos en alevinos de tilapia roja (Oreochromis sp.). Salud Animal, 38(2), 112–119. https://doi.org/10.1093/oxfordhb/9780199204540.003.0007
Hlordzi, V., Kuebutornye, F., Afriyie, G., Abarike, E., Lu, Y., & Chi, S. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18(100503). https://doi.org/https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100503
Huertas-Caro, C., Urbano-Cáceres, E., & Torres-Caycedo, M. (2019). CIENCIAS EPIDEMIOLÓGICAS Y SALUBRISTAS ARTÍCULO DE REVISIÓN Diagnóstico molecular una alternativa para la detección de patógenos en alimentos. Revista Habanera de Ciencias Médicas, 18(3), 513–528. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2352
Ichimatsu, T., Mizuki, E., Nishimura, K., Akao, T., Saitoh, H., Higuchi, K., & Ohba, M. (2000). Occurrence of Bacillus thuringiensis in Fresh Waters of Japan. Current Microbiology, 40(4), 217–220. https://doi.org/10.1007/s002849910044
Ingerslev, H.-C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen, N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424–425, 24–34. https://doi.org/https://doi.org/10.1016/j.aquaculture.2013.12.032
Izvekova, G. I., Izvekov, E. I., & Plotnikov, A. O. (2007). Symbiotic microflora in fishes of different ecological groups. Biology Bulletin, 34(6), 610–618. https://doi.org/10.1134/S106235900706012X
Kamei, Y., Sakata, T., & Kakimoto, D. (1985). Microflora in the alimentary tract of tilapia: Characterization and distri-bution of anaerobic bacteria. The Journal of General and Applied Microbiology, 31(2), 115–124. https://doi.org/10.2323/jgam.31.115
Kamilya, D., & Devi, W. M. (2022). Bacillus Probiotics and Bioremediation: An Aquaculture Perspective BT - Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting (M. T. Islam, M. Rahman, & P. Pandey (eds.); pp. 335–347). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_15
Kim, P. S., Shin, N.-R., Lee, J.-B., Kim, M.-S., Whon, T. W., Hyun, D.-W., Yun, J.-H., Jung, M.-J., Kim, J. Y., & Bae, J.-W. (2021). Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 9(1), 166. https://doi.org/10.1186/s40168-021-01113-x
Lall, S. P., & Tibbetts, S. M. (2009). Nutrition, Feeding, and Behavior of Fish. Veterinary Clinics of North America: Exotic Animal Practice, 12(2), 361–372. https://doi.org/https://doi.org/10.1016/j.cvex.2009.01.005
Li, T, Raza, S. H. A., Yang, B., Sun, Y., Wang, G., Sun, W., Qian, A., Wang, C., Kang, Y., & Shan, X. (2020). Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals, 10(4). https://doi.org/https://doi.org/10.3390/ani10040608
Li, Tongtong, Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2015). Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing. Microbial Ecology, 69(1), 25–36. https://doi.org/10.1007/s00248-014-0480-8
Liu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F., & Wang, W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6(1), 24340. https://doi.org/10.1038/srep24340
Llewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00207
Lujan, N. K., German, D. P., & Winemiller, K. O. (2011). Do wood-grazing fishes partition their niche?: Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology, 25(6), 1327–1338. https://doi.org/10.1111/j.1365-2435.2011.01883.x
Manuel, F., Arnaldo, C., Odalis, T., Deysy, C., Mario, C., & Virna, C. (2019). Caracterización molecular ómica de una cepa de Bacillus amyloliquefaciens aislada de la microbiota del paiche Arapaima gigas con actividad antagonista contra bacterias patógenas de peces. Revista de Investigaciones Veterinarias Del Perú, 30(2). https://doi.org/http://dx.doi.org/10.15381/rivep.v30i2.15407
March, P., & Tillett, D. (1999). BioEdit Nucleicos. https://www.nucleics.com/about_nucleics/about_nucleics.html
Marden, C. L., McDonald, R., Schreier, H. J., & Watts, J. E. M. (2017). Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiology, 3(4), 749–761. https://doi.org/10.3934/microbiol.2017.4.749
McCauley, M., German, D. P., Lujan, N. K., & Jackson, C. R. (2020). Gut microbiomes of sympatric Amazonian wood-eating catfishes (Loricariidae) reflect host identity and little role in wood digestion. Ecology and Evolution, 10(14), 7117–7128. https://doi.org/10.1002/ece3.6413
Mcdonald, R. C., Em, J., & Schreier, H. J. (2019). Efecto de la dieta sobre el microbioma entérico del bagre carnívoro Panaque nigrolineatus. 1–15.
McDonald, R., Schreier, H. J., & Watts, J. E. M. (2012). Phylogenetic Analysis of Microbial Communities in Different Regions of the Gastrointestinal Tract in Panaque nigrolineatus, a Wood-Eating Fish. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0048018
McDonald, R., Zhang, F., Watts, J. E. M., & Schreier, H. J. (2015). Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. ISME Journal, 9(12), 2712–2724. https://doi.org/10.1038/ismej.2015.65
Medela, D., Directora, T., Piazzon, C., Upv, H. T., & Mart, S. (2021). Recopilación bibliográfica y comparativa : la microbiota intestinal de dorada ( Sparus aurata ).
