Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
ilustraciones, fotografías, gráficos
- Autores:
-
Cano Gil, Juan David
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85923
- Palabra clave:
- 590 - Animales
570 - Biología
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
Especies endémicas - Colombia
Especies vulnerables - Colombia
Peces de agua dulce - Colombia
Panaque cochliodon
Nutrición animal
Flora microbiana
Microbiomas
Peces de agua dulce - Digestión
Panaque cochliodon
cucha de ojos azules
microbiota intestinal
Metagenómica
gen ADN 16S
blue-eyed pleco
metagenomics
bacterial 16S rRNA
intestinal microbiota
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_55631d8026adae3a1ff9f5bb43f61a2f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85923 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules) |
dc.title.translated.eng.fl_str_mv |
Characterization of the microbial diversity associated with the gastrointestinal tract of the Panaque cochliodon (Blue-eyed Panaque) |
title |
Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules) |
spellingShingle |
Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules) 590 - Animales 570 - Biología 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales Especies endémicas - Colombia Especies vulnerables - Colombia Peces de agua dulce - Colombia Panaque cochliodon Nutrición animal Flora microbiana Microbiomas Peces de agua dulce - Digestión Panaque cochliodon cucha de ojos azules microbiota intestinal Metagenómica gen ADN 16S blue-eyed pleco metagenomics bacterial 16S rRNA intestinal microbiota |
title_short |
Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules) |
title_full |
Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules) |
title_fullStr |
Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules) |
title_full_unstemmed |
Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules) |
title_sort |
Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules) |
dc.creator.fl_str_mv |
Cano Gil, Juan David |
dc.contributor.advisor.none.fl_str_mv |
David Ruales, Carlos Arturo Pardo Carrasco, Sandra Clemencia Gutiérrez Ramírez, Luz Adriana |
dc.contributor.author.none.fl_str_mv |
Cano Gil, Juan David |
dc.contributor.researchgroup.spa.fl_str_mv |
Producción, Desarrollo y Transformación Agropecuaria (GIPDTA). |
dc.contributor.orcid.spa.fl_str_mv |
Cano Gil, Juan David (0000000245747509) |
dc.contributor.cvlac.spa.fl_str_mv |
Cano Gil, Juan David (0001821334) |
dc.subject.ddc.spa.fl_str_mv |
590 - Animales 570 - Biología 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales |
topic |
590 - Animales 570 - Biología 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales Especies endémicas - Colombia Especies vulnerables - Colombia Peces de agua dulce - Colombia Panaque cochliodon Nutrición animal Flora microbiana Microbiomas Peces de agua dulce - Digestión Panaque cochliodon cucha de ojos azules microbiota intestinal Metagenómica gen ADN 16S blue-eyed pleco metagenomics bacterial 16S rRNA intestinal microbiota |
dc.subject.agrovoc.none.fl_str_mv |
Especies endémicas - Colombia Especies vulnerables - Colombia Peces de agua dulce - Colombia Panaque cochliodon Nutrición animal Flora microbiana Microbiomas |
dc.subject.lemb.none.fl_str_mv |
Peces de agua dulce - Digestión |
dc.subject.proposal.spa.fl_str_mv |
Panaque cochliodon cucha de ojos azules microbiota intestinal Metagenómica gen ADN 16S |
dc.subject.proposal.eng.fl_str_mv |
blue-eyed pleco metagenomics bacterial 16S rRNA intestinal microbiota |
description |
ilustraciones, fotografías, gráficos |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-16T14:30:17Z |
dc.date.available.none.fl_str_mv |
2024-04-16T14:30:17Z |
dc.date.issued.none.fl_str_mv |
2024-04-10 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
DataPaper Image Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85923 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85923 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abdul Rahman, N., Parks, D., Willner, DL Engelbrektson, A., Goffredi, S., Warnecke, F., & Hugenholtz. (2015). Un estudio molecular de los géneros de termitas de Australia y América del Norte indica que la herencia vertical es la fuerza principal que da forma a los microbiomas intestinales de las termitas. Microbioma, 3(1), 1–16. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-0067-8 Abriouel, H., Franz, C. M. A. P., Omar, N. Ben, & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x Askarian, F., Zhou, Z., Olsen, R. E., Sperstad, S., & Ringø, E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326–329, 1–8. https://doi.org/https://doi.org/10.1016/j.aquaculture.2011.10.016 Austin, B. (2006). The Bacterial Microflora of Fish, Revised. TheScientificWorldJOURNAL, 6, 325830. https://doi.org/10.1100/tsw.2006.181 Bird, A. R., Conlon, M. A., Christophersen, C. T., & Topping, D. L. (2010). Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes, 1(4), 423–431. https://doi.org/10.3920/BM2010.0041 Bledsoe, J. W., Peterson, B. C., Swanson, K. S., & Small, B. C. (2016). Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PLoS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166379 Borges, N., Keller-Costa, T., Sanches-Fernandes, G. M. M., Louvado, A., Gomes, N. C. M., & Costa, R. (2021). Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annual Review of Animal Biosciences, 9, 423–452. https://doi.org/10.1146/annurev-animal-062920-113114 Carnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.03.037 Castañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/https://doi.org/10.1016/j.aquaculture.2019.734325 Chu, T.-W., Chen, C.-N., & Pan, C.