Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.

ilustraciones, diagramas

Autores:
Urbano Noguera, Rubén Darío
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80093
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80093
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
Aguas residuales - Tratamiento
Adsorción
Residuos lignocelulósicos
Fenton heterogéneo
Tratamiento aguas residuales
Nanopartículas de hierro
Adsorption
Lignocellulosic waste
Heterogeneous fenton
Wastewater treatment
Iron nanoparticles
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_5559bca692995800d8e9e9d8eff41747
oai_identifier_str oai:repositorio.unal.edu.co:unal/80093
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.
dc.title.translated.eng.fl_str_mv Evaluation of the adsorption of hexavalent chromium and heterogeneous fenton for the treatment of synthetic tannery wastewater using iron nanoparticles supported on coffee husk
title Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.
spellingShingle Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.
660 - Ingeniería química
Aguas residuales - Tratamiento
Adsorción
Residuos lignocelulósicos
Fenton heterogéneo
Tratamiento aguas residuales
Nanopartículas de hierro
Adsorption
Lignocellulosic waste
Heterogeneous fenton
Wastewater treatment
Iron nanoparticles
title_short Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.
title_full Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.
title_fullStr Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.
title_full_unstemmed Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.
title_sort Evaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.
dc.creator.fl_str_mv Urbano Noguera, Rubén Darío
dc.contributor.advisor.none.fl_str_mv Gonzalez Ocampo, Javier De Jesús
dc.contributor.author.none.fl_str_mv Urbano Noguera, Rubén Darío
dc.contributor.researchgroup.spa.fl_str_mv Grupo Kimera
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Aguas residuales - Tratamiento
Adsorción
Residuos lignocelulósicos
Fenton heterogéneo
Tratamiento aguas residuales
Nanopartículas de hierro
Adsorption
Lignocellulosic waste
Heterogeneous fenton
Wastewater treatment
Iron nanoparticles
dc.subject.lemb.none.fl_str_mv Aguas residuales - Tratamiento
dc.subject.proposal.spa.fl_str_mv Adsorción
Residuos lignocelulósicos
Fenton heterogéneo
Tratamiento aguas residuales
Nanopartículas de hierro
dc.subject.proposal.fra.fl_str_mv Adsorption
Lignocellulosic waste
dc.subject.proposal.eng.fl_str_mv Heterogeneous fenton
Wastewater treatment
Iron nanoparticles
description ilustraciones, diagramas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-03T19:27:01Z
dc.date.available.none.fl_str_mv 2021-09-03T19:27:01Z
dc.date.issued.none.fl_str_mv 2021-09-03
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80093
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80093
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] G. Vilardi, J. M. Ochando-pulido, M. Stoller, N. Verdone, and L. Di, “Fenton oxidation and chromium recovery from tannery wastewater by means of iron-based coated biomass as heterogeneous catalyst in fi xed-bed columns,” Chem. Eng. J., vol. 351, no. April, pp. 1–11, 2018. [2] A. María, “DIAGNÓSTICO AMBIENTAL DEL SECTOR CURTIEMBRE EN COLOMBIA,” 2004. [3] R. Darío, “Entrevista asociación de curtiembres de Belén Nariño,” CURTIEMBRES CUEROS BELEN SAS, 2019. [4] G. Vilardi, J. Rodríguez-Rodríguez, J. M. Ochando-Pulido, N. Verdone, A. Martinez-Ferez, and L. Di Palma, “Large Laboratory-Plant application for the treatment of a Tannery wastewater by Fenton oxidation: Fe(II) and nZVI catalysts comparison and kinetic modelling,” Process Saf. Environ. Prot., vol. 117, pp. 629–638, 2018. [5] Z. Houshyar, A. Baradar, and E. Fatehifar, “Influence of ozonation process on characteristics of pre-alkalized tannery effluents,” Chem. Eng. J., vol. 191, pp. 59–65, 2012. [6] J. R. González, J. Luis, G. Alcaraz, and G. V. Angulo, “MODELACIÓN DEL PROCESO DE TRANSFERENCIA DE MASA EN COLUMNAS DE LECHO FIJO DE LA BIOADSORCIÓN DEL Cr ( VI ),” Culcyt//Modelado, no. 40, 2010. [7] H. Council, Chromium (VI) compounds, vol. 100 C. 2011. [8] G. Vilardi, L. Di Palma, and N. Verdone, “On the critical use of zero valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater,” J. Water Process Eng., vol. 22, no. January, pp. 109–122, 2018. [9] M. A. El-sheikh, H. I. Saleh, J. R. Flora, and M. R. Abdel-ghany, “Biological tannery wastewater treatment using two stage UASB reactors,” DES, vol. 276, no. 1–3, pp. 253–259, 2011. [10] “Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical-chemical treatment,” vol. 204, no. May 2006, pp. 219–226, 2007. [11] M. Murugananthan, G. B. Raju, and S. Prabhakar, “Separation of pollutants from tannery effluents by electro flotation,” vol. 40, no. January, pp. 69–75, 2004. [12] Z. Song and C. J. Williams, “Treatment of tannery wastewater by chemical coagulation,” vol. 164, pp. 249–259, 2004. [13] S. Aber, D. Salari, and M. R. Parsa, “Employing the Taguchi method to obtain the optimum conditions of coagulation-flocculation process in tannery wastewater treatment,” Chem. Eng. J., vol. 162, no. 1, pp. 127–134, 2010. [14] G. Vilardi, J. M. Ochando-pulido, N. Verdone, M. Stoller, and L. Di, “On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles : Equilibrium study and chromium recovery,” J. Clean. Prod., vol. 190, pp. 200–210, 2018. [15] Y. Wang, W. Li, A. Irini, and C. Su, “Removal of organic pollutants in tannery wastewater from wet-blue fur processing by integrated Anoxic / Oxic ( A / O ) and Fenton : Process optimization,” Chem. Eng. J., vol. 252, pp. 22–29, 2014. [16] W. M. Bolivar, “INGENIERÍA DE NANOPARTÍCULAS MAGNÉTICAS PARA LA REMOCIÓN DE METALES PESADOS EN AGUAS. WILFREDO,” Pontificia Universidad Javeriana, Bogotá D.C, 2018. [17] J. N. Sahu, J. Acharya, and B. C. Meikap, “Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process,” J. Hazard. Mater., vol. 172, no. 2–3, pp. 818–825, 2009. [18] H. Demiral, I. Demiral, F. Tümsek, and B. Karabacakoǧlu, “Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models,” Chem. Eng. J., vol. 144, no. 2, pp. 188–196, 2008. [19] M. Barkat, D. Nibou, S. Chegrouche, and A. Mellah, “Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions,” Chem. Eng. Process. Process Intensif., vol. 48, no. 1, pp. 38–47, 2009. [20] F. Cortés, “Adsorción de agua en materiales compuestos y en Zeolita,” p. 116, 2009. [21] K. Giovanna and B. Gómez, “Wastewater treatment using an iron nanocatalyst supported on Fique fibers,” 2016. [22] C. H. Xu, L. J. Zhu, X. H. Wang, S. Lin, and Y. M. Chen, “Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (NZVI/AC),” Water. Air. Soil Pollut., vol. 225, no. 2, 2014. [23] H. Dong et al., Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution, vol. 332, no. Vi. Elsevier B.V., 2017. [24] X. Lv, J. Xu, G. Jiang, and X. Xu, “Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes,” Chemosphere, vol. 85, no. 7, pp. 1204–1209, 2011. [25] F. S. Dos Santos, F. R. Lago, L. Yokoyama, and F. V. Fonseca, “Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15,” J. Mater. Res. Technol., vol. 6, no. 2, pp. 178–183, 2017. [26] I. Reales, “Evaluación de un proceso integrado de adsorción y oxidación avanzada para el tratameinto de aguas,” 2012. [27] M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, 2015. [28] W. Li, B. Mu, and Y. Yang, “Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology,” Bioresour. Technol., vol. 277, no. January, pp. 157–170, 2019. [29] M. H. Rodiguez et al., “Journal of Environmental Chemical Engineering Adsorption of Ni ( II ) on spent co ff ee and co ff ee husk based activated carbon,” vol. 6, no. September 2017, pp. 1161–1170, 2018. [30] A. Malara, E. Paone, P. Frontera, L. Bonaccorsi, G. Panzera, and F. Mauriello, “Sustainable Exploitation of Coffee Silverskin in Water Remediation,” 2018. [31] L. J. Barón Pacheco, “Evaluación de la cascarilla de café como material adsorbente para la remoción de iones plomo Pb +2 presente en soluciones acuosas,” p. 67, 2014. [32] L. C. A. Oliveira et al., “Preparation of activated carbons from coffee husks utilizing FeCl 3 and ZnCl 2 as activating agents,” vol. 165, pp. 87–94, 2009. [33] M. A. Ahmad and N. K. Rahman, “Equilibrium , kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon,” Chem. Eng. J., vol. 170, no. 1, pp. 154–161, 2011. [34] Mebrahtom Gebresemati, Nigus Gabbiye, and O. Sahu, “Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology,” J. Appl. Res. Technol., vol. 15, no. 1, pp. 27–35, 2017. [35] A. Malara, E. Paone, P. Frontera, L. Bonaccorsi, G. Panzera, and F. Mauriello, “Sustainable exploitation of coffee silverskin in water remediation,” Sustain., vol. 10, no. 10, 2018. [36] P. N. Ciesielski et al., “Advances in Multiscale Modeling of Lignocellulosic Biomass,” ACS Sustain. Chem. Eng., 2020. [37] N.d, “Pictures for Lignocellulose structure.” [Online]. Available: https://biofuel.webgarden.com/sections/blog/pictures-for-lignocellulose. [Accessed: 18-Mar-2020]. [38] J. Wang and R. Zhuan, “Degradation of antibiotics by advanced oxidation processes: An overview,” Sci. Total Environ., vol. 701, p. 135023, 2020. [39] J. Krýsa, D. Mantzavinos, P. Pichat, and I. Poulios, “Advanced oxidation processes for water/wastewater treatment,” Environ. Sci. Pollut. Res., vol. 25, no. 35, pp. 34799–34800, 2018. [40] A. D. Bokare and W. Choi, “Review of iron-free Fenton-like systems for activating H 2 O 2 in advanced oxidation processes,” J. Hazard. Mater., vol. 275, pp. 121–135, 2014. [41] C. Sánchez, “Reacciones fenton,” Inditex, vol. 3, pp. 1–31, 2015. [42] L. Chekli et al., “Analytical characterisation of nanoscale zero-valent iron: A methodological review,” Anal. Chim. Acta, vol. 903, pp. 13–35, 2016. [43] M. Stefaniuk, P. Oleszczuk, and Y. S. Ok, “Review on nano zerovalent iron (nZVI): From synthesis to environmental applications,” Chem. Eng. J., vol. 287, pp. 618–632, 2016. [44] M. Zhang, H. Dong, L. Zhao, D. Wang, and D. Meng, “Science of the Total Environment A review on Fenton process for organic wastewater treatment based on optimization perspective,” Sci. Total Environ., vol. 670, pp. 110–121, 2019. [45] C. Jung, Y. Deng, R. Zhao, and K. Torrens, “Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation,” Water Res., vol. 108, pp. 260–270, 2017. [46] M. Gheju, Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems, vol. 222, no. 1–4. 2011. [47] S. Karthikeyan, M. E. Priya, and R. Boopathy, “Heterocatalytic Fenton oxidation process for the treatment of tannery effluent : kinetic and thermodynamic studies,” pp. 1828–1840, 2012. [48] P. A. L. de Souza, F. G. Camacho, I. R. de Almeida da Silva, F. F. Gonçalves, C. Benincá, and E. F. Zanoelo, “An experimental and modeling study of the chain initiation reaction in heterogeneous Fenton systems with zero valent iron,” Chem. Eng. J., vol. 393, no. March, 2020. [49] X. L. Chen, F. Li, X. J. Xie, Z. Li, and L. Chen, “Nanoscale zero-valent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal,” Int. J. Environ. Res. Public Health, vol. 16, no. 17, 2019. [50] E. Cuervo Lumbaque, E. R. Lopes Tiburtius, M. Barreto-Rodrigues, and C. Sirtori, “Current trends in the use of zero-valent iron (Fe0) for degradation of pharmaceuticals present in different water matrices,” Trends Environ. Anal. Chem., vol. 24, 2019. [51] J. De Laat and T. G. Le, “Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions,” Environ. Sci. Technol., vol. 39, no. 6, pp. 1811–1818, 2005. [52] W. P. Kwan and B. M. Voelker, “Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite,” Environ. Sci. Technol., vol. 36, no. 7, pp. 1467–1476, 2002. [53] E. Neyens and J. Baeyens, “A review of classic Fenton’s peroxidation as an advanced oxidation technique,” J. Hazard. Mater., vol. 98, no. 1–3, pp. 33–50, 2003. [54] J. H. Ramirez, F. M. Duarte, F. G. Martins, C. A. Costa, and L. M. Madeira, “Modelling of the synthetic dye Orange II degradation using Fenton’s reagent: From batch to continuous reactor operation,” Chem. Eng. J., vol. 148, no. 2–3, pp. 394–404, 2009. [55] C. Walling, “Fenton’s Reagent Revisited,” Acc. Chem. Res., vol. 8, no. 4, pp. 125–131, 1975. [56] C. N. Tejada, Z. Montiel, and D. Acevedo, “Aprovechamiento de Cáscaras de Yuca y Ñame para el Tratamiento de Aguas Residuales Contaminadas con Pb(II),” Inf. Tecnol., vol. 27, no. 1, pp. 9–20, 2016. [57] C. Tejada Tovar, A. Villabona Ortiz, and E. Ruiz Paternina, “Cinética de adsorción de Cr ( VI ) usando biomasas residuales modificadas químicamente en sistemas por lotes y continuo Adsorption kinetics of Cr ( VI ) using chemically modified residual biomass in batch and continuous systems Cinética de adsorção de Cr,” Rev. Ion, vol. 28, no. 1, pp. 29–41, 2015. [58] C. J. Ajaelu, M. O. Dawodu, E. O. Faboro, and O. S. Ayanda, “Copper Biosorption by Untreated and Citric Acid Modified Senna alata Leaf Biomass in a Batch System : Kinetics , Equilibrium and Thermodynamics Studies,” vol. 7, no. 2, pp. 31–41, 2017. [59] S. Pitsari, E. Tsoufakis, and M. Loizidou, “Enhanced lead adsorption by unbleached newspaper pulp modified with citric acid,” Chem. Eng. J., vol. 223, pp. 18–30, 2013. [60] J. D. Ramsey, L. Xia, M. W. Kendig, and R. L. McCreery, “Raman spectroscopic analysis of the speciation of dilute chromate solutions,” Corros. Sci., vol. 43, no. 8, pp. 1557–1572, 2001. [61] D. Mohan and C. U. Pittman, “Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water,” J. Hazard. Mater., vol. 137, no. 2, pp. 762–811, 2006. [62] T. R. Ahammad, S. Z.; Gomes, J.; Sreekrishnan, “Wastewater treatment forproductionofH2S-free biogas,” J. Chem. Technol. Biotechnol., vol. 83, no. May, pp. 1163–1169, 2008. [63] M. C. Lu, C. J. Lin, C. H. Liao, R. Y. Huang, and W. P. Ting, “Dewatering of activated sludge by Fenton’s reagent,” Adv. Environ. Res., vol. 7, no. 3, pp. 667–670, 2003. [64] A. María and S. Arias, “Oxidación Catalítica de Fenol Empleando un Subproducto de la Industria Metalmecánica Como Catalizador Oxidación Catalítica de Fenol Empleando un Subproducto de la Industria Metalmecánica Como Catalizador,” 2015. [65] J. H. Ramirez, C. A. Costa, and L. M. Madeira, “Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton’s reagent,” Catal. Today, vol. 107–108, pp. 68–76, 2005. [66] H. Kušić, A. Lončarić Božić, and N. Koprivanac, “Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization,” Dye. Pigment., vol. 74, no. 2, pp. 380–387, 2007. [67] M. Ipohorski and P. B. Bozzano, “Microscopía Electrónica De Barrido,” Ciencia e Investigación, vol. 63, no. 3. pp. 43–53, 2013. [68] Universidad Andrés Bello, “Microscopia Electrónica de Barrido con detector EDS (SEM-EDS) | Departamento de Ciencias Químicas UNAB| UNAB,” Departamento de Ciencias Químicas. 2014. [69] “Guía sobre espectroscopía FT-IR _ Bruker.” . [70] D. A. C. Carmenaty, R. M. Pérez, and S. Isabel, “Validación Interna Del Método Espectofotométrico Por Adecuación, Para La Determinación De Cromo (Vi) En Aguas Residuales,” Rev. Cuba. Química, vol. XXII, no. 3, pp. 9–13, 2010. [71] G. M. D. Herrera, P. A. P. Ordoñez, and A. H. Anaguano, “Estandarización de la difenilcarbazida como indicador y acomplejante en la identificación de cromo hexavalente – Cr (VI)*,” Prod. + Limpia, vol. Vol.8, No., p. 152, 2013. [72] J. Milovanovic, “Desarrollo y optimización de un métodod para la determinación de Cr6+ en matrices complejas,” Iuaca.Ua.Es, p. 29, 2011. [73] E. García Martínez, I. Fernández Segovia, and A. Fuentes López, “Determinación de polifenoles totales por el método de Folin- Ciocalteu,” Univ. Politècnica València, p. 9, 2015. [74] J. Febrianto, A. N. Kosasih, J. Sunarso, Y. H. Ju, N. Indraswati, and S. Ismadji, “Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies,” J. Hazard. Mater., vol. 162, no. 2–3, pp. 616–645, 2009. [75] J. D. Seader, E. J. Henley, D. K. Roper, and Ralph, “Separation process principles: Chemical and biochemical operations [Book Review],” John Wiley Sons, Inc., no. Mar 2012, p. 849, 2012. [76] A. Y. Dursun, “A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger,” Biochem. Eng. J., vol. 28, no. 2, pp. 187–195, 2006. [77] A. Delle Site, “Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review,” J. Phys. Chem. Ref. Data, vol. 30, no. 1, pp. 187–439, 2001. [78] J. M. Modak and K. A. Natarajan, “Biosorption of metals using nonliving biomass - a review,” Miner. Metall. Process., vol. 12, no. 4, pp. 189–196, 1995. [79] G. Crini and P. M. Badot, “Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature,” Prog. Polym. Sci., vol. 33, no. 4, pp. 399–447, 2008. [80] Y. S. Ho, “Review of second-order models for adsorption systems,” J. Hazard. Mater., vol. 136, no. 3, pp. 681–689, 2006. [81] C. J. Geankoplis and R. Leyva‐Ramos, “Analysis of surface in porous solids,” vol. 40, no. 5, pp. 799–807, 1985. [82] P. S. Pauletto, G. L. Dotto, and N. P. G. Salau, “Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption,” Chem. Eng. Res. Des., vol. 157, pp. 182–194, 2020. [83] H. S. Fogler, Chemical reaction engineering. 2004. [84] P. R. Jena, S. De, and J. K. Basu, “A generalized shrinking core model applied to batch adsorption,” Chem. Eng. J., vol. 95, no. 1–3, pp. 143–154, 2003. [85] M. A. Dominguez, M. Etcheverry, and G. P. Zanini, “Evaluation of the adsorption kinetics of brilliant green dye onto a montmorillonite/alginate composite beads by the shrinking core model,” Adsorption, vol. 25, no. 7, pp. 1387–1396, 2019. [86] T. K. Naiya, A. K. Bhattacharjee, D. Sarkar, and S. K. Das, “Applicability of shrinking core model on the adsorption of heavy metals by clarified sludge from aqueous solution,” Adsorption, vol. 15, no. 4, pp. 354–364, 2009. [87] N. G. Pinto and E. Earl Graham, “Application of the shrinking-core model for predicting protein adsorption,” React. Polym. Ion Exch. Sorbents, vol. 5, no. 1, pp. 49–53, 1987. [88] D. Sarkar and A. Bandyopadhyay, “Shrinking Core Model in characterizing aqueous phase dye adsorption,” Chem. Eng. Res. Des., vol. 89, no. 1, pp. 69–77, 2011. [89] K. N. Han, Fundamentals of Aqueous Metallurgy, vol. 1, no. Chapter 1. 2002. [90] G. E. BOYD, A. W. ADAMSO, and L. S. MYERS, “The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. 11. Kinetics,” 1947. [91] Y. Zhu, H. Li, G. Zhang, F. Meng, L. Li, and S. Wu, “Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading,” Bioresour. Technol., vol. 261, no. January, pp. 142–150, 2018. [92] H. Su, Z. Fang, P. E. Tsang, J. Fang, and D. Zhao, “Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil,” Environ. Pollut., vol. 214, pp. 94–100, 2016. [93] J. P. Reymond and F. Kolenda, “Estimation of the point of zero charge of simple and mixed oxides by mass titration,” Powder Technol., vol. 103, no. 1, pp. 30–36, 1999. [94] F. Liu, S. Y. Wan, Z. Jiang, S. F. Y. Li, E. S. Ong, and J. C. C. Osorio, “Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography-electrospray ionization mass spectrometry,” Talanta, vol. 80, no. 2, pp. 916–923, 2009. [95] L. R. Pitwell, “Standard COD,” Chem. Brit., p. 19:907, 1983. [96] T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry, “Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions,” Environ. Sci. Technol., vol. 41, no. 1, pp. 284–290, 2007. [97] P. Panneerselvam, N. Morad, K. A. Tan, and R. Mathiyarasi, “Removal of Rhodamine B dye using activated carbon prepared from Palm Kernel Shell and coated with iron oxide nanoparticles,” Sep. Sci. Technol., vol. 47, no. 5, pp. 742–752, 2012. [98] “Caracterización del bagazo de caña como biomasa vegetal,” Tecnol. Química, vol. 35, no. 2, pp. 244–255, 2015. [99] J. A. Quintero, J. A. Dávila, J. Moncada, O. H. Giraldo, and C. A. Cardona, “Análisis y caracterización de materiales amiláceos y celulósicos después de modificación enzimática,” DYNA, vol. 83, no. 197, pp. 44–51, 2016. [100] A. Kezerle, N. Velic, D. Hasenay, and D. Kovačevic, “Lignocellulosic materials as dye adsorbents: Adsorption of methylene blue and congo red on brewers’ spent grain,” Croat. Chem. Acta, vol. 91, no. 1, pp. 53–64, 2018. [101] T. Thuy, L. Thi, and K. Le Van, “Adsorption behavior of Pb ( II ) in aqueous solution using coffee husk-based activated carbon modified by nitric acid American Journal of Engineering Research ( AJER ),” no. 4, pp. 120–129, 2016. [102] A. A. Ayalew and T. A. Aragaw, “Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methylene blue,” Adsorpt. Sci. Technol., vol. 38, no. 5–6, pp. 205–222, 2020. [103] M. Gonçalves, M. C. Guerreiro, L. C. A. Oliveira, C. Solar, M. Nazarro, and K. Sapag, “Micro mesoporous activated carbon from coffee husk as biomass waste for environmental applications,” Waste and Biomass Valorization, vol. 4, no. 2, pp. 395–400, 2013. [104] L. J. B. PACHECO, “EVALUACIÓN DE LA CASCARILLA DE CAFÉ COMO MATERIAL ADSORBENTE PARA LA REMOCIÓN DE IONES PLOMO Pb2+ PRESENTE EN SOLUCIONES ACUOSAS,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 1981. [105] L. C. A. Oliveira et al., “Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 87–94, 2009. [106] F. De Carvalho et al., “Bioresource Technology Characterization of co ff ee ( Co ff ea arabica ) husk lignin and degradation products obtained after oxygen and alkali addition,” Bioresour. Technol., vol. 257, no. February, pp. 172–180, 2018. [107] L. Qian et al., “Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal,” Environ. Pollut., vol. 223, pp. 153–160, 2017. [108] M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, and R. Khosravi, “A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions,” Adv. Powder Technol., vol. 28, no. 1, pp. 122–130, 2017. [109] M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, and M. Chen, “Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater,” Bioresour. Technol., vol. 214, pp. 836–851, 2016. [110] Y. Bagbi, “Nanoscale zero-valent iron for aqueous lead removal,” Adv. Mater. Proc., vol. 2, no. 4, pp. 235–241, 2017. [111] F. C. Richard and A. C. M. Bourg, “Aqueous geochemistry of chromium: A review,” Water Res., vol. 25, no. 7, pp. 807–816, 1991. [112] M. Arshadi, M. Soleymanzadeh, J. W. L. Salvacion, and F. SalimiVahid, “Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism,” J. Colloid Interface Sci., vol. 426, pp. 241–251, 2014. [113] A. O. Dada, F. A. Adekola, E. O. Odebunmi, F. E. Dada, O. S. Bello, and A. S. Ogunlaja, “Bottom-up approach synthesis of core-shell nanoscale zerovalent iron (CS-nZVI): Physicochemical and spectroscopic characterization with Cu(II) ions adsorption application,” MethodsX, vol. 7, p. 100976, 2020. [114] M. Deng et al., “Reduction and immobilization of Cr(VI) in aqueous solutions by blast furnace slag supported sulfidized nanoscale zerovalent iron,” Sci. Total Environ., vol. 743, p. 140722, 2020. [115] Y. Rashtbari, S. Hazrati, A. Azari, S. Afshin, M. Fazlzadeh, and M. Vosoughi, “A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics,” Adv. Powder Technol., vol. 31, no. 4, pp. 1612–1623, 2020. [116] M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, and R. Khosravi, “A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions,” Adv. Powder Technol., vol. 28, no. 1, pp. 122–130, 2017. [117] S. Mortazavian, H. An, D. Chun, and J. Moon, “Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies,” Chem. Eng. J., vol. 353, no. July, pp. 781–795, 2018. [118] Y. Mu, F. Jia, Z. Ai, and L. Zhang, “Iron oxide shell mediated environmental remediation properties of nano zero-valent iron,” Environ. Sci. Nano, vol. 4, no. 1, pp. 27–45, 2017. [119] F. Budiman, T. W. Kian, K. A. Razak, A. Matsuda, and Z. Lockman, “The Assessment of Cr(VI) Removal by Iron Oxide Nanosheets and Nanowires Synthesized by Thermal Oxidation of Iron in Water Vapour,” Procedia Chem., vol. 19, pp. 586–593, 2016. [120] K. Selvi, S. Pattabhi, and K. Kadirvelu, “Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon,” Bioresour. Technol., vol. 80, no. 1, pp. 87–89, 2001. [121] D. L. Gómez Aguilar, J. P. Rodríguez Miranda, J. A. Esteban Muñoz, and jhon F. Betancur, “processes Co ff ee Pulp : A Sustainable Alternative Removal of Cr,” no. Vi, 2019. [122] G. MAYRA, “EVALUACIÓN DE LA CASCARILLA DE CAFÉ COMO MATERIAL ADSORBENTE PARA LA REMOCIÓN DE IONES PLOMO Pb2+ PRESENTE EN SOLUCIONES ACUOSAS,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013. [123] Z. Liang and H. L. Tsai, “Effect of molecular film thickness on thermal conduction across solid-film interfaces,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 83, no. 6, pp. 1–7, 2011. [124] R. B. BIRD, W. E. STEWART, and E. N. LIGHTIOOT, FENÓMENOS DE TRANSPORTE, vol. 4, no. 3. BARCELONA, ESPAÑA, 1992. [125] G. McKay, “Analytical solution using a pore diffusion model for a pseudoirreversible isotherm for the adsorption of basic dye on silica,” AIChE J., vol. 30, no. 4, pp. 692–697, 1984. [126] S. F. Kang, C. H. Liao, and M. C. Chen, “Pre-oxidation and coagulation of textile wastewater by the Fenton process,” Chemosphere, vol. 46, no. 6, pp. 923–928, 2002. [127] S. H. Chang, K. S. Wang, S. J. Chao, T. H. Peng, and L. C. Huang, “Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process,” J. Hazard. Mater., vol. 166, no. 2–3, pp. 1127–1133, 2009. [128] J. Dong, Y. Zhao, R. Zhao, and R. Zhou, “Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron,” J. Environ. Sci., vol. 22, no. 11, pp. 1741–1747, 2010. [129] I. J. Buerge and S. J. Hug, “Kinetics and pH dependence of chromium(VI) reduction by iron(II),” Environ. Sci. Technol., vol. 31, no. 5, pp. 1426–1432, 1997. [130] S. G. Schrank, H. J. José, R. F. P. M. Moreira, and H. F. Schröder, “Applicability of fenton and H2O2/UV reactions in the treatment of tannery wastewaters,” Chemosphere, vol. 60, no. 5, pp. 644–655, 2005. [131] L. Xu and J. Wang, “A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol,” J. Hazard. Mater., vol. 186, no. 1, pp. 256–264, 2011. [132] R. F. Yu, H. W. Chen, W. P. Cheng, Y. J. Lin, and C. L. Huang, “Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 3, pp. 947–954, 2014. [133] J. Rodriguez-rodriguez, J. M. Ochando-pulido, and A. Martinez-, “The Effect of pH in Tannery Wastewater by Fenton vs . Heterogeneous Fenton Process,” vol. 73, no. August 2018, pp. 205–210, 2019. [134] D. He, J. Ma, R. N. Collins, and T. D. Waite, “Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species,” Environ. Sci. Technol., vol. 50, no. 7, pp. 3820–3828, 2016. [135] A. Shimizu, M. Tokumura, K. Nakajima, and Y. Kawase, “Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation,” J. Hazard. Mater., vol. 201–202, pp. 60–67, 2012. [136] C. E. Noradoun and I. F. Cheng, “EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system.,” Environ. Sci. Technol., vol. 39, no. 18, pp. 7158–63, 2005. [137] J. A. Zazo, J. A. Casas, A. F. Mohedano, and J. J. Rodriguez, “Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study,” Water Res., vol. 43, no. 16, pp. 4063–4069, 2009. [138] B. Guo, M. Li, and S. Li, “The comparative study of a homogeneous and a heterogeneous system with green synthesized iron nanoparticles for removal of Cr(VI),” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020. [139] Z. H. Diao et al., “Removals of Cr(VI) and Cd(II) by a novel nanoscale zero valent iron/peroxydisulfate process and its Fenton-like oxidation of pesticide atrazine: Coexisting effect, products and mechanism,” Chem. Eng. J., vol. 397, no. April, p. 125382, 2020. [140] B. Kumari and S. Dutta, “Integrating starch encapsulated nanoscale zero-valent iron for better chromium removal performance,” J. Water Process Eng., vol. 37, no. June, p. 101370, 2020. [141] X. Lv, J. Xu, G. Jiang, J. Tang, and X. Xu, “Highly active nanoscale zero-valent iron (nZVI)-Fe 3O 4 nanocomposites for the removal of chromium(VI) from aqueous solutions,” J. Colloid Interface Sci., vol. 369, no. 1, pp. 460–469, 2012. [142] R. F. Yu, F. H. Chi, W. P. Cheng, and J. C. Chang, “Application of pH, ORP, and DO monitoring to evaluate chromium(VI) removal from wastewater by the nanoscale zero-valent iron (nZVI) process,” Chem. Eng. J., vol. 255, pp. 568–576, 2014.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv vi, 106 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Nariño, colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80093/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80093/2/1085661915.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80093/3/1085661915.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
1d97c6993c20ab8ad462e798d7204b04
ce7cb94c3f11983987a80432517501ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089280119635968
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gonzalez Ocampo, Javier De Jesúse2c2016a1279aabb359d95d619bebb90600Urbano Noguera, Rubén Daríoe46f1e5f0118d2df7b84340b304d4c61Grupo Kimera2021-09-03T19:27:01Z2021-09-03T19:27:01Z2021-09-03https://repositorio.unal.edu.co/handle/unal/80093Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl tratamiento de aguas residuales de la industria curtiembre del municipio de Belén, Nariño es de suma importancia para las comunidades de esta región, principalmente porque en los procesos de transformación de cuero utilizan sulfatos de cromo, sodio y amonio; y otros reactivos, que cargan los residuos líquidos de contaminantes de difícil degradabilidad; de ahí, se vierten a los cuerpos de agua natural, aproximadamente 322 3/ í de efluentes, sin ningún tratamiento previo. Por esta razón, en este trabajo se planteó una tecnología adsorción y fenton heterogéneo como alternativa de tratamiento, en términos de eficiencia de remoción de contaminantes, costos de operación y disponibilidad de materias primas. En el documento se presenta el proceso de síntesis y caracterización de un material adsorbente de cascarilla de café y el mismo impregnado con nanopartículas de hierro cero valente () para la adsorción de cromo hexavalente en solución ( ). En detalle se exploró un ligero pretratamiento con ácido cítrico para eliminar compuestos solubles y mejorar la estructura cristalina de las macromoléculas de celulosa, hemicelulosa y lignina de la cascarilla de café; así mismo se estudió la concentración impregnada en el soporte de biomasa, con el fin de ser caracterizado en función del punto de carga zero (), área superficial (), morfología de superficie y espectroscopía infrarroja por transformada de Fourier (). Además, los materiales sintetizados se utilizaron para estudiar los efectos de concentración adsorbente, y tiempo de contacto en la adsorción de () en solución. Una vez conocidos los parámetros óptimos, se profundizó en los estudios de transferencia de masa, de equilibrio y de adsorción de cromo total. Las capacidades máximas de adsorción de () con una concentración inicial de 5 /, fueron de 3 / para cascarilla de café natural () y 2.01 / para cascarilla de café pretratada con ácido cítrico (), mientras que para todos los materiales impregnados con fue aproximadamente de 9.9 /, cargas alcanzadas a los 120 , 130 y 2 , respectivamente. Por otro lado, se seleccionó el mejor material impregnado con para los procesos fenton heterogéneo donde se estudiaron los efectos de 22/, de y /22 en la eliminación de la demanda química de oxígeno (), fenoles totales () y con concentraciones iniciales de 3277 2/, 200 / y 25 /, respectivamente, de un agua residual sintética de curtiduría. Se eliminó el 95.24% de , el 97.54 % de y el 99.82% de (). De acuerdo con los resultados de esta tesis de maestría, se recomienda evaluar la sostenibilidad y potencial aplicación de los procesos analizados a las corrientes de industria de curtiembre. (Texto tomado de la fuente)The treatment of wastewater from the tannery industry in the municipality of Belén, Nariño is of utmost importance for the communities of this region, mainly because in the leather transformation processes they use chromium, sodium and ammonium sulfates; and other reagents, which load the liquid waste with pollutants of difficult degradability; From there, approximately 322 3/ of effluents are discharged into natural water bodies, without any previous treatment. For this reason, in this work a heterogeneous adsorption and fenton technology was proposed as a treatment alternative, in terms of pollutant removal efficiency, operating costs and availability of raw materials. The document presents the synthesis and characterization process of a coffee husk adsorbent material and it impregnated with zero valent iron nanoparticles () for the adsorption of hexavalent chromium in solution ( ). In detail, a slight pretreatment with citric acid was explored to eliminate soluble compounds and improve the crystalline structure of the macromolecules of cellulose, hemicellulose and lignin of the coffee husk; likewise, the impregnated concentration in the biomass support was studied, in order to be characterized as a function of the zero charge point (), surface area (), surface morphology and Fourier transform infrared spectroscopy (). Furthermore, the synthesized materials were used to study the effects of adsorbent concentration, and contact time on the adsorption of () in solution. Once the optimal parameters were known, the studies of mass transfer, equilibrium and total chromium adsorption were studied in depth. The maximum adsorption capacities of () with an initial concentration of 5 / , were 3 / for natural coffee husk () and 2.01 / for coffee husk pretreated with citric acid (), however, for all the materials impregnated with it was approximately 9.9 / , loads reached at 120 , 130 and 2 , respectively. On the other hand, the best material impregnated with was selected for the heterogeneous fenton processes where the effects of 22/, and /22 were studied in the elimination of chemical oxygen demand (), total phenols () and with initial concentrations of 3277 2/, 200 / and 25 /, respectively, of a synthetic tannery wastewater. 95.24 % of , 97.54% of and 99.82% of () were removed. According to the results of this Master's thesis, it is recommended to evaluate the sustainability and potential application of the analyzed processes to the tannery industry currents.MaestríaMagíster en Ingeniería - Ingeniería QuímicaTratamiento de aguas residuales y aprovechamiento de residuos sólidosvi, 106 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Procesos y EnergíaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería químicaAguas residuales - TratamientoAdsorciónResiduos lignocelulósicosFenton heterogéneoTratamiento aguas residualesNanopartículas de hierroAdsorptionLignocellulosic wasteHeterogeneous fentonWastewater treatmentIron nanoparticlesEvaluación de la adsorción de cromo hexavalente y fenton heterogéneo para el tratamiento de aguas residuales sintéticas de curtiduría utilizando nanopartículas de hierro soportadas en cascarilla de café.Evaluation of the adsorption of hexavalent chromium and heterogeneous fenton for the treatment of synthetic tannery wastewater using iron nanoparticles supported on coffee huskTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMNariño, colombia[1] G. Vilardi, J. M. Ochando-pulido, M. Stoller, N. Verdone, and L. Di, “Fenton oxidation and chromium recovery from tannery wastewater by means of iron-based coated biomass as heterogeneous catalyst in fi xed-bed columns,” Chem. Eng. J., vol. 351, no. April, pp. 1–11, 2018. [2] A. María, “DIAGNÓSTICO AMBIENTAL DEL SECTOR CURTIEMBRE EN COLOMBIA,” 2004. [3] R. Darío, “Entrevista asociación de curtiembres de Belén Nariño,” CURTIEMBRES CUEROS BELEN SAS, 2019. [4] G. Vilardi, J. Rodríguez-Rodríguez, J. M. Ochando-Pulido, N. Verdone, A. Martinez-Ferez, and L. Di Palma, “Large Laboratory-Plant application for the treatment of a Tannery wastewater by Fenton oxidation: Fe(II) and nZVI catalysts comparison and kinetic modelling,” Process Saf. Environ. Prot., vol. 117, pp. 629–638, 2018. [5] Z. Houshyar, A. Baradar, and E. Fatehifar, “Influence of ozonation process on characteristics of pre-alkalized tannery effluents,” Chem. Eng. J., vol. 191, pp. 59–65, 2012. [6] J. R. González, J. Luis, G. Alcaraz, and G. V. Angulo, “MODELACIÓN DEL PROCESO DE TRANSFERENCIA DE MASA EN COLUMNAS DE LECHO FIJO DE LA BIOADSORCIÓN DEL Cr ( VI ),” Culcyt//Modelado, no. 40, 2010. [7] H. Council, Chromium (VI) compounds, vol. 100 C. 2011. [8] G. Vilardi, L. Di Palma, and N. Verdone, “On the critical use of zero valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater,” J. Water Process Eng., vol. 22, no. January, pp. 109–122, 2018. [9] M. A. El-sheikh, H. I. Saleh, J. R. Flora, and M. R. Abdel-ghany, “Biological tannery wastewater treatment using two stage UASB reactors,” DES, vol. 276, no. 1–3, pp. 253–259, 2011. [10] “Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical-chemical treatment,” vol. 204, no. May 2006, pp. 219–226, 2007. [11] M. Murugananthan, G. B. Raju, and S. Prabhakar, “Separation of pollutants from tannery effluents by electro flotation,” vol. 40, no. January, pp. 69–75, 2004. [12] Z. Song and C. J. Williams, “Treatment of tannery wastewater by chemical coagulation,” vol. 164, pp. 249–259, 2004. [13] S. Aber, D. Salari, and M. R. Parsa, “Employing the Taguchi method to obtain the optimum conditions of coagulation-flocculation process in tannery wastewater treatment,” Chem. Eng. J., vol. 162, no. 1, pp. 127–134, 2010. [14] G. Vilardi, J. M. Ochando-pulido, N. Verdone, M. Stoller, and L. Di, “On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles : Equilibrium study and chromium recovery,” J. Clean. Prod., vol. 190, pp. 200–210, 2018. [15] Y. Wang, W. Li, A. Irini, and C. Su, “Removal of organic pollutants in tannery wastewater from wet-blue fur processing by integrated Anoxic / Oxic ( A / O ) and Fenton : Process optimization,” Chem. Eng. J., vol. 252, pp. 22–29, 2014. [16] W. M. Bolivar, “INGENIERÍA DE NANOPARTÍCULAS MAGNÉTICAS PARA LA REMOCIÓN DE METALES PESADOS EN AGUAS. WILFREDO,” Pontificia Universidad Javeriana, Bogotá D.C, 2018. [17] J. N. Sahu, J. Acharya, and B. C. Meikap, “Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process,” J. Hazard. Mater., vol. 172, no. 2–3, pp. 818–825, 2009. [18] H. Demiral, I. Demiral, F. Tümsek, and B. Karabacakoǧlu, “Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models,” Chem. Eng. J., vol. 144, no. 2, pp. 188–196, 2008. [19] M. Barkat, D. Nibou, S. Chegrouche, and A. Mellah, “Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions,” Chem. Eng. Process. Process Intensif., vol. 48, no. 1, pp. 38–47, 2009. [20] F. Cortés, “Adsorción de agua en materiales compuestos y en Zeolita,” p. 116, 2009. [21] K. Giovanna and B. Gómez, “Wastewater treatment using an iron nanocatalyst supported on Fique fibers,” 2016. [22] C. H. Xu, L. J. Zhu, X. H. Wang, S. Lin, and Y. M. Chen, “Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (NZVI/AC),” Water. Air. Soil Pollut., vol. 225, no. 2, 2014. [23] H. Dong et al., Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution, vol. 332, no. Vi. Elsevier B.V., 2017. [24] X. Lv, J. Xu, G. Jiang, and X. Xu, “Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes,” Chemosphere, vol. 85, no. 7, pp. 1204–1209, 2011. [25] F. S. Dos Santos, F. R. Lago, L. Yokoyama, and F. V. Fonseca, “Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15,” J. Mater. Res. Technol., vol. 6, no. 2, pp. 178–183, 2017. [26] I. Reales, “Evaluación de un proceso integrado de adsorción y oxidación avanzada para el tratameinto de aguas,” 2012. [27] M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, 2015. [28] W. Li, B. Mu, and Y. Yang, “Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology,” Bioresour. Technol., vol. 277, no. January, pp. 157–170, 2019. [29] M. H. Rodiguez et al., “Journal of Environmental Chemical Engineering Adsorption of Ni ( II ) on spent co ff ee and co ff ee husk based activated carbon,” vol. 6, no. September 2017, pp. 1161–1170, 2018. [30] A. Malara, E. Paone, P. Frontera, L. Bonaccorsi, G. Panzera, and F. Mauriello, “Sustainable Exploitation of Coffee Silverskin in Water Remediation,” 2018. [31] L. J. Barón Pacheco, “Evaluación de la cascarilla de café como material adsorbente para la remoción de iones plomo Pb +2 presente en soluciones acuosas,” p. 67, 2014. [32] L. C. A. Oliveira et al., “Preparation of activated carbons from coffee husks utilizing FeCl 3 and ZnCl 2 as activating agents,” vol. 165, pp. 87–94, 2009. [33] M. A. Ahmad and N. K. Rahman, “Equilibrium , kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon,” Chem. Eng. J., vol. 170, no. 1, pp. 154–161, 2011. [34] Mebrahtom Gebresemati, Nigus Gabbiye, and O. Sahu, “Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology,” J. Appl. Res. Technol., vol. 15, no. 1, pp. 27–35, 2017. [35] A. Malara, E. Paone, P. Frontera, L. Bonaccorsi, G. Panzera, and F. Mauriello, “Sustainable exploitation of coffee silverskin in water remediation,” Sustain., vol. 10, no. 10, 2018. [36] P. N. Ciesielski et al., “Advances in Multiscale Modeling of Lignocellulosic Biomass,” ACS Sustain. Chem. Eng., 2020. [37] N.d, “Pictures for Lignocellulose structure.” [Online]. Available: https://biofuel.webgarden.com/sections/blog/pictures-for-lignocellulose. [Accessed: 18-Mar-2020]. [38] J. Wang and R. Zhuan, “Degradation of antibiotics by advanced oxidation processes: An overview,” Sci. Total Environ., vol. 701, p. 135023, 2020. [39] J. Krýsa, D. Mantzavinos, P. Pichat, and I. Poulios, “Advanced oxidation processes for water/wastewater treatment,” Environ. Sci. Pollut. Res., vol. 25, no. 35, pp. 34799–34800, 2018. [40] A. D. Bokare and W. Choi, “Review of iron-free Fenton-like systems for activating H 2 O 2 in advanced oxidation processes,” J. Hazard. Mater., vol. 275, pp. 121–135, 2014. [41] C. Sánchez, “Reacciones fenton,” Inditex, vol. 3, pp. 1–31, 2015. [42] L. Chekli et al., “Analytical characterisation of nanoscale zero-valent iron: A methodological review,” Anal. Chim. Acta, vol. 903, pp. 13–35, 2016. [43] M. Stefaniuk, P. Oleszczuk, and Y. S. Ok, “Review on nano zerovalent iron (nZVI): From synthesis to environmental applications,” Chem. Eng. J., vol. 287, pp. 618–632, 2016. [44] M. Zhang, H. Dong, L. Zhao, D. Wang, and D. Meng, “Science of the Total Environment A review on Fenton process for organic wastewater treatment based on optimization perspective,” Sci. Total Environ., vol. 670, pp. 110–121, 2019. [45] C. Jung, Y. Deng, R. Zhao, and K. Torrens, “Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation,” Water Res., vol. 108, pp. 260–270, 2017. [46] M. Gheju, Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems, vol. 222, no. 1–4. 2011. [47] S. Karthikeyan, M. E. Priya, and R. Boopathy, “Heterocatalytic Fenton oxidation process for the treatment of tannery effluent : kinetic and thermodynamic studies,” pp. 1828–1840, 2012. [48] P. A. L. de Souza, F. G. Camacho, I. R. de Almeida da Silva, F. F. Gonçalves, C. Benincá, and E. F. Zanoelo, “An experimental and modeling study of the chain initiation reaction in heterogeneous Fenton systems with zero valent iron,” Chem. Eng. J., vol. 393, no. March, 2020. [49] X. L. Chen, F. Li, X. J. Xie, Z. Li, and L. Chen, “Nanoscale zero-valent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal,” Int. J. Environ. Res. Public Health, vol. 16, no. 17, 2019. [50] E. Cuervo Lumbaque, E. R. Lopes Tiburtius, M. Barreto-Rodrigues, and C. Sirtori, “Current trends in the use of zero-valent iron (Fe0) for degradation of pharmaceuticals present in different water matrices,” Trends Environ. Anal. Chem., vol. 24, 2019. [51] J. De Laat and T. G. Le, “Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions,” Environ. Sci. Technol., vol. 39, no. 6, pp. 1811–1818, 2005. [52] W. P. Kwan and B. M. Voelker, “Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite,” Environ. Sci. Technol., vol. 36, no. 7, pp. 1467–1476, 2002. [53] E. Neyens and J. Baeyens, “A review of classic Fenton’s peroxidation as an advanced oxidation technique,” J. Hazard. Mater., vol. 98, no. 1–3, pp. 33–50, 2003. [54] J. H. Ramirez, F. M. Duarte, F. G. Martins, C. A. Costa, and L. M. Madeira, “Modelling of the synthetic dye Orange II degradation using Fenton’s reagent: From batch to continuous reactor operation,” Chem. Eng. J., vol. 148, no. 2–3, pp. 394–404, 2009. [55] C. Walling, “Fenton’s Reagent Revisited,” Acc. Chem. Res., vol. 8, no. 4, pp. 125–131, 1975. [56] C. N. Tejada, Z. Montiel, and D. Acevedo, “Aprovechamiento de Cáscaras de Yuca y Ñame para el Tratamiento de Aguas Residuales Contaminadas con Pb(II),” Inf. Tecnol., vol. 27, no. 1, pp. 9–20, 2016. [57] C. Tejada Tovar, A. Villabona Ortiz, and E. Ruiz Paternina, “Cinética de adsorción de Cr ( VI ) usando biomasas residuales modificadas químicamente en sistemas por lotes y continuo Adsorption kinetics of Cr ( VI ) using chemically modified residual biomass in batch and continuous systems Cinética de adsorção de Cr,” Rev. Ion, vol. 28, no. 1, pp. 29–41, 2015. [58] C. J. Ajaelu, M. O. Dawodu, E. O. Faboro, and O. S. Ayanda, “Copper Biosorption by Untreated and Citric Acid Modified Senna alata Leaf Biomass in a Batch System : Kinetics , Equilibrium and Thermodynamics Studies,” vol. 7, no. 2, pp. 31–41, 2017. [59] S. Pitsari, E. Tsoufakis, and M. Loizidou, “Enhanced lead adsorption by unbleached newspaper pulp modified with citric acid,” Chem. Eng. J., vol. 223, pp. 18–30, 2013. [60] J. D. Ramsey, L. Xia, M. W. Kendig, and R. L. McCreery, “Raman spectroscopic analysis of the speciation of dilute chromate solutions,” Corros. Sci., vol. 43, no. 8, pp. 1557–1572, 2001. [61] D. Mohan and C. U. Pittman, “Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water,” J. Hazard. Mater., vol. 137, no. 2, pp. 762–811, 2006. [62] T. R. Ahammad, S. Z.; Gomes, J.; Sreekrishnan, “Wastewater treatment forproductionofH2S-free biogas,” J. Chem. Technol. Biotechnol., vol. 83, no. May, pp. 1163–1169, 2008. [63] M. C. Lu, C. J. Lin, C. H. Liao, R. Y. Huang, and W. P. Ting, “Dewatering of activated sludge by Fenton’s reagent,” Adv. Environ. Res., vol. 7, no. 3, pp. 667–670, 2003. [64] A. María and S. Arias, “Oxidación Catalítica de Fenol Empleando un Subproducto de la Industria Metalmecánica Como Catalizador Oxidación Catalítica de Fenol Empleando un Subproducto de la Industria Metalmecánica Como Catalizador,” 2015. [65] J. H. Ramirez, C. A. Costa, and L. M. Madeira, “Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton’s reagent,” Catal. Today, vol. 107–108, pp. 68–76, 2005. [66] H. Kušić, A. Lončarić Božić, and N. Koprivanac, “Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization,” Dye. Pigment., vol. 74, no. 2, pp. 380–387, 2007. [67] M. Ipohorski and P. B. Bozzano, “Microscopía Electrónica De Barrido,” Ciencia e Investigación, vol. 63, no. 3. pp. 43–53, 2013. [68] Universidad Andrés Bello, “Microscopia Electrónica de Barrido con detector EDS (SEM-EDS) | Departamento de Ciencias Químicas UNAB| UNAB,” Departamento de Ciencias Químicas. 2014. [69] “Guía sobre espectroscopía FT-IR _ Bruker.” . [70] D. A. C. Carmenaty, R. M. Pérez, and S. Isabel, “Validación Interna Del Método Espectofotométrico Por Adecuación, Para La Determinación De Cromo (Vi) En Aguas Residuales,” Rev. Cuba. Química, vol. XXII, no. 3, pp. 9–13, 2010. [71] G. M. D. Herrera, P. A. P. Ordoñez, and A. H. Anaguano, “Estandarización de la difenilcarbazida como indicador y acomplejante en la identificación de cromo hexavalente – Cr (VI)*,” Prod. + Limpia, vol. Vol.8, No., p. 152, 2013. [72] J. Milovanovic, “Desarrollo y optimización de un métodod para la determinación de Cr6+ en matrices complejas,” Iuaca.Ua.Es, p. 29, 2011. [73] E. García Martínez, I. Fernández Segovia, and A. Fuentes López, “Determinación de polifenoles totales por el método de Folin- Ciocalteu,” Univ. Politècnica València, p. 9, 2015. [74] J. Febrianto, A. N. Kosasih, J. Sunarso, Y. H. Ju, N. Indraswati, and S. Ismadji, “Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies,” J. Hazard. Mater., vol. 162, no. 2–3, pp. 616–645, 2009. [75] J. D. Seader, E. J. Henley, D. K. Roper, and Ralph, “Separation process principles: Chemical and biochemical operations [Book Review],” John Wiley Sons, Inc., no. Mar 2012, p. 849, 2012. [76] A. Y. Dursun, “A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger,” Biochem. Eng. J., vol. 28, no. 2, pp. 187–195, 2006. [77] A. Delle Site, “Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review,” J. Phys. Chem. Ref. Data, vol. 30, no. 1, pp. 187–439, 2001. [78] J. M. Modak and K. A. Natarajan, “Biosorption of metals using nonliving biomass - a review,” Miner. Metall. Process., vol. 12, no. 4, pp. 189–196, 1995. [79] G. Crini and P. M. Badot, “Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature,” Prog. Polym. Sci., vol. 33, no. 4, pp. 399–447, 2008. [80] Y. S. Ho, “Review of second-order models for adsorption systems,” J. Hazard. Mater., vol. 136, no. 3, pp. 681–689, 2006. [81] C. J. Geankoplis and R. Leyva‐Ramos, “Analysis of surface in porous solids,” vol. 40, no. 5, pp. 799–807, 1985. [82] P. S. Pauletto, G. L. Dotto, and N. P. G. Salau, “Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption,” Chem. Eng. Res. Des., vol. 157, pp. 182–194, 2020. [83] H. S. Fogler, Chemical reaction engineering. 2004. [84] P. R. Jena, S. De, and J. K. Basu, “A generalized shrinking core model applied to batch adsorption,” Chem. Eng. J., vol. 95, no. 1–3, pp. 143–154, 2003. [85] M. A. Dominguez, M. Etcheverry, and G. P. Zanini, “Evaluation of the adsorption kinetics of brilliant green dye onto a montmorillonite/alginate composite beads by the shrinking core model,” Adsorption, vol. 25, no. 7, pp. 1387–1396, 2019. [86] T. K. Naiya, A. K. Bhattacharjee, D. Sarkar, and S. K. Das, “Applicability of shrinking core model on the adsorption of heavy metals by clarified sludge from aqueous solution,” Adsorption, vol. 15, no. 4, pp. 354–364, 2009. [87] N. G. Pinto and E. Earl Graham, “Application of the shrinking-core model for predicting protein adsorption,” React. Polym. Ion Exch. Sorbents, vol. 5, no. 1, pp. 49–53, 1987. [88] D. Sarkar and A. Bandyopadhyay, “Shrinking Core Model in characterizing aqueous phase dye adsorption,” Chem. Eng. Res. Des., vol. 89, no. 1, pp. 69–77, 2011. [89] K. N. Han, Fundamentals of Aqueous Metallurgy, vol. 1, no. Chapter 1. 2002. [90] G. E. BOYD, A. W. ADAMSO, and L. S. MYERS, “The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. 11. Kinetics,” 1947. [91] Y. Zhu, H. Li, G. Zhang, F. Meng, L. Li, and S. Wu, “Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading,” Bioresour. Technol., vol. 261, no. January, pp. 142–150, 2018. [92] H. Su, Z. Fang, P. E. Tsang, J. Fang, and D. Zhao, “Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil,” Environ. Pollut., vol. 214, pp. 94–100, 2016. [93] J. P. Reymond and F. Kolenda, “Estimation of the point of zero charge of simple and mixed oxides by mass titration,” Powder Technol., vol. 103, no. 1, pp. 30–36, 1999. [94] F. Liu, S. Y. Wan, Z. Jiang, S. F. Y. Li, E. S. Ong, and J. C. C. Osorio, “Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography-electrospray ionization mass spectrometry,” Talanta, vol. 80, no. 2, pp. 916–923, 2009. [95] L. R. Pitwell, “Standard COD,” Chem. Brit., p. 19:907, 1983. [96] T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry, “Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions,” Environ. Sci. Technol., vol. 41, no. 1, pp. 284–290, 2007. [97] P. Panneerselvam, N. Morad, K. A. Tan, and R. Mathiyarasi, “Removal of Rhodamine B dye using activated carbon prepared from Palm Kernel Shell and coated with iron oxide nanoparticles,” Sep. Sci. Technol., vol. 47, no. 5, pp. 742–752, 2012. [98] “Caracterización del bagazo de caña como biomasa vegetal,” Tecnol. Química, vol. 35, no. 2, pp. 244–255, 2015. [99] J. A. Quintero, J. A. Dávila, J. Moncada, O. H. Giraldo, and C. A. Cardona, “Análisis y caracterización de materiales amiláceos y celulósicos después de modificación enzimática,” DYNA, vol. 83, no. 197, pp. 44–51, 2016. [100] A. Kezerle, N. Velic, D. Hasenay, and D. Kovačevic, “Lignocellulosic materials as dye adsorbents: Adsorption of methylene blue and congo red on brewers’ spent grain,” Croat. Chem. Acta, vol. 91, no. 1, pp. 53–64, 2018. [101] T. Thuy, L. Thi, and K. Le Van, “Adsorption behavior of Pb ( II ) in aqueous solution using coffee husk-based activated carbon modified by nitric acid American Journal of Engineering Research ( AJER ),” no. 4, pp. 120–129, 2016. [102] A. A. Ayalew and T. A. Aragaw, “Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methylene blue,” Adsorpt. Sci. Technol., vol. 38, no. 5–6, pp. 205–222, 2020. [103] M. Gonçalves, M. C. Guerreiro, L. C. A. Oliveira, C. Solar, M. Nazarro, and K. Sapag, “Micro mesoporous activated carbon from coffee husk as biomass waste for environmental applications,” Waste and Biomass Valorization, vol. 4, no. 2, pp. 395–400, 2013. [104] L. J. B. PACHECO, “EVALUACIÓN DE LA CASCARILLA DE CAFÉ COMO MATERIAL ADSORBENTE PARA LA REMOCIÓN DE IONES PLOMO Pb2+ PRESENTE EN SOLUCIONES ACUOSAS,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 1981. [105] L. C. A. Oliveira et al., “Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 87–94, 2009. [106] F. De Carvalho et al., “Bioresource Technology Characterization of co ff ee ( Co ff ea arabica ) husk lignin and degradation products obtained after oxygen and alkali addition,” Bioresour. Technol., vol. 257, no. February, pp. 172–180, 2018. [107] L. Qian et al., “Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal,” Environ. Pollut., vol. 223, pp. 153–160, 2017. [108] M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, and R. Khosravi, “A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions,” Adv. Powder Technol., vol. 28, no. 1, pp. 122–130, 2017. [109] M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, and M. Chen, “Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater,” Bioresour. Technol., vol. 214, pp. 836–851, 2016. [110] Y. Bagbi, “Nanoscale zero-valent iron for aqueous lead removal,” Adv. Mater. Proc., vol. 2, no. 4, pp. 235–241, 2017. [111] F. C. Richard and A. C. M. Bourg, “Aqueous geochemistry of chromium: A review,” Water Res., vol. 25, no. 7, pp. 807–816, 1991. [112] M. Arshadi, M. Soleymanzadeh, J. W. L. Salvacion, and F. SalimiVahid, “Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism,” J. Colloid Interface Sci., vol. 426, pp. 241–251, 2014. [113] A. O. Dada, F. A. Adekola, E. O. Odebunmi, F. E. Dada, O. S. Bello, and A. S. Ogunlaja, “Bottom-up approach synthesis of core-shell nanoscale zerovalent iron (CS-nZVI): Physicochemical and spectroscopic characterization with Cu(II) ions adsorption application,” MethodsX, vol. 7, p. 100976, 2020. [114] M. Deng et al., “Reduction and immobilization of Cr(VI) in aqueous solutions by blast furnace slag supported sulfidized nanoscale zerovalent iron,” Sci. Total Environ., vol. 743, p. 140722, 2020. [115] Y. Rashtbari, S. Hazrati, A. Azari, S. Afshin, M. Fazlzadeh, and M. Vosoughi, “A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics,” Adv. Powder Technol., vol. 31, no. 4, pp. 1612–1623, 2020. [116] M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, and R. Khosravi, “A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions,” Adv. Powder Technol., vol. 28, no. 1, pp. 122–130, 2017. [117] S. Mortazavian, H. An, D. Chun, and J. Moon, “Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies,” Chem. Eng. J., vol. 353, no. July, pp. 781–795, 2018. [118] Y. Mu, F. Jia, Z. Ai, and L. Zhang, “Iron oxide shell mediated environmental remediation properties of nano zero-valent iron,” Environ. Sci. Nano, vol. 4, no. 1, pp. 27–45, 2017. [119] F. Budiman, T. W. Kian, K. A. Razak, A. Matsuda, and Z. Lockman, “The Assessment of Cr(VI) Removal by Iron Oxide Nanosheets and Nanowires Synthesized by Thermal Oxidation of Iron in Water Vapour,” Procedia Chem., vol. 19, pp. 586–593, 2016. [120] K. Selvi, S. Pattabhi, and K. Kadirvelu, “Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon,” Bioresour. Technol., vol. 80, no. 1, pp. 87–89, 2001. [121] D. L. Gómez Aguilar, J. P. Rodríguez Miranda, J. A. Esteban Muñoz, and jhon F. Betancur, “processes Co ff ee Pulp : A Sustainable Alternative Removal of Cr,” no. Vi, 2019. [122] G. MAYRA, “EVALUACIÓN DE LA CASCARILLA DE CAFÉ COMO MATERIAL ADSORBENTE PARA LA REMOCIÓN DE IONES PLOMO Pb2+ PRESENTE EN SOLUCIONES ACUOSAS,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013. [123] Z. Liang and H. L. Tsai, “Effect of molecular film thickness on thermal conduction across solid-film interfaces,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 83, no. 6, pp. 1–7, 2011. [124] R. B. BIRD, W. E. STEWART, and E. N. LIGHTIOOT, FENÓMENOS DE TRANSPORTE, vol. 4, no. 3. BARCELONA, ESPAÑA, 1992. [125] G. McKay, “Analytical solution using a pore diffusion model for a pseudoirreversible isotherm for the adsorption of basic dye on silica,” AIChE J., vol. 30, no. 4, pp. 692–697, 1984. [126] S. F. Kang, C. H. Liao, and M. C. Chen, “Pre-oxidation and coagulation of textile wastewater by the Fenton process,” Chemosphere, vol. 46, no. 6, pp. 923–928, 2002. [127] S. H. Chang, K. S. Wang, S. J. Chao, T. H. Peng, and L. C. Huang, “Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process,” J. Hazard. Mater., vol. 166, no. 2–3, pp. 1127–1133, 2009. [128] J. Dong, Y. Zhao, R. Zhao, and R. Zhou, “Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron,” J. Environ. Sci., vol. 22, no. 11, pp. 1741–1747, 2010. [129] I. J. Buerge and S. J. Hug, “Kinetics and pH dependence of chromium(VI) reduction by iron(II),” Environ. Sci. Technol., vol. 31, no. 5, pp. 1426–1432, 1997. [130] S. G. Schrank, H. J. José, R. F. P. M. Moreira, and H. F. Schröder, “Applicability of fenton and H2O2/UV reactions in the treatment of tannery wastewaters,” Chemosphere, vol. 60, no. 5, pp. 644–655, 2005. [131] L. Xu and J. Wang, “A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol,” J. Hazard. Mater., vol. 186, no. 1, pp. 256–264, 2011. [132] R. F. Yu, H. W. Chen, W. P. Cheng, Y. J. Lin, and C. L. Huang, “Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 3, pp. 947–954, 2014. [133] J. Rodriguez-rodriguez, J. M. Ochando-pulido, and A. Martinez-, “The Effect of pH in Tannery Wastewater by Fenton vs . Heterogeneous Fenton Process,” vol. 73, no. August 2018, pp. 205–210, 2019. [134] D. He, J. Ma, R. N. Collins, and T. D. Waite, “Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species,” Environ. Sci. Technol., vol. 50, no. 7, pp. 3820–3828, 2016. [135] A. Shimizu, M. Tokumura, K. Nakajima, and Y. Kawase, “Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation,” J. Hazard. Mater., vol. 201–202, pp. 60–67, 2012. [136] C. E. Noradoun and I. F. Cheng, “EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system.,” Environ. Sci. Technol., vol. 39, no. 18, pp. 7158–63, 2005. [137] J. A. Zazo, J. A. Casas, A. F. Mohedano, and J. J. Rodriguez, “Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study,” Water Res., vol. 43, no. 16, pp. 4063–4069, 2009. [138] B. Guo, M. Li, and S. Li, “The comparative study of a homogeneous and a heterogeneous system with green synthesized iron nanoparticles for removal of Cr(VI),” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020. [139] Z. H. Diao et al., “Removals of Cr(VI) and Cd(II) by a novel nanoscale zero valent iron/peroxydisulfate process and its Fenton-like oxidation of pesticide atrazine: Coexisting effect, products and mechanism,” Chem. Eng. J., vol. 397, no. April, p. 125382, 2020. [140] B. Kumari and S. Dutta, “Integrating starch encapsulated nanoscale zero-valent iron for better chromium removal performance,” J. Water Process Eng., vol. 37, no. June, p. 101370, 2020. [141] X. Lv, J. Xu, G. Jiang, J. Tang, and X. Xu, “Highly active nanoscale zero-valent iron (nZVI)-Fe 3O 4 nanocomposites for the removal of chromium(VI) from aqueous solutions,” J. Colloid Interface Sci., vol. 369, no. 1, pp. 460–469, 2012. [142] R. F. Yu, F. H. Chi, W. P. Cheng, and J. C. Chang, “Application of pH, ORP, and DO monitoring to evaluate chromium(VI) removal from wastewater by the nanoscale zero-valent iron (nZVI) process,” Chem. Eng. J., vol. 255, pp. 568–576, 2014.Gobernación de Nariño / Fundación CEIBAInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80093/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1085661915.2021.pdf1085661915.2021.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf6899567https://repositorio.unal.edu.co/bitstream/unal/80093/2/1085661915.2021.pdf1d97c6993c20ab8ad462e798d7204b04MD52THUMBNAIL1085661915.2021.pdf.jpg1085661915.2021.pdf.jpgGenerated Thumbnailimage/jpeg5501https://repositorio.unal.edu.co/bitstream/unal/80093/3/1085661915.2021.pdf.jpgce7cb94c3f11983987a80432517501eeMD53unal/80093oai:repositorio.unal.edu.co:unal/800932024-07-28 23:59:04.986Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==