Meidong, R., Nakao, M., Sakai, K., & Tongpim, S. (2021). Lactobacillus paraplantarum L34b-2 derived from fermented food improves the growth, disease resistance and innate immunity in Pangasius bocourti. Aquaculture, 531, 735878. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.735878
Michl, S. C., Ratten, J.-M., Beyer, M., Hasler, M., LaRoche, J., & Schulz, C. (2017). The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLOS ONE, 12(5), e0177735. https://doi.org/10.1371/journal.pone.0177735
Mojica, J., Castellanos, C., Usma, J., & Álvarez-León, R. (2012). Libro rojo de peces dulceacuícolas de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. In Researchgate.Net.
Motta, A. S., Cladera-Olivera, F., & Brandelli, A. (2004). Screening for antimicrobial activity among bacteria isolated from the Amazon Basin. In Brazilian Journal of Microbiology (Vol. 35). scielo .
Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., Henrissat, B., Knight, R., & Gordon, J. I. (2011). Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science, 332(6032), 970–974. https://doi.org/10.1126/science.1198719
Navarrete, P., Espejo, R. T., & Romero, J. (2009). Molecular analysis of microbiota along the digestive tract of juvenile atlantic salmon (Salmo salar L.). Microbial Ecology, 57(3), 550–561. https://doi.org/10.1007/s00248-008-9448-x
Nayak, S. (2010). Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 1553–1573. https://doi.org/10.1111/j.1365-2109.2010.02546.x
Nelson, J., Wubah, D., & Stewart, D. (1999). Wood‐eating catfishes of the genus Panaque : gut microflora and cellulolytic enzyme activities. Journal of Fish Biology, 54(5), 1069–1082. https://doi.org/10.1111/j.1095-8649.1999.tb00858.x
O’Sullivan, J. N., O’Connor, P. M., Rea, M. C., O’Sullivan, O., Walsh, C. J., Healy, B., Mathur, H., Field, D., Hill, C., & Paul Ross, R. (2020). Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. Journal of Bacteriology, 202(3). https://doi.org/https://doi.org/10.1128/JB.00639-19
Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C., & Iliopoulos, loannis. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. https://doi.org/10.4137/BBI.S12462
Prasath, B. B., Wang, Y., Su, Y., Zheng, W., Lin, H., & Yang, H. (2021). Coagulant plus bacillus nitratireducens fermentation broth technique provides a rapid algicidal effect of toxic red tide dinoflagellate. Journal of Marine Science and Engineering, 9(4). https://doi.org/https://doi.org/10.3390/jmse9040395
Puello-Caballero, P., Liseth, Inés Montoya-Campuzano, O., Alfonso Castañeda-Monsalve, V., & Mary Moreno-Murillo, L. (2018). Characterization of the microbiota present in the intestine of Piaractus brachypomus (Cachama blanca). Revista de Salud Animal, 40(2), 2224–4700.
Rabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6). https://doi.org/https://doi.org/10.3390/molecules24061046
Rawls, J. F., Samuel, B. S., & Gordon, J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596–4601. https://doi.org/10.1073/pnas.0400706101
Ray, A., Roy, T., Mondal, S., & Ringø, E. (2010). Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10), 1462–1469. https://doi.org/https://doi.org/10.1111/j.1365-2109.2009.02437.x
Ray, A K, Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition, 18(5), 465–492. https://doi.org/https://doi.org/10.1111/j.1365-2095.2012.00943.x
Ray, Arun K., Bairagi, A., Sarkar Ghosh, K., & Sen, S. K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 37(1), 47–53. https://doi.org/10.3750/AIP2007.37.1.07
Rees, C. E. D., Green, L. H., Goldman, E., & Loessner, M. J. (2015). Manual de Bacteriología Sistemática de Bergey. In Practical Handbook of Microbiology, Third Edition. https://doi.org/10.1201/b17871
Romero, J., & Navarrete, P. (2006). 16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microbial Ecology, 51(4), 422–430. http://www.jstor.org/stable/25153335
Saha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37(4), 380–388. https://doi.org/https://doi.org/10.1111/j.1365-2109.2006.01442.x
Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut microbiota. Pharmacological Research, 69(1), 52–60. https://doi.org/https://doi.org/10.1016/j.phrs.2012.10.020
Sibbing, F. A. (1988). Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing. Environmental Biology of Fishes, 22(3), 161–178. https://doi.org/10.1007/BF00005379
Sullam, K., Essinger, S., Rosen, G., Kilham, S., & Russell, J. (2010). Environmental and evolutionary factors that shape gut bacterial communities of fish: A meta-analysis.