-Y. (2020). Antimicrobial status of tilapia (Oreochromis niloticus) fed Enterococcus avium originally isolated from goldfish intestine. Aquaculture Reports, 17, 100397. https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100397 Clements, K. D., Angert, E. R., Montgomery, W. L., & Choat, J. H. (2014). Intestinal microbiota in fishes: what’s known and what’s not. Molecular Ecology, 23(8), 1891–1898. https://doi.org/https://doi.org/10.1111/mec.12699 Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. Biotech, 5(1), 81–86. https://doi.org/https://doi.org/10.1007/s13205-014-0205-1 David-Ruales, C. ., Betancur-Gonzales, E. ., & Cano-Gil, J. . (2021). Adaptación al cautiverio y estandarización de una tecnica no invasiva (ecografía) para la determinación del género y la evaluación de la madurez gonadal de la especie Panaque cochliodon (Cucha de ojos azules) del río Magdalena. Rev. Lasallista de Investigación, 267. David-Ruales, Guerra, M. O., Cano, J. D., & Betancur, E. M. (2022). Clove Oil (Eugenol®) as an Anesthetic in the Species Panaque Cochliodon-Steindachner, 1879 (Blue-Eyed Pleco. Revista Lasallista de Investigacion, 19(1), 182–194. https://doi.org/10.22507/rli.v19n1a11 David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V, Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820 Deng, Z., Jiang, Y., Chen, K., Gao, F., & Liu, X. (2020). Petroleum Depletion Property and Microbial Community Shift After Bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00353 Di Maiuta, N., Schwarzentruber, P., Schenker, M., & Schoelkopf, J. (2013). Microbial population dynamics in the faeces of wood‐eating loricariid catfishes. Letters in Applied Microbiology, 56(6), 401–407. https://doi.org/10.1111/lam.12061 Domínguez-Arrizabalaga, M Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests. Toxins, 12(7). https://doi.org/https://doi.org/10.3390/toxins12070430 Fishelson, L., Montgomery, W. L., & Myrberg, A. (1985). A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science, 229, 49–51. Gerking, S. D., Division, A., & Brace, H. (1994). Feeding Ecology of fish (A. S. UNIVERSITY (ed.)). Library of Congress Cataloging-in-Publication Data. German, D. (2009). Inside the guts of wood-eating catfishes: can they digest wood? Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1011–1023. https://api.semanticscholar.org/CorpusID:7512400 German, D., & Bittong, R. (2009). Digestive enzymes and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1025–1042. https://doi.org/10.1007/s00360-009-0383-z Givens, C., Ransom, B., Bano, N., & Hollibaugh, J. (2015). Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology Progress Series, 518, 209–223. https://doi.org/10.3354/meps11034 Gómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52(2), 145–154. https://doi.org/10.1111/j.1574-695X.2007.00343.x Green, G. B. H., Williams, M. B., Chehade, S. B., Flowers, J. T., Morrow, C. D., Lawrence, A. L., Bej, A. K., & Watts, S. A. (2023). Body Metrics and the Gut Microbiome in Response to Macronutrient Limitation in the Zebrafish Danio rerio. Current Developments in Nutrition, 7(4), 100065. https://doi.org/https://doi.org/10.1016/j.cdnut.2023.100065 Grosell, M., Farrell, A. P., & Brauner, C. J. (2010). The Multifunctional Gut of Fish. In Fish Physiology (1st ed., Vol. 30). Academic Press; 1er edición (5 Octubre 2010). Gutiérrez-Ramirez, L. A., David-Ruales, C. A., Montoya-Campuzano, O. I., & Betancur-Gonzalez, E. M. (2016). Efecto de la inclusión en la dieta de probióticos microencapsulados sobre algunos parámetros zootécnicos en alevinos de tilapia roja (Oreochromis sp.). Salud Animal, 38(2), 112–119. https://doi.org/10.1093/oxfordhb/9780199204540.003.0007 Hlordzi, V., Kuebutornye, F., Afriyie, G., Abarike, E., Lu, Y., & Chi, S. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18(100503). https://doi.org/https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100503 Huertas-Caro, C., Urbano-Cáceres, E., & Torres-Caycedo, M. (2019). CIENCIAS EPIDEMIOLÓGICAS Y SALUBRISTAS ARTÍCULO DE REVISIÓN Diagnóstico molecular una alternativa para la detección de patógenos en alimentos. Revista Habanera de Ciencias Médicas, 18(3), 513–528. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2352 Ichimatsu, T., Mizuki, E., Nishimura, K., Akao, T., Saitoh, H., Higuchi, K., & Ohba, M. (2000). Occurrence of Bacillus thuringiensis in Fresh Waters of Japan. Current Microbiology, 40(4), 217–220. https://doi.org/10.1007/s002849910044 Ingerslev, H.-C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen, N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424–425, 24–34. https://doi.org/https://doi.org/10.1016/j.aquaculture.2013.12.032 Izvekova, G. I., Izvekov, E. I., & Plotnikov, A. O. (2007). Symbiotic microflora in fishes of different ecological groups. Biology Bulletin, 34(6), 610–618. https://doi.org/10.1134/S106235900706012X Kamei, Y., Sakata, T., & Kakimoto, D. (1985). Microflora in the alimentary tract of tilapia: Characterization and distri-bution of anaerobic bacteria. The Journal of General and Applied Microbiology, 31(2), 115–124. https://doi.org/10.2323/jgam.31.115 Kamilya, D., & Devi, W. M. (2022). Bacillus Probiotics and Bioremediation: An Aquaculture Perspective BT - Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting (M. T. Islam, M. Rahman, & P. Pandey (eds.); pp. 335–347). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_15 Kim, P. S., Shin, N.-R., Lee, J.-B., Kim, M.-S., Whon, T. W., Hyun, D.-W., Yun, J.-H., Jung, M.-J., Kim, J. Y., & Bae, J.-W. (2021). Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 9(1), 166. https://doi.org/10.1186/s40168-021-01113-x Lall, S. P., & Tibbetts, S. M. (2009). Nutrition, Feeding, and Behavior of Fish. Veterinary Clinics of North America: Exotic Animal Practice, 12(2), 361–372. https://doi.org/https://doi.org/10.1016/j.cvex.2009.01.005 Li, T, Raza, S. H. A., Yang, B., Sun, Y., Wang, G., Sun, W., Qian, A., Wang, C., Kang, Y., & Shan, X. (2020). Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals, 10(4). https://doi.org/https://doi.org/10.3390/ani10040608 Li, Tongtong, Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2015). Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing. Microbial Ecology, 69(1), 25–36. https://doi.org/10.1007/s00248-014-0480-8 Liu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F., & Wang, W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6(1), 24340. https://doi.org/10.1038/srep24340 Llewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00207 Lujan, N. K., German, D. P., & Winemiller, K. O. (2011). Do wood-grazing fishes partition their niche?: Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology, 25(6), 1327–1338. https://doi.org/10.1111/j.1365-2435.2011.01883.x Manuel, F., Arnaldo, C., Odalis, T., Deysy, C., Mario, C., & Virna, C. (2019). Caracterización molecular ómica de una cepa de Bacillus amyloliquefaciens aislada de la microbiota del paiche Arapaima gigas con actividad antagonista contra bacterias patógenas de peces. Revista de Investigaciones Veterinarias Del Perú, 30(2). https://doi.org/http://dx.doi.org/10.15381/rivep.v30i2.15407 March, P., & Tillett, D. (1999). BioEdit Nucleicos. https://www.nucleics.com/about_nucleics/about_nucleics.html Marden, C. L., McDonald, R., Schreier, H. J., & Watts, J. E. M. (2017). Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiology, 3(4), 749–761. https://doi.org/10.3934/microbiol.2017.4.749 McCauley, M., German, D. P., Lujan, N. K., & Jackson, C. R. (2020). Gut microbiomes of sympatric Amazonian wood-eating catfishes (Loricariidae) reflect host identity and little role in wood digestion. Ecology and Evolution, 10(14), 7117–7128. https://doi.org/10.1002/ece3.6413 Mcdonald, R. C., Em, J., & Schreier, H. J. (2019). Efecto de la dieta sobre el microbioma entérico del bagre carnívoro Panaque nigrolineatus. 1–15. McDonald, R., Schreier, H. J., & Watts, J. E. M. (2012). Phylogenetic Analysis of Microbial Communities in Different Regions of the Gastrointestinal Tract in Panaque nigrolineatus, a Wood-Eating Fish. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0048018 McDonald, R., Zhang, F., Watts, J. E. M., & Schreier, H. J. (2015). Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. ISME Journal, 9(12), 2712–2724. https://doi.org/10.1038/ismej.2015.65 Medela, D., Directora, T., Piazzon, C., Upv, H. T., & Mart, S. (2021). Recopilación bibliográfica y comparativa : la microbiota intestinal de dorada ( Sparus aurata ). Meidong, R., Nakao, M., Sakai, K., & Tongpim, S. (2021). Lactobacillus paraplantarum L34b-2 derived from fermented food improves the growth, disease resistance and innate immunity in Pangasius bocourti. Aquaculture, 531, 735878. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.735878 Michl, S. C., Ratten, J.-M., Beyer, M., Hasler, M., LaRoche, J., & Schulz, C. (2017). The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLOS ONE, 12(5), e0177735. https://doi.org/10.1371/journal.pone.0177735 Mojica, J., Castellanos, C., Usma, J., & Álvarez-León, R. (2012). Libro rojo de peces dulceacuícolas de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. In Researchgate.Net. Motta, A. S., Cladera-Olivera, F., & Brandelli, A. (2004). Screening for antimicrobial activity among bacteria isolated from the Amazon Basin. In Brazilian Journal of Microbiology (Vol. 35). scielo . Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., Henrissat, B., Knight, R., & Gordon, J. I. (2011). Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science, 332(6032), 970–974. https://doi.org/10.1126/science.1198719 Navarrete, P., Espejo, R. T., & Romero, J. (2009). Molecular analysis of microbiota along the digestive tract of juvenile atlantic salmon (Salmo salar L.). Microbial Ecology, 57(3), 550–561. https://doi.org/10.1007/s00248-008-9448-x Nayak, S. (2010). Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 1553–1573. https://doi.org/10.1111/j.1365-2109.2010.02546.x Nelson, J., Wubah, D., & Stewart, D. (1999). Wood‐eating catfishes of the genus Panaque : gut microflora and cellulolytic enzyme activities. Journal of Fish Biology, 54(5), 1069–1082. https://doi.org/10.1111/j.1095-8649.1999.tb00858.x O’Sullivan, J. N., O’Connor, P. M., Rea, M. C., O’Sullivan, O., Walsh, C. J., Healy, B., Mathur, H., Field, D., Hill, C., & Paul Ross, R. (2020). Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. Journal of Bacteriology, 202(3). https://doi.org/https://doi.org/10.1128/JB.00639-19 Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C., & Iliopoulos, loannis. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. https://doi.org/10.4137/BBI.S12462 Prasath, B. B., Wang, Y., Su, Y., Zheng, W., Lin, H., & Yang, H. (2021). Coagulant plus bacillus nitratireducens fermentation broth technique provides a rapid algicidal effect of toxic red tide dinoflagellate. Journal of Marine Science and Engineering, 9(4). https://doi.org/https://doi.org/10.3390/jmse9040395 Puello-Caballero, P., Liseth, Inés Montoya-Campuzano, O., Alfonso Castañeda-Monsalve, V., & Mary Moreno-Murillo, L. (2018). Characterization of the microbiota present in the intestine of Piaractus brachypomus (Cachama blanca). Revista de Salud Animal, 40(2), 2224–4700. Rabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6). https://doi.org/https://doi.org/10.3390/molecules24061046 Rawls, J. F., Samuel, B. S., & Gordon, J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596–4601. https://doi.org/10.1073/pnas.0400706101 Ray, A., Roy, T., Mondal, S., & Ringø, E. (2010). Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10), 1462–1469. https://doi.org/https://doi.org/10.1111/j.1365-2109.2009.02437.x Ray, A K, Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition, 18(5), 465–492. https://doi.org/https://doi.org/10.1111/j.1365-2095.2012.00943.x Ray, Arun K., Bairagi, A., Sarkar Ghosh, K., & Sen, S. K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 37(1), 47–53. https://doi.org/10.3750/AIP2007.37.1.07 Rees, C. E. D., Green, L. H., Goldman, E., & Loessner, M. J. (2015). Manual de Bacteriología Sistemática de Bergey. In Practical Handbook of Microbiology, Third Edition. https://doi.org/10.1201/b17871 Romero, J., & Navarrete, P. (2006). 16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microbial Ecology, 51(4), 422–430. http://www.jstor.org/stable/25153335 Saha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37(4), 380–388. https://doi.org/https://doi.org/10.1111/j.1365-2109.2006.01442.x Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut microbiota. Pharmacological Research, 69(1), 52–60. https://doi.org/https://doi.org/10.1016/j.phrs.2012.10.020 Sibbing, F. A. (1988). Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing. Environmental Biology of Fishes, 22(3), 161–178. https://doi.org/10.1007/BF00005379 Sullam, K., Essinger, S., Rosen, G., Kilham, S., & Russell, J. (2010). Environmental and evolutionary factors that shape gut bacterial communities of fish: A meta-analysis. Suyehiro, Y. (1942). A Study on the digestive system and feeding habits of fish. In TA - TT -. Japanese journal of zoology [S.l.]. https://doi.org/LK - https://worldcat.org/title/492797911 Talwar, C., Nagar, S., Lal, R., & Negi, R. K. (2018). Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian Journal of Microbiology, 58(4), 397–414. https://doi.org/10.1007/s12088-018-0760-y Tan, H. Y., Chen, S.-W., & Hu, S.-Y. (2019). Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 92, 265–275. https://doi.org/https://doi.org/10.1016/j.fsi.2019.06.027 Tiwari, S., Singh, R., Yadav, J., Gaur, R., Singh, A., Yadav, J. S., Pandey, P. K., Yadav, S. K., Prajapati, J., Helena, P., Dewangan, J., & Jamal, F. (2022). Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts, 12 (7). https://doi.org/https://doi.org/10.3390/catal12070749 Trust, T. J., & Sparrow, R. A. H. (1974). The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology, 20(9), 1219–1228. https://doi.org/10.1139/m74-188 Türe, M., Cebeci, A., & Özcelep, T. (2022). The first outbreak of citrobacteriosis caused by Citrobacter gillenii in reared Russian sturgeon (Acipenser gueldenstaedtii) in Turkiye. Veterinary Research Forum, 13(3), 323–329. https://doi.org/10.30466/vrf.2021.137808.3076 Vadstein, O., Bergh, Ø., Gatesoupe, F.-J., Galindo-Villegas, J., Mulero, V., Picchietti, S., Scapigliati, G., Makridis, P., Olsen, Y., Dierckens, K., Defoirdt, T., Boon, N., De Schryver, P., & Bossier, P. (2013). Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5(s1), S1–S25. https://doi.org/https://doi.org/10.1111/j.1753-5131.2012.01082.x Van Kessel, M. A. H. J., Dutilh, B. E., Neveling, K., Kwint, M. P., Veltman, J. A., Flik, G., Jetten, M. S. M., Klaren, P. H. M., & Op den Camp, H. J. M. (2011). Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 1(1), 41. https://doi.org/10.1186/2191-0855-1-41 Vásquez-Torres, W. (2004). Principios de Nutrición Aplicada al Cultivo de Peces (1st ed.). Universidad de los Llanos. Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D. P., Pfirschke, C., Engblom, C., Pittet, M. J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P.-L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., … Zitvogel, L. (2013). The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342(6161), 971–976. https://doi.org/10.1126/science.1240537 Wang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2018). Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 10(3), 626–640. https://doi.org/https://doi.org/10.1111/raq.12191 Wang, A., Ran, C., Ring, E., & Zhou, Z. (2017). Progress in fish gastrointestinal microbiota researche. Aquaculture, 0, 1–15. Wang, C., Xie, B., Han, L., & Xu, X. (2013). Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique. Bioresource Technology, 145, 65–70. https://doi.org/https://doi.org/10.1016/j.biortech.2013.01.170 Watts, J. E. M., McDonald, R., Daniel, R., & Schreier, H. J. (2013). Examination of a culturable microbial population from the gastrointestinal tract of the wood-eating loricariid catfish panaque nigrolineatus. Diversity, 5(3), 641–656. https://doi.org/10.3390/d5030641 Wróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. In International Journal of Environmental Research and Public Health (Vol. 20, Issue 6). https://doi.org/10.3390/ijerph20064964 Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine. PLOS ONE, 7(2), e30440. https://doi.org/10.1371/journal.pone.0030440 Ye, L., Amberg, J., Chapman, D., Gaikowski, M., & Liu, W.-T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. The ISME Journal, 8(3), 541–551. https://doi.org/10.1038/ismej.2013.181 Yoshimizu, M., & Kimura, T. (1976). Study on the Intestinal Microflora of Salmonids. Fish Pathology, 10(2), 243–259. https://doi.org/10.3147/jsfp.10.243 Younes, A., Saito, H., Tani, S., Ikeo, R., & Kawai, K. (2023). Metagenomic analysis of gut microbiome from tilapia species across several regions in Japan. Aquaculture, 576(March), 739809. https://doi.org/10.1016/j.aquaculture.2023.739809 Zatán Valdiviezo, A. E., Castillo Chunga, D., Castañeda Vargas, A. E., Feria Zevallos, M. A., Toledo Valdiviezo, O. E., Aguilar Zavaleta, J. L., Cueva Távara, M. D., & Motte, E. (2020). Caracterización de la microbiota intestinal en robalo (Centropomus sp.) y aislamiento de bacterias probióticas potenciales. Revista de Investigaciones Veterinarias Del Perú, 31(3), e16036. https://doi.org/10.15381/rivep.v31i3.16036 Zhai, Q., Yu, L., Li, T., Zhu, J., Zhang, C., Zhao, J., Zhang, H., & Chen, W. (2017). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie van Leeuwenhoek, 110(4), 501–513. https://doi.org/10.1007/s10482-016-0819-x |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
97 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85923/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85923/2/1028004844.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/85923/3/1028004844.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 4a68d3243e713b16b13a84111e417adc 3216e31604b6265cb4a6d7aa0b468e70 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090200494637056 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2David Ruales, Carlos Arturoe347852e472d254460d2574b239150cdPardo Carrasco, Sandra Clemenciafe39f49924d8437bd04909027b444124Gutiérrez Ramírez, Luz Adrianadee9a8fef1932bf08a4dc3208e6d3d53Cano Gil, Juan David46087fbc014af1cdcd2700e8779f37eeProducción, Desarrollo y Transformación Agropecuaria (GIPDTA).Cano Gil, Juan David (0000000245747509)Cano Gil, Juan David (0001821334)2024-04-16T14:30:17Z2024-04-16T14:30:17Z2024-04-10https://repositorio.unal.edu.co/handle/unal/85923Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficosPanaque cochliodon, conocido en Colombia como cucha de ojos azules, es una especie endémica de las cuencas del Cauca y el Magdalena, y está clasificada como vulnerable (A2d) en el Libro Rojo de los Peces de Agua Dulce de Colombia. Este es el primer reporte para Colombia sobre esta especie en medio natural razón por la cual se escogió para este trabajo, además por tener hábitos xilívoros, es decir, que consume madera como principal fuente de alimento para su nutrición, siendo una especie de gran valor biológico para el ecosistema. Se tiene cierto conocimiento sobre su comportamiento básico, adaptación al cautiverio y otras características relacionadas con su alimentación y reproducción, sin embargo, se desconoce por completo su fisiología digestiva y las posibles relaciones simbióticas de los componentes de su microbiota intestinal. En este estudio se realizó la primera caracterización de la microbiota asociada al tracto gastrointestinal de Panaque cochliodon. Para ello, se capturaron y utilizaron tres ejemplares adultos provenientes del río Magdalena, los cuales fueron transportados y sacrificados siguiendo las normas de bienestar animal. Se realizó la disección del tracto intestinal, obteniendo muestras para el aislamiento microbiológico e identificación molecular de los microorganismos cultivables, con el objetivo de obtener información filogenética. Mediante análisis bioinformáticos, se identificaron varios géneros de interés para la producción agropecuaria y de alimentos, como: Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis y Lactococcus cremoris. Posteriormente, se realizó un análisis metagenómico utilizando la extracción de ADN de tres secciones intestinales: anterior, media y posterior. El ADN se amplificó mediante PCR y, finalmente, se secuenció utilizando el gen ADNr 16S bacteriano. Como resultado, se identificaron todas las comunidades bacterianas que forman parte de la microbiota intestinal, con una presencia predominante de Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota y Cyanobacteria. El análisis metagenómico reveló diferencias funcionales entre las comunidades y la abundancia relativa de la microbiota intestinal. (Tomado de la fuente)Panaque cochliodon, known in Colombia as blue-eyed pleco,' is an endemic species in the Cauca and Magdalena river basins, classified as vulnerable (A2d) in the Red Book of Freshwater Fish of Colombia. This is the first report for Colombia on this species in its natural habitat, which is why it was chosen for this study. Additionally, due to its xylophagous habits—meaning it primarily consumes wood as a source of nutrition—it holds significant biological value for the ecosystem. While there is some knowledge about its basic behavior, adaptation to captivity, and other characteristics related to its feeding and reproduction, its digestive physiology and potential symbiotic relationships within its intestinal microbiota remain completely unknown. This study conducted the first characterization of the microbiota associated with the gastrointestinal tract of Panaque cochliodon. Three adult specimens from the Magdalena River were captured, transported, and sacrificed following animal welfare standards. Intestinal dissection was performed, obtaining samples for microbiological isolation and molecular identification of cultivable microorganisms to gather phylogenetic information. Through bioinformatic analysis, several genera of interest for agricultural and food production were identified, including Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis, and Lactococcus cremoris. Subsequently, a metagenomic analysis was conducted using DNA extraction from three intestinal sections: anterior, middle, and posterior. DNA was amplified via PCR and sequenced using the bacterial 16S rRNA gene. As a result, all bacterial communities forming part of the intestinal microbiota were identified, with a predominant presence of Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota, and Cyanobacteria. The metagenomic analysis revealed functional differences between communities and the relative abundance of the intestinal microbiotaMaestríaMagister en Ciencias AgrariasSe capturaron y utilizaron tres ejemplares adultos provenientes del río Magdalena, los cuales fueron transportados y sacrificados siguiendo las normas de bienestar animal. Se realizó la disección del tracto intestinal, obteniendo muestras para el aislamiento microbiológico e identificación molecular de los microorganismos cultivables, con el objetivo de obtener información filogenética. Mediante análisis bioinformáticos, se identificaron varios géneros de interés para la producción agropecuaria y de alimentos, como: Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis y Lactococcus cremoris. Posteriormente, se realizó un análisis metagenómico utilizando la extracción de ADN de tres secciones intestinales: anterior, media y posterior. El ADN se amplificó mediante PCR y, finalmente, se secuenció utilizando el gen ADNr 16S bacteriano. Como resultado, se identificaron todas las comunidades bacterianas que forman parte de la microbiota intestinal, con una presencia predominante de Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota y Cyanobacteria. El análisis metagenómico reveló diferencias funcionales entre las comunidades y la abundancia relativa de la microbiota intestinal.Biotecnología y producción agropecuariaProducción Agraria Sostenible.Sede Medellín97 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín590 - Animales570 - Biología570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesEspecies endémicas - ColombiaEspecies vulnerables - ColombiaPeces de agua dulce - ColombiaPanaque cochliodonNutrición animalFlora microbianaMicrobiomasPeces de agua dulce - DigestiónPanaque cochliodoncucha de ojos azulesmicrobiota intestinalMetagenómicagen ADN 16Sblue-eyed plecometagenomicsbacterial 16S rRNAintestinal microbiotaCaracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)Characterization of the microbial diversity associated with the gastrointestinal tract of the Panaque cochliodon (Blue-eyed Panaque)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperImageTexthttp://purl.org/redcol/resource_type/TMColombiaLaReferenciaAbdul Rahman, N., Parks, D., Willner, DL Engelbrektson, A., Goffredi, S., Warnecke, F., & Hugenholtz. (2015). Un estudio molecular de los géneros de termitas de Australia y América del Norte indica que la herencia vertical es la fuerza principal que da forma a los microbiomas intestinales de las termitas. Microbioma, 3(1), 1–16. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-0067-8Abriouel, H., Franz, C. M. A. P., Omar, N. Ben, & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.xAskarian, F., Zhou, Z., Olsen, R. E., Sperstad, S., & Ringø, E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326–329, 1–8. https://doi.org/https://doi.org/10.1016/j.aquaculture.2011.10.016Austin, B. (2006). The Bacterial Microflora of Fish, Revised. TheScientificWorldJOURNAL, 6, 325830. https://doi.org/10.1100/tsw.2006.181Bird, A. R., Conlon, M. A., Christophersen, C. T., & Topping, D. L. (2010). Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes, 1(4), 423–431. https://doi.org/10.3920/BM2010.0041Bledsoe, J. W., Peterson, B. C., Swanson, K. S., & Small, B. C. (2016). Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PLoS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166379Borges, N., Keller-Costa, T., Sanches-Fernandes, G. M. M., Louvado, A., Gomes, N. C. M., & Costa, R. (2021). Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annual Review of Animal Biosciences, 9, 423–452. https://doi.org/10.1146/annurev-animal-062920-113114Carnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.03.037Castañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/https://doi.org/10.1016/j.aquaculture.2019.734325Chu, T.-W., Chen, C.-N., & Pan, C.-Y. (2020). Antimicrobial status of tilapia (Oreochromis niloticus) fed Enterococcus avium originally isolated from goldfish intestine. Aquaculture Reports, 17, 100397. https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100397Clements, K. D., Angert, E. R., Montgomery, W. L., & Choat, J. H. (2014). Intestinal microbiota in fishes: what’s known and what’s not. Molecular Ecology, 23(8), 1891–1898. https://doi.org/https://doi.org/10.1111/mec.12699Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. Biotech, 5(1), 81–86. https://doi.org/https://doi.org/10.1007/s13205-014-0205-1David-Ruales, C. ., Betancur-Gonzales, E. ., & Cano-Gil, J. . (2021). Adaptación al cautiverio y estandarización de una tecnica no invasiva (ecografía) para la determinación del género y la evaluación de la madurez gonadal de la especie Panaque cochliodon (Cucha de ojos azules) del río Magdalena. Rev. Lasallista de Investigación, 267.David-Ruales, Guerra, M. O., Cano, J. D., & Betancur, E. M. (2022). Clove Oil (Eugenol®) as an Anesthetic in the Species Panaque Cochliodon-Steindachner, 1879 (Blue-Eyed Pleco. Revista Lasallista de Investigacion, 19(1), 182–194. https://doi.org/10.22507/rli.v19n1a11David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V, Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820Deng, Z., Jiang, Y., Chen, K., Gao, F., & Liu, X. (2020). Petroleum Depletion Property and Microbial Community Shift After Bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00353Di Maiuta, N., Schwarzentruber, P., Schenker, M., & Schoelkopf, J. (2013). Microbial population dynamics in the faeces of wood‐eating loricariid catfishes. Letters in Applied Microbiology, 56(6), 401–407. https://doi.org/10.1111/lam.12061Domínguez-Arrizabalaga, M Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests. Toxins, 12(7). https://doi.org/https://doi.org/10.3390/toxins12070430Fishelson, L., Montgomery, W. L., & Myrberg, A. (1985). A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science, 229, 49–51.Gerking, S. D., Division, A., & Brace, H. (1994). Feeding Ecology of fish (A. S. UNIVERSITY (ed.)). Library of Congress Cataloging-in-Publication Data.German, D. (2009). Inside the guts of wood-eating catfishes: can they digest wood? Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1011–1023. https://api.semanticscholar.org/CorpusID:7512400German, D., & Bittong, R. (2009). Digestive enzymes and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1025–1042. https://doi.org/10.1007/s00360-009-0383-zGivens, C., Ransom, B., Bano, N., & Hollibaugh, J. (2015). Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology Progress Series, 518, 209–223. https://doi.org/10.3354/meps11034Gómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52(2), 145–154. https://doi.org/10.1111/j.1574-695X.2007.00343.xGreen, G. B. H., Williams, M. B., Chehade, S. B., Flowers, J. T., Morrow, C. D., Lawrence, A. L., Bej, A. K., & Watts, S. A. (2023). Body Metrics and the Gut Microbiome in Response to Macronutrient Limitation in the Zebrafish Danio rerio. Current Developments in Nutrition, 7(4), 100065. https://doi.org/https://doi.org/10.1016/j.cdnut.2023.100065Grosell, M., Farrell, A. P., & Brauner, C. J. (2010). The Multifunctional Gut of Fish. In Fish Physiology (1st ed., Vol. 30). Academic Press; 1er edición (5 Octubre 2010).Gutiérrez-Ramirez, L. A., David-Ruales, C. A., Montoya-Campuzano, O. I., & Betancur-Gonzalez, E. M. (2016). Efecto de la inclusión en la dieta de probióticos microencapsulados sobre algunos parámetros zootécnicos en alevinos de tilapia roja (Oreochromis sp.). Salud Animal, 38(2), 112–119. https://doi.org/10.1093/oxfordhb/9780199204540.003.0007Hlordzi, V., Kuebutornye, F., Afriyie, G., Abarike, E., Lu, Y., & Chi, S. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18(100503). https://doi.org/https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100503Huertas-Caro, C., Urbano-Cáceres, E., & Torres-Caycedo, M. (2019). CIENCIAS EPIDEMIOLÓGICAS Y SALUBRISTAS ARTÍCULO DE REVISIÓN Diagnóstico molecular una alternativa para la detección de patógenos en alimentos. Revista Habanera de Ciencias Médicas, 18(3), 513–528. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2352Ichimatsu, T., Mizuki, E., Nishimura, K., Akao, T., Saitoh, H., Higuchi, K., & Ohba, M. (2000). Occurrence of Bacillus thuringiensis in Fresh Waters of Japan. Current Microbiology, 40(4), 217–220. https://doi.org/10.1007/s002849910044Ingerslev, H.-C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen, N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424–425, 24–34. https://doi.org/https://doi.org/10.1016/j.aquaculture.2013.12.032Izvekova, G. I., Izvekov, E. I., & Plotnikov, A. O. (2007). Symbiotic microflora in fishes of different ecological groups. Biology Bulletin, 34(6), 610–618. https://doi.org/10.1134/S106235900706012XKamei, Y., Sakata, T., & Kakimoto, D. (1985). Microflora in the alimentary tract of tilapia: Characterization and distri-bution of anaerobic bacteria. The Journal of General and Applied Microbiology, 31(2), 115–124. https://doi.org/10.2323/jgam.31.115Kamilya, D., & Devi, W. M. (2022). Bacillus Probiotics and Bioremediation: An Aquaculture Perspective BT - Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting (M. T. Islam, M. Rahman, & P. Pandey (eds.); pp. 335–347). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_15Kim, P. S., Shin, N.-R., Lee, J.-B., Kim, M.-S., Whon, T. W., Hyun, D.-W., Yun, J.-H., Jung, M.-J., Kim, J. Y., & Bae, J.-W. (2021). Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 9(1), 166. https://doi.org/10.1186/s40168-021-01113-xLall, S. P., & Tibbetts, S. M. (2009). Nutrition, Feeding, and Behavior of Fish. Veterinary Clinics of North America: Exotic Animal Practice, 12(2), 361–372. https://doi.org/https://doi.org/10.1016/j.cvex.2009.01.005Li, T, Raza, S. H. A., Yang, B., Sun, Y., Wang, G., Sun, W., Qian, A., Wang, C., Kang, Y., & Shan, X. (2020). Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals, 10(4). https://doi.org/https://doi.org/10.3390/ani10040608Li, Tongtong, Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2015). Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing. Microbial Ecology, 69(1), 25–36. https://doi.org/10.1007/s00248-014-0480-8Liu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F., & Wang, W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6(1), 24340. https://doi.org/10.1038/srep24340Llewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00207Lujan, N. K., German, D. P., & Winemiller, K. O. (2011). Do wood-grazing fishes partition their niche?: Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology, 25(6), 1327–1338. https://doi.org/10.1111/j.1365-2435.2011.01883.xManuel, F., Arnaldo, C., Odalis, T., Deysy, C., Mario, C., & Virna, C. (2019). Caracterización molecular ómica de una cepa de Bacillus amyloliquefaciens aislada de la microbiota del paiche Arapaima gigas con actividad antagonista contra bacterias patógenas de peces. Revista de Investigaciones Veterinarias Del Perú, 30(2). https://doi.org/http://dx.doi.org/10.15381/rivep.v30i2.15407March, P., & Tillett, D. (1999). BioEdit Nucleicos. https://www.nucleics.com/about_nucleics/about_nucleics.htmlMarden, C. L., McDonald, R., Schreier, H. J., & Watts, J. E. M. (2017). Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiology, 3(4), 749–761. https://doi.org/10.3934/microbiol.2017.4.749McCauley, M., German, D. P., Lujan, N. K., & Jackson, C. R. (2020). Gut microbiomes of sympatric Amazonian wood-eating catfishes (Loricariidae) reflect host identity and little role in wood digestion. Ecology and Evolution, 10(14), 7117–7128. https://doi.org/10.1002/ece3.6413Mcdonald, R. C., Em, J., & Schreier, H. J. (2019). Efecto de la dieta sobre el microbioma entérico del bagre carnívoro Panaque nigrolineatus. 1–15.McDonald, R., Schreier, H. J., & Watts, J. E. M. (2012). Phylogenetic Analysis of Microbial Communities in Different Regions of the Gastrointestinal Tract in Panaque nigrolineatus, a Wood-Eating Fish. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0048018McDonald, R., Zhang, F., Watts, J. E. M., & Schreier, H. J. (2015). Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. ISME Journal, 9(12), 2712–2724. https://doi.org/10.1038/ismej.2015.65Medela, D., Directora, T., Piazzon, C., Upv, H. T., & Mart, S. (2021). Recopilación bibliográfica y comparativa : la microbiota intestinal de dorada ( Sparus aurata ).Meidong, R., Nakao, M., Sakai, K., & Tongpim, S. (2021). Lactobacillus paraplantarum L34b-2 derived from fermented food improves the growth, disease resistance and innate immunity in Pangasius bocourti. Aquaculture, 531, 735878. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.735878Michl, S. C., Ratten, J.-M., Beyer, M., Hasler, M., LaRoche, J., & Schulz, C. (2017). The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLOS ONE, 12(5), e0177735. https://doi.org/10.1371/journal.pone.0177735Mojica, J., Castellanos, C., Usma, J., & Álvarez-León, R. (2012). Libro rojo de peces dulceacuícolas de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. In Researchgate.Net.Motta, A. S., Cladera-Olivera, F., & Brandelli, A. (2004). Screening for antimicrobial activity among bacteria isolated from the Amazon Basin. In Brazilian Journal of Microbiology (Vol. 35). scielo .Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., Henrissat, B., Knight, R., & Gordon, J. I. (2011). Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science, 332(6032), 970–974. https://doi.org/10.1126/science.1198719Navarrete, P., Espejo, R. T., & Romero, J. (2009). Molecular analysis of microbiota along the digestive tract of juvenile atlantic salmon (Salmo salar L.). Microbial Ecology, 57(3), 550–561. https://doi.org/10.1007/s00248-008-9448-xNayak, S. (2010). Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 1553–1573. https://doi.org/10.1111/j.1365-2109.2010.02546.xNelson, J., Wubah, D., & Stewart, D. (1999). Wood‐eating catfishes of the genus Panaque : gut microflora and cellulolytic enzyme activities. Journal of Fish Biology, 54(5), 1069–1082. https://doi.org/10.1111/j.1095-8649.1999.tb00858.xO’Sullivan, J. N., O’Connor, P. M., Rea, M. C., O’Sullivan, O., Walsh, C. J., Healy, B., Mathur, H., Field, D., Hill, C., & Paul Ross, R. (2020). Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. Journal of Bacteriology, 202(3). https://doi.org/https://doi.org/10.1128/JB.00639-19Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C., & Iliopoulos, loannis. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. https://doi.org/10.4137/BBI.S12462Prasath, B. B., Wang, Y., Su, Y., Zheng, W., Lin, H., & Yang, H. (2021). Coagulant plus bacillus nitratireducens fermentation broth technique provides a rapid algicidal effect of toxic red tide dinoflagellate. Journal of Marine Science and Engineering, 9(4). https://doi.org/https://doi.org/10.3390/jmse9040395Puello-Caballero, P., Liseth, Inés Montoya-Campuzano, O., Alfonso Castañeda-Monsalve, V., & Mary Moreno-Murillo, L. (2018). Characterization of the microbiota present in the intestine of Piaractus brachypomus (Cachama blanca). Revista de Salud Animal, 40(2), 2224–4700.Rabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6). https://doi.org/https://doi.org/10.3390/molecules24061046Rawls, J. F., Samuel, B. S., & Gordon, J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596–4601. https://doi.org/10.1073/pnas.0400706101Ray, A., Roy, T., Mondal, S., & Ringø, E. (2010). Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10), 1462–1469. https://doi.org/https://doi.org/10.1111/j.1365-2109.2009.02437.xRay, A K, Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition, 18(5), 465–492. https://doi.org/https://doi.org/10.1111/j.1365-2095.2012.00943.xRay, Arun K., Bairagi, A., Sarkar Ghosh, K., & Sen, S. K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 37(1), 47–53. https://doi.org/10.3750/AIP2007.37.1.07Rees, C. E. D., Green, L. H., Goldman, E., & Loessner, M. J. (2015). Manual de Bacteriología Sistemática de Bergey. In Practical Handbook of Microbiology, Third Edition. https://doi.org/10.1201/b17871Romero, J., & Navarrete, P. (2006). 