Suyehiro, Y. (1942). A Study on the digestive system and feeding habits of fish. In TA - TT -. Japanese journal of zoology [S.l.]. https://doi.org/LK - https://worldcat.org/title/492797911
Talwar, C., Nagar, S., Lal, R., & Negi, R. K. (2018). Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian Journal of Microbiology, 58(4), 397–414. https://doi.org/10.1007/s12088-018-0760-y
Tan, H. Y., Chen, S.-W., & Hu, S.-Y. (2019). Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 92, 265–275. https://doi.org/https://doi.org/10.1016/j.fsi.2019.06.027
Tiwari, S., Singh, R., Yadav, J., Gaur, R., Singh, A., Yadav, J. S., Pandey, P. K., Yadav, S. K., Prajapati, J., Helena, P., Dewangan, J., & Jamal, F. (2022). Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts, 12 (7). https://doi.org/https://doi.org/10.3390/catal12070749
Trust, T. J., & Sparrow, R. A. H. (1974). The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology, 20(9), 1219–1228. https://doi.org/10.1139/m74-188
Türe, M., Cebeci, A., & Özcelep, T. (2022). The first outbreak of citrobacteriosis caused by Citrobacter gillenii in reared Russian sturgeon (Acipenser gueldenstaedtii) in Turkiye. Veterinary Research Forum, 13(3), 323–329. https://doi.org/10.30466/vrf.2021.137808.3076
Vadstein, O., Bergh, Ø., Gatesoupe, F.-J., Galindo-Villegas, J., Mulero, V., Picchietti, S., Scapigliati, G., Makridis, P., Olsen, Y., Dierckens, K., Defoirdt, T., Boon, N., De Schryver, P., & Bossier, P. (2013). Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5(s1), S1–S25. https://doi.org/https://doi.org/10.1111/j.1753-5131.2012.01082.x
Van Kessel, M. A. H. J., Dutilh, B. E., Neveling, K., Kwint, M. P., Veltman, J. A., Flik, G., Jetten, M. S. M., Klaren, P. H. M., & Op den Camp, H. J. M. (2011). Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 1(1), 41. https://doi.org/10.1186/2191-0855-1-41
Vásquez-Torres, W. (2004). Principios de Nutrición Aplicada al Cultivo de Peces (1st ed.). Universidad de los Llanos.
Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D. P., Pfirschke, C., Engblom, C., Pittet, M. J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P.-L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., … Zitvogel, L. (2013). The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342(6161), 971–976. https://doi.org/10.1126/science.1240537
Wang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2018). Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 10(3), 626–640. https://doi.org/https://doi.org/10.1111/raq.12191
Wang, A., Ran, C., Ring, E., & Zhou, Z. (2017). Progress in fish gastrointestinal microbiota researche. Aquaculture, 0, 1–15.
Wang, C., Xie, B., Han, L., & Xu, X. (2013). Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique. Bioresource Technology, 145, 65–70. https://doi.org/https://doi.org/10.1016/j.biortech.2013.01.170
Watts, J. E. M., McDonald, R., Daniel, R., & Schreier, H. J. (2013). Examination of a culturable microbial population from the gastrointestinal tract of the wood-eating loricariid catfish panaque nigrolineatus. Diversity, 5(3), 641–656. https://doi.org/10.3390/d5030641
Wróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. In International Journal of Environmental Research and Public Health (Vol. 20, Issue 6). https://doi.org/10.3390/ijerph20064964
Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine. PLOS ONE, 7(2), e30440. https://doi.org/10.1371/journal.pone.0030440
Ye, L., Amberg, J., Chapman, D., Gaikowski, M., & Liu, W.-T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. The ISME Journal, 8(3), 541–551. https://doi.org/10.1038/ismej.2013.181
Yoshimizu, M., & Kimura, T. (1976). Study on the Intestinal Microflora of Salmonids. Fish Pathology, 10(2), 243–259. https://doi.org/10.3147/jsfp.10.243
Younes, A., Saito, H., Tani, S., Ikeo, R., & Kawai, K. (2023). Metagenomic analysis of gut microbiome from tilapia species across several regions in Japan. Aquaculture, 576(March), 739809. https://doi.org/10.1016/j.aquaculture.2023.739809
Zatán Valdiviezo, A. E., Castillo Chunga, D., Castañeda Vargas, A. E., Feria Zevallos, M. A., Toledo Valdiviezo, O. E., Aguilar Zavaleta, J. L., Cueva Távara, M. D., & Motte, E. (2020). Caracterización de la microbiota intestinal en robalo (Centropomus sp.) y aislamiento de bacterias probióticas potenciales. Revista de Investigaciones Veterinarias Del Perú, 31(3), e16036. https://doi.org/10.15381/rivep.v31i3.16036
Zhai, Q., Yu, L., Li, T., Zhu, J., Zhang, C., Zhao, J., Zhang, H., & Chen, W. (2017). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie van Leeuwenhoek, 110(4), 501–513. https://doi.org/10.1007/s10482-016-0819-x
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 97 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85923/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85923/2/1028004844.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85923/3/1028004844.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
4a68d3243e713b16b13a84111e417adc
3216e31604b6265cb4a6d7aa0b468e70
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090200494637056
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2David Ruales, Carlos Arturoe347852e472d254460d2574b239150cdPardo Carrasco, Sandra Clemenciafe39f49924d8437bd04909027b444124Gutiérrez Ramírez, Luz Adrianadee9a8fef1932bf08a4dc3208e6d3d53Cano Gil, Juan David46087fbc014af1cdcd2700e8779f37eeProducción, Desarrollo y Transformación Agropecuaria (GIPDTA).Cano Gil, Juan David (0000000245747509)Cano Gil, Juan David (0001821334)2024-04-16T14:30:17Z2024-04-16T14:30:17Z2024-04-10https://repositorio.unal.edu.co/handle/unal/85923Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficosPanaque cochliodon, conocido en Colombia como cucha de ojos azules, es una especie endémica de las cuencas del Cauca y el Magdalena, y está clasificada como vulnerable (A2d) en el Libro Rojo de los Peces de Agua Dulce de Colombia. Este es el primer reporte para Colombia sobre esta especie en medio natural razón por la cual se escogió para este trabajo, además por tener hábitos xilívoros, es decir, que consume madera como principal fuente de alimento para su nutrición, siendo una especie de gran valor biológico para el ecosistema. Se tiene cierto conocimiento sobre su comportamiento básico, adaptación al cautiverio y otras características relacionadas con su alimentación y reproducción, sin embargo, se desconoce por completo su fisiología digestiva y las posibles relaciones simbióticas de los componentes de su microbiota intestinal. En este estudio se realizó la primera caracterización de la microbiota asociada al tracto gastrointestinal de Panaque cochliodon. Para ello, se capturaron y utilizaron tres ejemplares adultos provenientes del río Magdalena, los cuales fueron transportados y sacrificados siguiendo las normas de bienestar animal. Se realizó la disección del tracto intestinal, obteniendo muestras para el aislamiento microbiológico e identificación molecular de los microorganismos cultivables, con el objetivo de obtener información filogenética. Mediante análisis bioinformáticos, se identificaron varios géneros de interés para la producción agropecuaria y de alimentos, como: Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis y Lactococcus cremoris. Posteriormente, se realizó un análisis metagenómico utilizando la extracción de ADN de tres secciones intestinales: anterior, media y posterior. El ADN se amplificó mediante PCR y, finalmente, se secuenció utilizando el gen ADNr 16S bacteriano. Como resultado, se identificaron todas las comunidades bacterianas que forman parte de la microbiota intestinal, con una presencia predominante de Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota y Cyanobacteria. El análisis metagenómico reveló diferencias funcionales entre las comunidades y la abundancia relativa de la microbiota intestinal. (Tomado de la fuente)Panaque cochliodon, known in Colombia as blue-eyed pleco,' is an endemic species in the Cauca and Magdalena river basins, classified as vulnerable (A2d) in the Red Book of Freshwater Fish of Colombia. This is the first report for Colombia on this species in its natural habitat, which is why it was chosen for this study. Additionally, due to its xylophagous habits—meaning it primarily consumes wood as a source of nutrition—it holds significant biological value for the ecosystem. While there is some knowledge about its basic behavior, adaptation to captivity, and other characteristics related to its feeding and reproduction, its digestive physiology and potential symbiotic relationships within its intestinal microbiota remain completely unknown. This study conducted the first characterization of the microbiota associated with the gastrointestinal tract of Panaque cochliodon. Three adult specimens from the Magdalena River were captured, transported, and sacrificed following animal welfare standards. Intestinal dissection was performed, obtaining samples for microbiological isolation and molecular identification of cultivable microorganisms to gather phylogenetic information. Through bioinformatic analysis, several genera of interest for agricultural and food production were identified, including Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis, and Lactococcus cremoris. Subsequently, a metagenomic analysis was conducted using DNA extraction from three intestinal sections: anterior, middle, and posterior. DNA was amplified via PCR and sequenced using the bacterial 16S rRNA gene. As a result, all bacterial communities forming part of the intestinal microbiota were identified, with a predominant presence of Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota, and Cyanobacteria. The metagenomic analysis revealed functional differences between communities and the relative abundance of the intestinal microbiotaMaestríaMagister en Ciencias AgrariasSe capturaron y utilizaron tres ejemplares adultos provenientes del río Magdalena, los cuales fueron transportados y sacrificados siguiendo las normas de bienestar animal. Se realizó la disección del tracto intestinal, obteniendo muestras para el aislamiento microbiológico e identificación molecular de los microorganismos cultivables, con el objetivo de obtener información filogenética. Mediante análisis bioinformáticos, se identificaron varios géneros de interés para la producción agropecuaria y de alimentos, como: Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis y Lactococcus cremoris. Posteriormente, se realizó un análisis metagenómico utilizando la extracción de ADN de tres secciones intestinales: anterior, media y posterior. El ADN se amplificó mediante PCR y, finalmente, se secuenció utilizando el gen ADNr 16S bacteriano. Como resultado, se identificaron todas las comunidades bacterianas que forman parte de la microbiota intestinal, con una presencia predominante de Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota y Cyanobacteria. El análisis metagenómico reveló diferencias funcionales entre las comunidades y la abundancia relativa de la microbiota intestinal.Biotecnología y producción agropecuariaProducción Agraria Sostenible.Sede Medellín97 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín590 - Animales570 - Biología570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesEspecies endémicas - ColombiaEspecies vulnerables - ColombiaPeces de agua dulce - ColombiaPanaque cochliodonNutrición animalFlora microbianaMicrobiomasPeces de agua dulce - DigestiónPanaque cochliodoncucha de ojos azulesmicrobiota intestinalMetagenómicagen ADN 16Sblue-eyed plecometagenomicsbacterial 16S rRNAintestinal microbiotaCaracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)Characterization of the microbial diversity associated with the gastrointestinal tract of the Panaque cochliodon (Blue-eyed Panaque)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperImageTexthttp://purl.org/redcol/resource_type/TMColombiaLaReferenciaAbdul Rahman, N., Parks, D., Willner, DL Engelbrektson, A., Goffredi, S., Warnecke, F., & Hugenholtz. (2015). Un estudio molecular de los géneros de termitas de Australia y América del Norte indica que la herencia vertical es la fuerza principal que da forma a los microbiomas intestinales de las termitas. Microbioma, 3(1), 1–16. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-0067-8Abriouel, H., Franz, C. M. A. P., Omar, N. Ben, & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.xAskarian, F., Zhou, Z., Olsen, R. E., Sperstad, S., & Ringø, E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326–329, 1–8. https://doi.org/https://doi.org/10.1016/j.aquaculture.2011.10.016Austin, B. (2006). The Bacterial Microflora of Fish, Revised. TheScientificWorldJOURNAL, 6, 325830. https://doi.org/10.1100/tsw.2006.181Bird, A. R., Conlon, M. A., Christophersen, C. T., & Topping, D. L. (2010). Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes, 1(4), 423–431. https://doi.org/10.3920/BM2010.0041Bledsoe, J. W., Peterson, B. C., Swanson, K. S., & Small, B. C. (2016). Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PLoS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166379Borges, N., Keller-Costa, T., Sanches-Fernandes, G. M. M., Louvado, A., Gomes, N. C. M., & Costa, R. (2021). Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annual Review of Animal Biosciences, 9, 423–452. https://doi.org/10.1146/annurev-animal-062920-113114Carnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.03.037Castañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/https://doi.org/10.1016/j.aquaculture.2019.734325Chu, T.-W., Chen, C.-N., & Pan, C.-Y. (2020). Antimicrobial status of tilapia (Oreochromis niloticus) fed Enterococcus avium originally isolated from goldfish intestine. Aquaculture Reports, 17, 100397. https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100397Clements, K. D., Angert, E. R., Montgomery, W. L., & Choat, J. H. (2014). Intestinal microbiota in fishes: what’s known and what’s not. Molecular Ecology, 23(8), 1891–1898. https://doi.org/https://doi.org/10.1111/mec.12699Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. Biotech, 5(1), 81–86. https://doi.org/https://doi.org/10.1007/s13205-014-0205-1David-Ruales, C. ., Betancur-Gonzales, E. ., & Cano-Gil, J. . (2021). Adaptación al cautiverio y estandarización de una tecnica no invasiva (ecografía) para la determinación del género y la evaluación de la madurez gonadal de la especie Panaque cochliodon (Cucha de ojos azules) del río Magdalena. Rev. Lasallista de Investigación, 267.David-Ruales, Guerra, M. O., Cano, J. D., & Betancur, E. M. (2022). Clove Oil (Eugenol®) as an Anesthetic in the Species Panaque Cochliodon-Steindachner, 1879 (Blue-Eyed Pleco. Revista Lasallista de Investigacion, 19(1), 182–194. https://doi.org/10.22507/rli.v19n1a11David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V, Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820Deng, Z., Jiang, Y., Chen, K., Gao, F., & Liu, X. (2020). Petroleum Depletion Property and Microbial Community Shift After Bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00353Di Maiuta, N., Schwarzentruber, P., Schenker, M., & Schoelkopf, J. (2013). Microbial population dynamics in the faeces of wood‐eating loricariid catfishes. Letters in Applied Microbiology, 56(6), 401–407. https://doi.org/10.1111/lam.12061Domínguez-Arrizabalaga, M Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests. Toxins, 12(7). https://doi.org/https://doi.org/10.3390/toxins12070430Fishelson, L., Montgomery, W. L., & Myrberg, A. (1985). A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science, 229, 49–51.Gerking, S. D., Division, A., & Brace, H. (1994). Feeding Ecology of fish (A. S. UNIVERSITY (ed.)). Library of Congress Cataloging-in-Publication Data.German, D. (2009). Inside the guts of wood-eating catfishes: can they digest wood? Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1011–1023. https://api.semanticscholar.org/CorpusID:7512400German, D., & Bittong, R. (2009). Digestive enzymes and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1025–1042. https://doi.org/10.1007/s00360-009-0383-zGivens, C., Ransom, B., Bano, N., & Hollibaugh, J. (2015). Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology Progress Series, 518, 209–223. https://doi.org/10.3354/meps11034Gómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52(2), 145–154. https://doi.org/10.1111/j.1574-695X.2007.00343.xGreen, G. B. H., Williams, M. B., Chehade, S. B., Flowers, J. T., Morrow, C. D., Lawrence, A. L., Bej, A. K., & Watts, S. A. (2023). Body Metrics and the Gut Microbiome in Response to Macronutrient Limitation in the Zebrafish Danio rerio. Current Developments in Nutrition, 7(4), 100065. https://doi.org/https://doi.org/10.1016/j.cdnut.2023.100065Grosell, M., Farrell, A. P., & Brauner, C. J. (2010). The Multifunctional Gut of Fish. In Fish Physiology (1st ed., Vol. 30). Academic Press; 1er edición (5 Octubre 2010).Gutiérrez-Ramirez, L. A., David-Ruales, C. A., Montoya-Campuzano, O. I., & Betancur-Gonzalez, E. M. (2016). Efecto de la inclusión en la dieta de probióticos microencapsulados sobre algunos parámetros zootécnicos en alevinos de tilapia roja (Oreochromis sp.). Salud Animal, 38(2), 112–119. https://doi.org/10.1093/oxfordhb/9780199204540.003.0007Hlordzi, V., Kuebutornye, F., Afriyie, G., Abarike, E., Lu, Y., & Chi, S. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18(100503). https://doi.org/https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100503Huertas-Caro, C., Urbano-Cáceres, E., & Torres-Caycedo, M. (2019). CIENCIAS EPIDEMIOLÓGICAS Y SALUBRISTAS ARTÍCULO DE REVISIÓN Diagnóstico molecular una alternativa para la detección de patógenos en alimentos. Revista Habanera de Ciencias Médicas, 18(3), 513–528. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2352Ichimatsu, T., Mizuki, E., Nishimura, K., Akao, T., Saitoh, H., Higuchi, K., & Ohba, M. (2000). Occurrence of Bacillus thuringiensis in Fresh Waters of Japan. Current Microbiology, 40(4), 217–220. https://doi.org/10.1007/s002849910044Ingerslev, H.-C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen, N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424–425, 24–34. https://doi.org/https://doi.org/10.1016/j.aquaculture.2013.12.032Izvekova, G. I., Izvekov, E. I., & Plotnikov, A. O. (2007). Symbiotic microflora in fishes of different ecological groups. Biology Bulletin, 34(6), 610–618. https://doi.org/10.1134/S106235900706012XKamei, Y., Sakata, T., & Kakimoto, D. (1985). Microflora in the alimentary tract of tilapia: Characterization and distri-bution of anaerobic bacteria. The Journal of General and Applied Microbiology, 31(2), 115–124. https://doi.org/10.2323/jgam.31.115Kamilya, D., & Devi, W. M. (2022). Bacillus Probiotics and Bioremediation: An Aquaculture Perspective BT - Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting (M. T. Islam, M. Rahman, & P. Pandey (eds.); pp. 335–347). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_15Kim, P. S., Shin, N.-R., Lee, J.-B., Kim, M.-S., Whon, T. W., Hyun, D.-W., Yun, J.-H., Jung, M.-J., Kim, J. Y., & Bae, J.-W. (2021). Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 9(1), 166. https://doi.org/10.1186/s40168-021-01113-xLall, S. P., & Tibbetts, S. M. (2009). Nutrition, Feeding, and Behavior of Fish. Veterinary Clinics of North America: Exotic Animal Practice, 12(2), 361–372. https://doi.org/https://doi.org/10.1016/j.cvex.2009.01.005Li, T, Raza, S. H. A., Yang, B., Sun, Y., Wang, G., Sun, W., Qian, A., Wang, C., Kang, Y., & Shan, X. (2020). Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals, 10(4). https://doi.org/https://doi.org/10.3390/ani10040608Li, Tongtong, Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2015). Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing. Microbial Ecology, 69(1), 25–36. https://doi.org/10.1007/s00248-014-0480-8Liu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F., & Wang, W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6(1), 24340. https://doi.org/10.1038/srep24340Llewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00207Lujan, N. K., German, D. P., & Winemiller, K. O. (2011). Do wood-grazing fishes partition their niche?: Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology, 25(6), 1327–1338. https://doi.org/10.1111/j.1365-2435.2011.01883.xManuel, F., Arnaldo, C., Odalis, T., Deysy, C., Mario, C., & Virna, C. (2019). Caracterización molecular ómica de una cepa de Bacillus amyloliquefaciens aislada de la microbiota del paiche Arapaima gigas con actividad antagonista contra bacterias patógenas de peces. Revista de Investigaciones Veterinarias Del Perú, 30(2). https://doi.org/http://dx.doi.org/10.15381/rivep.v30i2.15407March, P., & Tillett, D. (1999). BioEdit Nucleicos. https://www.nucleics.com/about_nucleics/about_nucleics.htmlMarden, C. L., McDonald, R., Schreier, H. J., & Watts, J. E. M. (2017). Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiology, 3(4), 749–761. https://doi.org/10.3934/microbiol.2017.4.749McCauley, M., German, D. P., Lujan, N. K., & Jackson, C. R. (2020). Gut microbiomes of sympatric Amazonian wood-eating catfishes (Loricariidae) reflect host identity and little role in wood digestion. Ecology and Evolution, 10(14), 7117–7128. https://doi.org/10.1002/ece3.6413Mcdonald, R. C., Em, J., & Schreier, H. J. (2019). Efecto de la dieta sobre el microbioma entérico del bagre carnívoro Panaque nigrolineatus. 1–15.McDonald, R., Schreier, H. J., & Watts, J. E. M. (2012). Phylogenetic Analysis of Microbial Communities in Different Regions of the Gastrointestinal Tract in Panaque nigrolineatus, a Wood-Eating Fish. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0048018McDonald, R., Zhang, F., Watts, J. E. M., & Schreier, H. J. (2015). Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. ISME Journal, 9(12), 2712–2724. https://doi.org/10.1038/ismej.2015.65Medela, D., Directora, T., Piazzon, C., Upv, H. T., & Mart, S. (2021). Recopilación bibliográfica y comparativa : la microbiota intestinal de dorada ( Sparus aurata ).Meidong, R., Nakao, M., Sakai, K., & Tongpim, S. (2021). Lactobacillus paraplantarum L34b-2 derived from fermented food improves the growth, disease resistance and innate immunity in Pangasius bocourti. Aquaculture, 531, 735878. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.735878Michl, S. C., Ratten, J.-M., Beyer, M., Hasler, M., LaRoche, J., & Schulz, C. (2017). The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLOS ONE, 12(5), e0177735. https://doi.org/10.1371/journal.pone.0177735Mojica, J., Castellanos, C., Usma, J., & Álvarez-León, R. (2012). Libro rojo de peces dulceacuícolas de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. In Researchgate.Net.Motta, A. S., Cladera-Olivera, F., & Brandelli, A. (2004). Screening for antimicrobial activity among bacteria isolated from the Amazon Basin. In Brazilian Journal of Microbiology (Vol. 35). scielo .Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., Henrissat, B., Knight, R., & Gordon, J. I. (2011). Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science, 332(6032), 970–974. https://doi.org/10.1126/science.1198719Navarrete, P., Espejo, R. T., & Romero, J. (2009). Molecular analysis of microbiota along the digestive tract of juvenile atlantic salmon (Salmo salar L.). Microbial Ecology, 57(3), 550–561. https://doi.org/10.1007/s00248-008-9448-xNayak, S. (2010). Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 1553–1573. https://doi.org/10.1111/j.1365-2109.2010.02546.xNelson, J., Wubah, D., & Stewart, D. (1999). Wood‐eating catfishes of the genus Panaque : gut microflora and cellulolytic enzyme activities. Journal of Fish Biology, 54(5), 1069–1082. https://doi.org/10.1111/j.1095-8649.1999.tb00858.xO’Sullivan, J. N., O’Connor, P. M., Rea, M. C., O’Sullivan, O., Walsh, C. J., Healy, B., Mathur, H., Field, D., Hill, C., & Paul Ross, R. (2020). Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. Journal of Bacteriology, 202(3). https://doi.org/https://doi.org/10.1128/JB.00639-19Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C., & Iliopoulos, loannis. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. https://doi.org/10.4137/BBI.S12462Prasath, B. B., Wang, Y., Su, Y., Zheng, W., Lin, H., & Yang, H. (2021). Coagulant plus bacillus nitratireducens fermentation broth technique provides a rapid algicidal effect of toxic red tide dinoflagellate. Journal of Marine Science and Engineering, 9(4). https://doi.org/https://doi.org/10.3390/jmse9040395Puello-Caballero, P., Liseth, Inés Montoya-Campuzano, O., Alfonso Castañeda-Monsalve, V., & Mary Moreno-Murillo, L. (2018). Characterization of the microbiota present in the intestine of Piaractus brachypomus (Cachama blanca). Revista de Salud Animal, 40(2), 2224–4700.Rabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6). https://doi.org/https://doi.org/10.3390/molecules24061046Rawls, J. F., Samuel, B. S., & Gordon, J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596–4601. https://doi.org/10.1073/pnas.0400706101Ray, A., Roy, T., Mondal, S., & Ringø, E. (2010). Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10), 1462–1469. https://doi.org/https://doi.org/10.1111/j.1365-2109.2009.02437.xRay, A K, Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition, 18(5), 465–492. https://doi.org/https://doi.org/10.1111/j.1365-2095.2012.00943.xRay, Arun K., Bairagi, A., Sarkar Ghosh, K., & Sen, S. K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 37(1), 47–53. https://doi.org/10.3750/AIP2007.37.1.07Rees, C. E. D., Green, L. H., Goldman, E., & Loessner, M. J. (2015). Manual de Bacteriología Sistemática de Bergey. In Practical Handbook of Microbiology, Third Edition. https://doi.org/10.1201/b17871Romero, J., & Navarrete, P. (2006). 16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microbial Ecology, 51(4), 422–430. http://www.jstor.org/stable/25153335Saha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37(4), 380–388. https://doi.org/https://doi.org/10.1111/j.1365-2109.2006.01442.xScott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut microbiota. Pharmacological Research, 69(1), 52–60. https://doi.org/https://doi.org/10.1016/j.phrs.2012.10.020Sibbing, F. A. (1988). Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing. Environmental Biology of Fishes, 22(3), 161–178. https://doi.org/10.1007/BF00005379Sullam, K., Essinger, S., Rosen, G., Kilham, S., & Russell, J. (2010). Environmental and evolutionary factors that shape gut bacterial communities of fish: A meta-analysis.Suyehiro, Y. (1942). A Study on the digestive system and feeding habits of fish. In TA - TT -. Japanese journal of zoology [S.l.]. https://doi.org/LK - https://worldcat.org/title/492797911Talwar, C., Nagar, S., Lal, R., & Negi, R. K. (2018). Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian Journal of Microbiology, 58(4), 397–414. https://doi.org/10.1007/s12088-018-0760-yTan, H. Y., Chen, S.-W., & Hu, S.-Y. (2019). Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 92, 265–275. https://doi.org/https://doi.org/10.1016/j.fsi.2019.06.027Tiwari, S., Singh, R., Yadav, J., Gaur, R., Singh, A., Yadav, J. S., Pandey, P. K., Yadav, S. K., Prajapati, J., Helena, P., Dewangan, J., & Jamal, F. (2022). Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts, 12 (7). https://doi.org/https://doi.org/10.3390/catal12070749Trust, T. J., & Sparrow, R. A. H. (1974). The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology, 20(9), 1219–1228. https://doi.org/10.1139/m74-188Türe, M., Cebeci, A., & Özcelep, T. (2022). The first outbreak of citrobacteriosis caused by Citrobacter gillenii in reared Russian sturgeon (Acipenser gueldenstaedtii) in Turkiye. Veterinary Research Forum, 13(3), 323–329. https://doi.org/10.30466/vrf.2021.137808.3076Vadstein, O., Bergh, Ø., Gatesoupe, F.-J., Galindo-Villegas, J., Mulero, V., Picchietti, S., Scapigliati, G., Makridis, P., Olsen, Y., Dierckens, K., Defoirdt, T., Boon, N., De Schryver, P., & Bossier, P. (2013). Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5(s1), S1–S25. https://doi.org/https://doi.org/10.1111/j.1753-5131.2012.01082.xVan Kessel, M. A. H. J., Dutilh, B. E., Neveling, K., Kwint, M. P., Veltman, J. A., Flik, G., Jetten, M. S. M., Klaren, P. H. M., & Op den Camp, H. J. M. (2011). Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 1(1), 41. https://doi.org/10.1186/2191-0855-1-41Vásquez-Torres, W. (2004). Principios de Nutrición Aplicada al Cultivo de Peces (1st ed.). Universidad de los Llanos.Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D. P., Pfirschke, C., Engblom, C., Pittet, M. J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P.-L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., … Zitvogel, L. (2013). The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342(6161), 971–976. https://doi.org/10.1126/science.1240537Wang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2018). Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 10(3), 626–640. https://doi.org/https://doi.org/10.1111/raq.12191Wang, A., Ran, C., Ring, E., & Zhou, Z. (2017). Progress in fish gastrointestinal microbiota researche. Aquaculture, 0, 1–15.Wang, C., Xie, B., Han, L., & Xu, X. (2013). Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique. Bioresource Technology, 145, 65–70. https://doi.org/https://doi.org/10.1016/j.biortech.2013.01.170Watts, J. E. M., McDonald, R., Daniel, R., & Schreier, H. J. (2013). Examination of a culturable microbial population from the gastrointestinal tract of the wood-eating loricariid catfish panaque nigrolineatus. Diversity, 5(3), 641–656. https://doi.org/10.3390/d5030641Wróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. In International Journal of Environmental Research and Public Health (Vol. 20, Issue 6). https://doi.org/10.3390/ijerph20064964Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine. PLOS ONE, 7(2), e30440. https://doi.org/10.1371/journal.pone.0030440Ye, L., Amberg, J., Chapman, D., Gaikowski, M., & Liu, W.-T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. The ISME Journal, 8(3), 541–551. https://doi.org/10.1038/ismej.2013.181Yoshimizu, M., & Kimura, T. (1976). Study on the Intestinal Microflora of Salmonids. Fish Pathology, 10(2), 243–259. https://doi.org/10.3147/jsfp.10.243Younes, A., Saito, H., Tani, S., Ikeo, R., & Kawai, K. (2023). Metagenomic analysis of gut microbiome from tilapia species across several regions in Japan. Aquaculture, 576(March), 739809. https://doi.org/10.1016/j.aquaculture.2023.739809Zatán Valdiviezo, A. E., Castillo Chunga, D., Castañeda Vargas, A. E., Feria Zevallos, M. A., Toledo Valdiviezo, O. E., Aguilar Zavaleta, J. L., Cueva Távara, M. D., & Motte, E. (2020). Caracterización de la microbiota intestinal en robalo (Centropomus sp.) y aislamiento de bacterias probióticas potenciales. Revista de Investigaciones Veterinarias Del Perú, 31(3), e16036. https://doi.org/10.15381/rivep.v31i3.16036Zhai, Q., Yu, L., Li, T., Zhu, J., Zhang, C., Zhao, J., Zhang, H., & Chen, W. (2017). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie van Leeuwenhoek, 110(4), 501–513. https://doi.org/10.1007/s10482-016-0819-xIdentificación molecular del microbioma en el tracto gastrointestinal de la especie Panaque cochliodon (cucha de ojos azules)Corporación Universitaria LasallistaEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85923/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1028004844.2024.pdf1028004844.2024.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf3538696https://repositorio.unal.edu.co/bitstream/unal/85923/2/1028004844.2024.pdf4a68d3243e713b16b13a84111e417adcMD52THUMBNAIL1028004844.2024.pdf.jpg1028004844.2024.pdf.jpgGenerated Thumbnailimage/jpeg5129https://repositorio.unal.edu.co/bitstream/unal/85923/3/1028004844.2024.pdf.jpg3216e31604b6265cb4a6d7aa0b468e70MD53unal/85923oai:repositorio.unal.edu.co:unal/859232024-08-23 23:12:14.324Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=