16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microbial Ecology, 51(4), 422–430. http://www.jstor.org/stable/25153335Saha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37(4), 380–388. https://doi.org/https://doi.org/10.1111/j.1365-2109.2006.01442.xScott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut microbiota. Pharmacological Research, 69(1), 52–60. https://doi.org/https://doi.org/10.1016/j.phrs.2012.10.020Sibbing, F. A. (1988). Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing. Environmental Biology of Fishes, 22(3), 161–178. https://doi.org/10.1007/BF00005379Sullam, K., Essinger, S., Rosen, G., Kilham, S., & Russell, J. (2010). Environmental and evolutionary factors that shape gut bacterial communities of fish: A meta-analysis.Suyehiro, Y. (1942). A Study on the digestive system and feeding habits of fish. In TA - TT -. Japanese journal of zoology [S.l.]. https://doi.org/LK - https://worldcat.org/title/492797911Talwar, C., Nagar, S., Lal, R., & Negi, R. K. (2018). Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian Journal of Microbiology, 58(4), 397–414. https://doi.org/10.1007/s12088-018-0760-yTan, H. Y., Chen, S.-W., & Hu, S.-Y. (2019). Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 92, 265–275. https://doi.org/https://doi.org/10.1016/j.fsi.2019.06.027Tiwari, S., Singh, R., Yadav, J., Gaur, R., Singh, A., Yadav, J. S., Pandey, P. K., Yadav, S. K., Prajapati, J., Helena, P., Dewangan, J., & Jamal, F. (2022). Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts, 12 (7). https://doi.org/https://doi.org/10.3390/catal12070749Trust, T. J., & Sparrow, R. A. H. (1974). The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology, 20(9), 1219–1228. https://doi.org/10.1139/m74-188Türe, M., Cebeci, A., & Özcelep, T. (2022). The first outbreak of citrobacteriosis caused by Citrobacter gillenii in reared Russian sturgeon (Acipenser gueldenstaedtii) in Turkiye. Veterinary Research Forum, 13(3), 323–329. https://doi.org/10.30466/vrf.2021.137808.3076Vadstein, O., Bergh, Ø., Gatesoupe, F.-J., Galindo-Villegas, J., Mulero, V., Picchietti, S., Scapigliati, G., Makridis, P., Olsen, Y., Dierckens, K., Defoirdt, T., Boon, N., De Schryver, P., & Bossier, P. (2013). Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5(s1), S1–S25. https://doi.org/https://doi.org/10.1111/j.1753-5131.2012.01082.xVan Kessel, M. A. H. J., Dutilh, B. E., Neveling, K., Kwint, M. P., Veltman, J. A., Flik, G., Jetten, M. S. M., Klaren, P. H. M., & Op den Camp, H. J. M. (2011). Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 1(1), 41. https://doi.org/10.1186/2191-0855-1-41Vásquez-Torres, W. (2004). Principios de Nutrición Aplicada al Cultivo de Peces (1st ed.). Universidad de los Llanos.Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D. P., Pfirschke, C., Engblom, C., Pittet, M. J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P.-L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., … Zitvogel, L. (2013). The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342(6161), 971–976. https://doi.org/10.1126/science.1240537Wang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2018). Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 10(3), 626–640. https://doi.org/https://doi.org/10.1111/raq.12191Wang, A., Ran, C., Ring, E., & Zhou, Z. (2017). Progress in fish gastrointestinal microbiota researche. Aquaculture, 0, 1–15.Wang, C., Xie, B., Han, L., & Xu, X. (2013). Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique. Bioresource Technology, 145, 65–70. https://doi.org/https://doi.org/10.1016/j.biortech.2013.01.170Watts, J. E. M., McDonald, R., Daniel, R., & Schreier, H. J. (2013). Examination of a culturable microbial population from the gastrointestinal tract of the wood-eating loricariid catfish panaque nigrolineatus. Diversity, 5(3), 641–656. https://doi.org/10.3390/d5030641Wróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. In International Journal of Environmental Research and Public Health (Vol. 20, Issue 6). https://doi.org/10.3390/ijerph20064964Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine. PLOS ONE, 7(2), e30440. https://doi.org/10.1371/journal.pone.0030440Ye, L., Amberg, J., Chapman, D., Gaikowski, M., & Liu, W.-T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. The ISME Journal, 8(3), 541–551. https://doi.org/10.1038/ismej.2013.181Yoshimizu, M., & Kimura, T. (1976). Study on the Intestinal Microflora of Salmonids. Fish Pathology, 10(2), 243–259. https://doi.org/10.3147/jsfp.10.243Younes, A., Saito, H., Tani, S., Ikeo, R., & Kawai, K. (2023). Metagenomic analysis of gut microbiome from tilapia species across several regions in Japan. Aquaculture, 576(March), 739809. https://doi.org/10.1016/j.aquaculture.2023.739809Zatán Valdiviezo, A. E., Castillo Chunga, D., Castañeda Vargas, A. E., Feria Zevallos, M. A., Toledo Valdiviezo, O. E., Aguilar Zavaleta, J. L., Cueva Távara, M. D., & Motte, E. (2020). Caracterización de la microbiota intestinal en robalo (Centropomus sp.) y aislamiento de bacterias probióticas potenciales. Revista de Investigaciones Veterinarias Del Perú, 31(3), e16036. https://doi.org/10.15381/rivep.v31i3.16036Zhai, Q., Yu, L., Li, T., Zhu, J., Zhang, C., Zhao, J., Zhang, H., & Chen, W. (2017). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie van Leeuwenhoek, 110(4), 501–513. https://doi.org/10.1007/s10482-016-0819-xIdentificación molecular del microbioma en el tracto gastrointestinal de la especie Panaque cochliodon (cucha de ojos azules)Corporación Universitaria LasallistaEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85923/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1028004844.2024.pdf1028004844.2024.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf3538696https://repositorio.unal.edu.co/bitstream/unal/85923/2/1028004844.2024.pdf4a68d3243e713b16b13a84111e417adcMD52THUMBNAIL1028004844.2024.pdf.jpg1028004844.2024.pdf.jpgGenerated Thumbnailimage/jpeg5129https://repositorio.unal.edu.co/bitstream/unal/85923/3/1028004844.2024.pdf.jpg3216e31604b6265cb4a6d7aa0b468e70MD53unal/85923oai:repositorio.unal.edu.co:unal/859232024-08-23 23:12:14.324Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |