Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo

ilustraciones, diagramas, tablas

Autores:
Mora Gordillo, Sara Lucia
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81923
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81923
https://repositorio.unal.edu.co/
Palabra clave:
670 - Manufactura::677 - Textiles
540 - Química y ciencias afines
Plant fibers
Fibras vegetales
Fibras naturales
inmovilización
lacasa
nanopartículas MnO2
índigo carmín
degradación
mecanismo
Natural fibers
immobilization laccase
MnO2 nanoparticles
indigo carmine dye
degradation
mechanism
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_550989428875fc3ef9eaa89d4031ada9
oai_identifier_str oai:repositorio.unal.edu.co:unal/81923
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
dc.title.translated.eng.fl_str_mv Synthesis effect of MnO2 nanoparticles and laccase immobilization onto plantain fibers from pseudostem for degradation of indigo carmine dye
title Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
spellingShingle Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
670 - Manufactura::677 - Textiles
540 - Química y ciencias afines
Plant fibers
Fibras vegetales
Fibras naturales
inmovilización
lacasa
nanopartículas MnO2
índigo carmín
degradación
mecanismo
Natural fibers
immobilization laccase
MnO2 nanoparticles
indigo carmine dye
degradation
mechanism
title_short Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
title_full Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
title_fullStr Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
title_full_unstemmed Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
title_sort Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo
dc.creator.fl_str_mv Mora Gordillo, Sara Lucia
dc.contributor.advisor.none.fl_str_mv Buitrago Sierra, Robison
Cadena Ch., Edith M.
Velez, Juan Manuel
dc.contributor.author.none.fl_str_mv Mora Gordillo, Sara Lucia
dc.contributor.researchgroup.spa.fl_str_mv Biofibras y Derivados Vegetales
dc.subject.ddc.spa.fl_str_mv 670 - Manufactura::677 - Textiles
540 - Química y ciencias afines
topic 670 - Manufactura::677 - Textiles
540 - Química y ciencias afines
Plant fibers
Fibras vegetales
Fibras naturales
inmovilización
lacasa
nanopartículas MnO2
índigo carmín
degradación
mecanismo
Natural fibers
immobilization laccase
MnO2 nanoparticles
indigo carmine dye
degradation
mechanism
dc.subject.lemb.none.fl_str_mv Plant fibers
Fibras vegetales
dc.subject.proposal.spa.fl_str_mv Fibras naturales
inmovilización
lacasa
nanopartículas MnO2
índigo carmín
degradación
mecanismo
dc.subject.proposal.eng.fl_str_mv Natural fibers
immobilization laccase
MnO2 nanoparticles
indigo carmine dye
degradation
mechanism
description ilustraciones, diagramas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-16T23:44:04Z
dc.date.available.none.fl_str_mv 2022-08-16T23:44:04Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81923
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81923
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Bhushan, S., Rana, M. S., Mamta, Nandan, N., & Prajapati, S. K. (2019). Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 7(April), 100212. https://doi.org/10.1016/j.biteb.2019.100212
Blanco, T., Ávila, C. A., & Ramírez, H. R. (2016). Nanostructured MnO2 catalyst in E. crassipes (water hyacinth) for indigo carmine degradation. Revista Colombiana de Química, 45(2), 30. https://doi.org/10.15446/rev.colomb.quim.v45n2.60395
Cadavid, Y., Cadena, E. M., Velez, J. M., & Santa, J. F. (2016). Degradation of Dyes Using Plantain Fibers Modified with Nanoparticles. In Natural Fibres: Advances in Science and Technology Towards Industrial Applications (pp. 99–110). https://doi.org/10.1007/7854
Chacon, M., Blanco, C., Hinestroza, J., & Combariza, M. (2013). Biocomposite of nanoctructured MnO2 and Fique fibers for efficient dye degradation. Green Chemistry, 129(9), 1463–9262. https://doi.org/10.1039/C3GC40911B
Cordeiro, N., Gouveia, C., Moraes, A. G. O., & Amico, S. C. (2011). Natural fibers characterization by inverse gas chromatography. Carbohydrate Polymers, 84(1), 110–117. https://doi.org/10.1016/j.carbpol.2010.11.008
FAOSTAT – Food and Agriculture Organization of the United Nations. (2018). Plaintain production 2018. http://faostat.fao.org/
Gañán, P., Zuluaga, R., Restrepo, A., Labidi, J., & Mondragon, I. (2008). Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresource Technology, 99(3), 486–491. https://doi.org/10.1016/j.biortech.2007.01.012
Gangwar, A. K., Prakash, N. T., & Prakash, R. (2014). Applicability of Microbial Xylanases in Paper Pulp Bleaching: A Review. BioResources, 9(2), 3733–3754. https://doi.org/10.15376/biores.9.2.3733-3754
George, M., Mussone, P. G., & Bressler, D. C. (2014). Surface and thermal characterization of natural fibres treated with enzymes. Industrial Crops and Products, 53, 365–373. https://doi.org/10.1016/j.indcrop.2013.12.037
González, J. T. C., Dillon, A. J. P., Pérez-Pérez, A. R., Fontana, R., & Bergmann, C. P. (2015). Enzymatic surface modification of sisal fibers (Agave Sisalana) by Penicillium echinulatum cellulases. Fibers and Polymers, 16(10), 2112–2120. https://doi.org/10.1007/s12221-015-4705-3
Izquierdo, H. (2009). Empleo del follaje de plantas de Musa spp como alternativa para la alimentación animal. Temas de Ciencia y Tecnología, 49–60. https://doi.org/https://doi.org/10.24188/recia.v6.n1.2014.260
Jiao, C., Tao, J., Xu, S., Zhang, D., Chen, Y., & Lin, H. (2017). In situ synthesis of hierarchical structured cotton fibers/MnO2 composites: a versatile and recyclable device for wastewater treatment. RSC Advances, 7, 31475–31484. https://doi.org/10.1039/C7RA04287F
Kalia, S., Thakur, K., Celli, A., Kiechel, M. A., & Schauer, C. L. (2013). Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 1(3), 97–112. https://doi.org/10.1016/j.jece.2013.04.009
Mazzeo, M., Agaton, L., Mejia, L., Guerrero, L., & Botero, J. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha de plátano en el departamento de Caldas. Revista Educación En Ingeniería, No. 9, 128–139.
Panyasart, K., Chaiyut, N., Amornsakchai, T., & Santawitee, O. (2014). Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56(C), 406–413. https://doi.org/10.1016/j.egypro.2014.07.173
Prysiazhnyi, V., Kramar, A., Dojcinovic, B., Zekic, A., Obradovic, B. M., Kuraica, M. M., & Kostic, M. (2013). Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose, 20(1), 315–325. https://doi.org/10.1007/s10570-012-9817-y
Riahi, K., Mammou, A. Ben, & Thayer, B. Ben. (2009). Date-palm fibers media filters as a potential technology for tertiary domestic wastewater treatment. Journal of Hazardous Materials, 161(2), 608–613. https://doi.org/10.1016/j.jhazmat.2008.04.013
Sfiligoj, M., Hribernik, S., Stana, K., & Kreže, T. (2012). Plant Fibres for Textile and Technical Applications. In Advances in Agrophysical Research (pp. 370–398). https://doi.org/10.5772/67458
Subramonian, W., Wu, T. Y., & Chai, S. P. (2015). An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum. Industrial Crops and Products, 70, 107–115. https://doi.org/10.1016/j.indcrop.2015.02.026
Syed M., H., Umar, A., Azra, Y., Faisal, S., & Naseem, A. (2020). Recent trends of MnO2-derived adsorbents for water treatment: a review. New Journal of Chemistry, 44, 6096–6120. https://doi.org/10.1039/C9NJ06392G.Volume
Zhai, R., Hu, J., Chen, X., Xu, Z., Wen, Z., & Jin, M. (2020). Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresource Technology, 315(May), 123846. https://doi.org/10.1016/j.biortech.2020.123846
Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. https://doi.org/10.1002/bit.20282
Zheng, Y., Yu, S., Shuai, S., Zhou, Q., & Cheng, Q. (2013). Color removal and COD reduction of biologically treated textile effluent through submerged filtration using hollow fiber nanofiltration membrane. Desalination, 314, 89–95. https://doi.org/10.1016/j.desal.2013.01.004
Abdelileh, M., Ticha, M. Ben, Moussa, I., & Meksi, N. (2019). Pretreatment optimization process of cotton to overcome the limits of its dyeability with indigo carmine. Chemical Industry and Chemical -Engineering Quarterly, 25(3), 277–288. https://doi.org/10.2298/CICEQ181115006A
Baltierra-Trejo, E., Márquez-Benavides, L., & Sánchez-Yáñez, J. M. (2015). Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119, 126–131. https://doi.org/10.1016/j.mimet.2015.10.007
Brandi, P., D’Annibale, A., Galli, C., Gentili, P., & Pontes, A. S. N. (2006). In search for practical advantages from the immobilisation of an enzyme: the case of laccase. Journal of Molecular Catalysis B: Enzymatic, 41(1–2), 61–69. https://doi.org/10.1016/j.molcatb.2006.04.012
Cano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944
Castaño Urueña, J. D. (2014). Optimización del proceso de producción, purificación y caracterización de una lacasa a partir de un hongo nativo con potencial aplicación en procesos biotecnológicos [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/45348/
Cho, E. A., Seo, J., Lee, D. W., & Pan, J. G. (2011). Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme and Microbial Technology, 49(1), 100–104. https://doi.org/10.1016/j.enzmictec.2011.03.005
Çifçi, D. I., Atav, R., Güneş, Y., & Güneş, E. (2019). Determination of the color removal efficiency of laccase enzyme depending on dye class and chromophore. Water Science and Technology, 80(1), 134–143. https://doi.org/10.2166/wst.2019.255
Cristóvão, R. O., Tavares, A. P. M., Brígida, A. I., Loureiro, J. M., Boaventura, R. A. R., Macedo, E. A., & Coelho, M. A. Z. (2011). Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B: Enzymatic, 72(1–2), 6–12. https://doi.org/10.1016/j.molcatb.2011.04.014
Da Silva, A. M., Tavares, A. P. M., Rocha, C. M. R., Cristóvão, R. O., Teixeira, J. A., & MacEdo, E. A. (2012). Immobilization of commercial laccase on spent grain. Process Biochemistry, 47(7), 1095–1101. https://doi.org/10.1016/j.procbio.2012.03.021
Fernández-Fernández, M. (2013). Inmovilización de Lacasa: Métodos y Potenciales Aplicaciones Industriales [Universidad de Vigo]. Tesis de doctorado
Giardina, P., & Faraco, V. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67, 369–385. https://doi.org/10.1007/s00018-009-0169-1
Jesionowski, T., Zdarta, J., & Krajewska, B. (2014). Enzyme immobilization by adsorption: a review. Adsorption, 20, 801–821. https://doi.org/https://doi.org/10.1007/s10450-014-9623-y
Legerská, B., Chmelová, D., & Ondrejovič, M. (2016). Degradation of synthetic dyes by laccases - A mini-review. Nova Biotechnologica et Chimica, 15(1), 90–106. https://doi.org/10.1515/nbec-2016-0010
Li, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2015). Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chinese Journal of Chemical Engineering, 23(1), 227–233. https://doi.org/10.1016/j.cjche.2014.11.001
Liu, J., Xie, Y., Peng, C., Yu, G., & Zhou, J. (2017). Molecular Understanding of Laccase Adsorption on Charged Self- Assembled Monolayers. The Journal of Physucal Chemistry, 121, 10610–10617.
Michniewicz, A., Ledakowicz, S., Ullrich, R., & Hofrichter, M. (2008). Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes and Pigments, 77, 295–302. https://doi.org/10.1016/j.dyepig.2007.05.015
Michniewicz, A., Ullrich, R., Ledakowicz, S., & Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology, 69(6), 682–688. https://doi.org/10.1007/s00253-005-0015-9
Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220. https://doi.org/10.1080/13102818.2015.1008192
Polak, J., & Jarosz-Wilkolazka, A. (2012). Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 47(9), 1295–1307. https://doi.org/10.1016/j.procbio.2012.05.006
Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373(February), 1254–1278. https://doi.org/10.1016/j.cej.2019.05.141
Rodríguez-Delgado, M. M., Alemán-Nava, G. S., Rodríguez-Delgado, J. M., Dieck-Assad, G., Martínez-Chapa, S. O., Barceló, D., & Parra, R. (2015). Laccase-based biosensors for detection of phenolic compounds. TrAC - Trends in Analytical Chemistry, 74, 21–45. https://doi.org/10.1016/j.trac.2015.05.008
Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23(6), 823–832. https://doi.org/10.1007/s11274-006-9305-3
Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082
Silva, D. F., Carvalho, A. F. A., Shinya, T. Y., Mazali, G. S., & Herculano, R. D. (2017). Recycle of Immobilized Endocellulases in Different Conditions for Cellulose Hydrolysis. Enzyme Research, 2017, 18. https://doi.org/10.1155/2017/4362704
Syazwani, N., Rahman, A., Firdaus, M., & Baharin, Y. (2018). Utilisation of natural cellulose fibres in wastewater treatment. Cellulose, 121–131. https://doi.org/10.1007/s10570-018-1935-8
Wang, S.-S., Ning, Y.-J., Wang, S.-N., Zhang, J., Zhang, G.-Q., & Chen, Q.-J. (2016). Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. International Journal of Biological Macromolecules, 95, 920–927. https://doi.org/10.1016/j.ijbiomac.2016.10.079
Yang, J., Ng, T. B., Lin, J., & Ye, X. (2015). A novel laccase from basidiomycete Cerrena sp.: Cloning, heterologous expression, and characterization. International Journal of Biological Macromolecules, 77, 344–349. https://doi.org/10.1016/j.ijbiomac.2015.03.028
Zhou, W., Zhang, W., & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review. Chemical Engineering Journal, 403(July 2020), 126–272. https://doi.org/10.1016/j.cej.2020.126272
Ammar, S., Abdelhedi, R., Flox, C., Arias, C., & Brillas, E. (2006). Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation. Environmental Chemistry Letters, 4(4), 229–233. https://doi.org/10.1007/s10311-006-0053-2
Anjos, F. S. C., Vieira, E. F. S., & Cestari, A. R. (2002). Interaction of Indigo Carmine Dye with Chitosan Evaluated by Adsorption and Thermochemical Data. 246, 243–246. https://doi.org/10.1006/jcis.2002.8537
Babak, S., Queru, S., & Feraud, M. (2016). Procede de preparation du carmin d’ indigo (Patent No. 3059664).
Benkhaya, S., Harfi, S. El, & Harfi, A. El. (2017). Classifications, properties and applications of textile dyes : A review. Apllied Journal of Enviromental Engineering Science, 3, 311–320.
Benkhaya, S., M’ rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107–891. https://doi.org/10.1016/j.inoche.2020.107891
Bernal, A. (2013). Evaluación de una columna de burbujeo de flujo ascendente para la ozonación catalizada con arcillas pilareadas con Fe. Universidad Autónoma del Estado de México.
Campos, R., Kandelbauer, A., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(2–3), 131–139. https://doi.org/10.1016/S0168-1656(01)00303-0
Cano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944
Chequer, M., Rodrigues De Oliveira, G., Anastácio, E., Carvalho, J., Boldrin, M., & Palma De Oliveira, D. (2013). Textile Dyes : Dyeing Process and Environmental Impact. In Eco-Friendly Textile Dyeing and Finishing (pp. 152–175).
Choi, K. (2021). Dyes and Pigments Discoloration of indigo dyes by eco-friendly biocatalysts. Dyes and Pigments, 184(August 2020), 108749. https://doi.org/10.1016/j.dyepig.2020.108749
Chowdhury, M. F., Khandaker, S., Sarker, F., Islam, A., Rahman, M. T., & Awual, M. R. (2020). Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. Journal of Molecular Liquids, 318, 114061. https://doi.org/10.1016/j.molliq.2020.114061
Craick, J., Khan, D., & Afifi, R. (2009). The Safety of Intravenous Indigo Carmine to Assess Ureteric Patency During Transvaginal Uterosacral Suspension of the. Journal of Pelvic Medicine and Surgey, 15(1). https://doi.org/10.1097/SPV.0b013e3181986ace
Dalmázio, I., De Urzedo, A. P. F. ., Alvez, T. M. ., Cathatino, R. R., Eberlin, M. N., Nascentes, C. C., & Augusti, R. (2007). Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidative processes. Journal of Mass Spectrometry, 43(7), 854–864. https://doi.org/10.1002/jms
De Oliveira, S., Carvalho, L., & Azevedo, R. (2010). Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials Journal, 174, 84–92. https://doi.org/10.1016/j.jhazmat.2009.09.020
Duarte, S., Jiménez, A., Pineda, J., & Mora, E. (2018). Degradación de índigo carmín por hongos de pudrición blanca Indigo carmine degradation by white rot fungi. CEBA, 1(June), 4–12.
García, N. (2016). Síntesis de hidrotalcitas con ftalocianina y aplicación en la decoloración de índigo carmín. Universidad Autónoma de Puebla.
Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment II : hybrid methods. 8(03), 553–597. https://doi.org/10.1016/S1093-0191(03)00031-5
Goud, B. S., Cha, Lim, H., Koyyada, G., & Kim, H. (2020). Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes : A Sustainable , Eco ‑ Friendly Alternative. Current Microbiology, 20, 1–16. https://doi.org/10.1007/s00284-020-02202-0
Gregory, P. (1990). Classification of Dyes by Chemical Structure. The Chemistry and Application of Dyes, 17–47. https://doi.org/10.1007/978-1-4684-7715-3_2
Jang, J. W., & Park, J. W. (2014). Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction. Journal of Hazardous Materials, 273, 1–6. https://doi.org/10.1016/j.jhazmat.2014.03.002
Jones, S. M., & Solomon, E. I. (2015). Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences, 72(5), 869–883. https://doi.org/10.1007/s00018-014-1826-6
Khataee, A. R., Vatanpour, V., & Ghadim, A. R. A. (2009). Decolorization of C . I . Acid Blue 9 solution by UV / Nano-TiO 2 , Fenton , Fenton-like , electro-Fenton and electrocoagulation processes : A comparative study. 161, 1225–1233. https://doi.org/10.1016/j.jhazmat.2008.04.075
Li, H. X., Xu, B., Tang, L., Zhang, J. H., & Mao, Z. G. (2015). Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. International Biodeterioration and Biodegradation, 103, 30–37. https://doi.org/10.1016/j.ibiod.2015.04.007
Li, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2014). Evaluation of Bacillus sp . MZS10 for decolorizing Azure B dye and its decolorization mechanism. Journal of Environmental Sciences, 26(5), 1125–1134. https://doi.org/10.1016/S1001-0742(13)60540-9
MarketWatch. (2020, November). Global Indigo Carmine Market 2020 Regional Production Volume , Business Operation Data Analysis , Revenue and Growth Rate by 2026. MarketWatch News Department, 4–7.
Marras, S. (2014). Aplpication of advanced methodologies to the identification of natural dyes and lakes in pictorial artworks. Unniveristà Ca’Fscaru Venezia.
Mishra, A., Kumar, S., & Kumar, A. (2011). International Biodeterioration & Biodegradation Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus. International Biodeterioration & Biodegradation, 65(3), 487–493. https://doi.org/10.1016/j.ibiod.2011.01.011
Prado, A. G. S., Torres, J. D., Faria, E. A., & Dias, S. C. L. (2004). Comparative adsorption studies of indigo carmine dye on chitin and chitosan. 277, 43–47. https://doi.org/10.1016/j.jcis.2004.04.056
Quintero, L. U. Z., & Cardona, S. (2010). Índigo Carmín technologies for the decolorization of dyes : indigo and indigo carmine. Dyna, 77, 371–386.
Ramya, M., Anusha, B., & Kalavathy, S. (2008). Decolorization and biodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation, 19(2), 283–291. https://doi.org/10.1007/s10532-007-9134-6
Roshan, P., Blackburn, R. S., & Bechtold, T. (2001). Indigo and Indigo Colorants. Ullmann’s Encyclopedia of Industrial Chemistry, 1–16. http://repositorio.udlap.mx/xmlui/handle/123456789/8349
Ruiz, S. (2011). Evaluación de la remoción del colorante INDIGO utilizado en empresas dedicadas a la producción de telas tipo DENIM empleando a Pleutoris ostreatus como modelo biológico. Univesrsidad de la Sabana.
Sayʇili, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84–93. https://doi.org/10.1016/j.jclepro.2015.01.009
Solís, H., Loera-Serna, S., Gómez-Chávez, V., Ruiz-Ramos, R., Cortés-Romero, C. M., & Ortiz, E. (2016). Degradation of Indigo Carmine Using Advanced Oxidation Processes: Synergy Effects and Toxicological Study. Journal of Environmental Protection, 07(12), 1693–1706. https://doi.org/10.4236/jep.2016.712137
Stasiak, N., A-koch, W. K., & Owniak, K. G. (2014). Review Modern Industrial And Pharmacological Applications Of Indigo Dye And Its Derivatives: A Review. Acta Poloniae Pharmaceutica - Drug Research, 71(2), 215–221.
Torres, T. (2015). Degradación de índigo carmín mediante procesos avanzados de oxidación empleando ozono catalizado con diferentes metales. Universidad Autónoma del Estado de México.
Vasco, A. (2014). Evaluación de la adsorción de índigo carmin en pellets abrasivos para la industria textil. In Universidad Pontificia Bolivariana (Issue 1). Universidad Pontificia Bolivariana.
Vidya Lekshmi, K. P., Yesodharan, S., & Yesodharan, E. P. (2018). MnO2 efficiently removes indigo carmine dyes from polluted water. Heliyon, 4(11). https://doi.org/10.1016/j.heliyon.2018.e00897
Vikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K. H., Rai, B. N., & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367. https://doi.org/10.1016/j.biortech.2018.01.029
Zaharia, C., & Suteu, D. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. In T. Puzyn (Ed.), Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update (1st ed., pp. 56–85). https://doi.org/10.5772/32373
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 98 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.department.spa.fl_str_mv Departamento de Materiales y Minerales
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81923/1/1085304038.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81923/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81923/3/1085304038.2022.pdf.jpg
bitstream.checksum.fl_str_mv 72bf0832f4f9cac77dc75724e9ee90e9
8153f7789df02f0a4c9e079953658ab2
8beacf585f4caaf10c9d70f7bb077ebe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090220122931200
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Buitrago Sierra, Robison44944f4ec6fd91249162ea2198a5505fCadena Ch., Edith M.7ec26456adea5743c43ee53e999944a4600Velez, Juan Manuelc5720749dbc970920dd73ca2ec13a285600Mora Gordillo, Sara Luciaae1757a78fe84ea12ea85c42ab362cceBiofibras y Derivados Vegetales2022-08-16T23:44:04Z2022-08-16T23:44:04Z2022https://repositorio.unal.edu.co/handle/unal/81923Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLos colorantes sintéticos se han convertido en una problemática ambiental con graves consecuencias en las fuentes hídricas, en la fauna de los ríos y en la salud pública, esto a raíz de la deficiente disposición de las soluciones coloreadas. Con el fin de brindar alternativas a los procesos de tratamiento, se usaron fibras vegetales extraídas del pseudotallo de plátano como soporte para la inmovilización por adsorción de lacasas y para la síntesis de nanopartículas de MnO2 con el fin de determinar la efectividad en la remoción de colorante índigo carmín. En la primera fase, se realizó un pretratamiento enzimático sobre la fibra y mediante el uso KMnO4 como precursor se obtuvo la síntesis de nanopartículas sobre las fibras de plátano que en contacto con el colorante logran una remoción del 98% en 5 minutos, después se evaluó la reutilización de la fibra funcionalizada. La siguiente fase fue la inmovilización de la enzima lacasa sobre fibras pretratadas mecánica y enzimáticamente, los resultados determinaron degradación del 98% índigo carmín con una dosis mínima de lacasa inmovilizada cuando el colorante estuvo en contacto con la fibra por 4h. Finalmente se realizó una revisión bibliográfica para orientar la determinación del mecanismo de acción teórico de la remoción mediada por lacasas y nanopartículas de MnO2. (Texto tomado de la fuente)Synthetic dyes have become an environmental problem with serious consequences for water sources, river wildlife and public health, that due to poor availability of colored solutions. In order to offer another possibility to the treatment processes, vegetable fibers extracted from the plantain pseudostem were used as carrier for the immobilization by adsorption of laccases and for the synthesis of MnO2 nanoparticles in order to recognize the usefulness removal indigo carmine dye. In the first phase, an enzymatic pretreatment was carried out on the fiber, KMnO4 was used as precursor and the synthesis of nanoparticles was carried out onto plantain fibers, they achieve 98% dye removal in 5 minutes, after functionalized fiber was evaluated for reuse. The next phase was laccase enzyme immobilization. Fibers were pretreated mechanically and enzymatically, results determined 98% indigo carmine degradation with minimum doses of immobilized laccase when the dye was in contact with the fiber for 4h. Finally, a review was performed to guide the theoretical removal mechanism mediated by laccases and MnO2 nanoparticles.MaestríaMagíster en Ingeniería - Materiales y ProcesosTecnología y Productos de Fibras VegetalesÁrea Curricular de Materiales y Nanotecnología98 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosDepartamento de Materiales y MineralesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín670 - Manufactura::677 - Textiles540 - Química y ciencias afinesPlant fibersFibras vegetalesFibras naturalesinmovilizaciónlacasananopartículas MnO2índigo carmíndegradaciónmecanismoNatural fibersimmobilization laccaseMnO2 nanoparticlesindigo carmine dyedegradationmechanismEfecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigoSynthesis effect of MnO2 nanoparticles and laccase immobilization onto plantain fibers from pseudostem for degradation of indigo carmine dyeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBhushan, S., Rana, M. S., Mamta, Nandan, N., & Prajapati, S. K. (2019). Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 7(April), 100212. https://doi.org/10.1016/j.biteb.2019.100212Blanco, T., Ávila, C. A., & Ramírez, H. R. (2016). Nanostructured MnO2 catalyst in E. crassipes (water hyacinth) for indigo carmine degradation. Revista Colombiana de Química, 45(2), 30. https://doi.org/10.15446/rev.colomb.quim.v45n2.60395Cadavid, Y., Cadena, E. M., Velez, J. M., & Santa, J. F. (2016). Degradation of Dyes Using Plantain Fibers Modified with Nanoparticles. In Natural Fibres: Advances in Science and Technology Towards Industrial Applications (pp. 99–110). https://doi.org/10.1007/7854Chacon, M., Blanco, C., Hinestroza, J., & Combariza, M. (2013). Biocomposite of nanoctructured MnO2 and Fique fibers for efficient dye degradation. Green Chemistry, 129(9), 1463–9262. https://doi.org/10.1039/C3GC40911BCordeiro, N., Gouveia, C., Moraes, A. G. O., & Amico, S. C. (2011). Natural fibers characterization by inverse gas chromatography. Carbohydrate Polymers, 84(1), 110–117. https://doi.org/10.1016/j.carbpol.2010.11.008FAOSTAT – Food and Agriculture Organization of the United Nations. (2018). Plaintain production 2018. http://faostat.fao.org/Gañán, P., Zuluaga, R., Restrepo, A., Labidi, J., & Mondragon, I. (2008). Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresource Technology, 99(3), 486–491. https://doi.org/10.1016/j.biortech.2007.01.012Gangwar, A. K., Prakash, N. T., & Prakash, R. (2014). Applicability of Microbial Xylanases in Paper Pulp Bleaching: A Review. BioResources, 9(2), 3733–3754. https://doi.org/10.15376/biores.9.2.3733-3754George, M., Mussone, P. G., & Bressler, D. C. (2014). Surface and thermal characterization of natural fibres treated with enzymes. Industrial Crops and Products, 53, 365–373. https://doi.org/10.1016/j.indcrop.2013.12.037González, J. T. C., Dillon, A. J. P., Pérez-Pérez, A. R., Fontana, R., & Bergmann, C. P. (2015). Enzymatic surface modification of sisal fibers (Agave Sisalana) by Penicillium echinulatum cellulases. Fibers and Polymers, 16(10), 2112–2120. https://doi.org/10.1007/s12221-015-4705-3Izquierdo, H. (2009). Empleo del follaje de plantas de Musa spp como alternativa para la alimentación animal. Temas de Ciencia y Tecnología, 49–60. https://doi.org/https://doi.org/10.24188/recia.v6.n1.2014.260Jiao, C., Tao, J., Xu, S., Zhang, D., Chen, Y., & Lin, H. (2017). In situ synthesis of hierarchical structured cotton fibers/MnO2 composites: a versatile and recyclable device for wastewater treatment. RSC Advances, 7, 31475–31484. https://doi.org/10.1039/C7RA04287FKalia, S., Thakur, K., Celli, A., Kiechel, M. A., & Schauer, C. L. (2013). Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 1(3), 97–112. https://doi.org/10.1016/j.jece.2013.04.009Mazzeo, M., Agaton, L., Mejia, L., Guerrero, L., & Botero, J. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha de plátano en el departamento de Caldas. Revista Educación En Ingeniería, No. 9, 128–139.Panyasart, K., Chaiyut, N., Amornsakchai, T., & Santawitee, O. (2014). Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56(C), 406–413. https://doi.org/10.1016/j.egypro.2014.07.173Prysiazhnyi, V., Kramar, A., Dojcinovic, B., Zekic, A., Obradovic, B. M., Kuraica, M. M., & Kostic, M. (2013). Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose, 20(1), 315–325. https://doi.org/10.1007/s10570-012-9817-yRiahi, K., Mammou, A. Ben, & Thayer, B. Ben. (2009). Date-palm fibers media filters as a potential technology for tertiary domestic wastewater treatment. Journal of Hazardous Materials, 161(2), 608–613. https://doi.org/10.1016/j.jhazmat.2008.04.013Sfiligoj, M., Hribernik, S., Stana, K., & Kreže, T. (2012). Plant Fibres for Textile and Technical Applications. In Advances in Agrophysical Research (pp. 370–398). https://doi.org/10.5772/67458Subramonian, W., Wu, T. Y., & Chai, S. P. (2015). An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum. Industrial Crops and Products, 70, 107–115. https://doi.org/10.1016/j.indcrop.2015.02.026Syed M., H., Umar, A., Azra, Y., Faisal, S., & Naseem, A. (2020). Recent trends of MnO2-derived adsorbents for water treatment: a review. New Journal of Chemistry, 44, 6096–6120. https://doi.org/10.1039/C9NJ06392G.VolumeZhai, R., Hu, J., Chen, X., Xu, Z., Wen, Z., & Jin, M. (2020). Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresource Technology, 315(May), 123846. https://doi.org/10.1016/j.biortech.2020.123846Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. https://doi.org/10.1002/bit.20282Zheng, Y., Yu, S., Shuai, S., Zhou, Q., & Cheng, Q. (2013). Color removal and COD reduction of biologically treated textile effluent through submerged filtration using hollow fiber nanofiltration membrane. Desalination, 314, 89–95. https://doi.org/10.1016/j.desal.2013.01.004Abdelileh, M., Ticha, M. Ben, Moussa, I., & Meksi, N. (2019). Pretreatment optimization process of cotton to overcome the limits of its dyeability with indigo carmine. Chemical Industry and Chemical -Engineering Quarterly, 25(3), 277–288. https://doi.org/10.2298/CICEQ181115006ABaltierra-Trejo, E., Márquez-Benavides, L., & Sánchez-Yáñez, J. M. (2015). Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119, 126–131. https://doi.org/10.1016/j.mimet.2015.10.007Brandi, P., D’Annibale, A., Galli, C., Gentili, P., & Pontes, A. S. N. (2006). In search for practical advantages from the immobilisation of an enzyme: the case of laccase. Journal of Molecular Catalysis B: Enzymatic, 41(1–2), 61–69. https://doi.org/10.1016/j.molcatb.2006.04.012Cano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944Castaño Urueña, J. D. (2014). Optimización del proceso de producción, purificación y caracterización de una lacasa a partir de un hongo nativo con potencial aplicación en procesos biotecnológicos [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/45348/Cho, E. A., Seo, J., Lee, D. W., & Pan, J. G. (2011). Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme and Microbial Technology, 49(1), 100–104. https://doi.org/10.1016/j.enzmictec.2011.03.005Çifçi, D. I., Atav, R., Güneş, Y., & Güneş, E. (2019). Determination of the color removal efficiency of laccase enzyme depending on dye class and chromophore. Water Science and Technology, 80(1), 134–143. https://doi.org/10.2166/wst.2019.255Cristóvão, R. O., Tavares, A. P. M., Brígida, A. I., Loureiro, J. M., Boaventura, R. A. R., Macedo, E. A., & Coelho, M. A. Z. (2011). Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B: Enzymatic, 72(1–2), 6–12. https://doi.org/10.1016/j.molcatb.2011.04.014Da Silva, A. M., Tavares, A. P. M., Rocha, C. M. R., Cristóvão, R. O., Teixeira, J. A., & MacEdo, E. A. (2012). Immobilization of commercial laccase on spent grain. Process Biochemistry, 47(7), 1095–1101. https://doi.org/10.1016/j.procbio.2012.03.021Fernández-Fernández, M. (2013). Inmovilización de Lacasa: Métodos y Potenciales Aplicaciones Industriales [Universidad de Vigo]. Tesis de doctoradoGiardina, P., & Faraco, V. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67, 369–385. https://doi.org/10.1007/s00018-009-0169-1Jesionowski, T., Zdarta, J., & Krajewska, B. (2014). Enzyme immobilization by adsorption: a review. Adsorption, 20, 801–821. https://doi.org/https://doi.org/10.1007/s10450-014-9623-yLegerská, B., Chmelová, D., & Ondrejovič, M. (2016). Degradation of synthetic dyes by laccases - A mini-review. Nova Biotechnologica et Chimica, 15(1), 90–106. https://doi.org/10.1515/nbec-2016-0010Li, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2015). Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chinese Journal of Chemical Engineering, 23(1), 227–233. https://doi.org/10.1016/j.cjche.2014.11.001Liu, J., Xie, Y., Peng, C., Yu, G., & Zhou, J. (2017). Molecular Understanding of Laccase Adsorption on Charged Self- Assembled Monolayers. The Journal of Physucal Chemistry, 121, 10610–10617.Michniewicz, A., Ledakowicz, S., Ullrich, R., & Hofrichter, M. (2008). Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes and Pigments, 77, 295–302. https://doi.org/10.1016/j.dyepig.2007.05.015Michniewicz, A., Ullrich, R., Ledakowicz, S., & Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology, 69(6), 682–688. https://doi.org/10.1007/s00253-005-0015-9Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220. https://doi.org/10.1080/13102818.2015.1008192Polak, J., & Jarosz-Wilkolazka, A. (2012). Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 47(9), 1295–1307. https://doi.org/10.1016/j.procbio.2012.05.006Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373(February), 1254–1278. https://doi.org/10.1016/j.cej.2019.05.141Rodríguez-Delgado, M. M., Alemán-Nava, G. S., Rodríguez-Delgado, J. M., Dieck-Assad, G., Martínez-Chapa, S. O., Barceló, D., & Parra, R. (2015). Laccase-based biosensors for detection of phenolic compounds. TrAC - Trends in Analytical Chemistry, 74, 21–45. https://doi.org/10.1016/j.trac.2015.05.008Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23(6), 823–832. https://doi.org/10.1007/s11274-006-9305-3Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082Silva, D. F., Carvalho, A. F. A., Shinya, T. Y., Mazali, G. S., & Herculano, R. D. (2017). Recycle of Immobilized Endocellulases in Different Conditions for Cellulose Hydrolysis. Enzyme Research, 2017, 18. https://doi.org/10.1155/2017/4362704Syazwani, N., Rahman, A., Firdaus, M., & Baharin, Y. (2018). Utilisation of natural cellulose fibres in wastewater treatment. Cellulose, 121–131. https://doi.org/10.1007/s10570-018-1935-8Wang, S.-S., Ning, Y.-J., Wang, S.-N., Zhang, J., Zhang, G.-Q., & Chen, Q.-J. (2016). Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. International Journal of Biological Macromolecules, 95, 920–927. https://doi.org/10.1016/j.ijbiomac.2016.10.079Yang, J., Ng, T. B., Lin, J., & Ye, X. (2015). A novel laccase from basidiomycete Cerrena sp.: Cloning, heterologous expression, and characterization. International Journal of Biological Macromolecules, 77, 344–349. https://doi.org/10.1016/j.ijbiomac.2015.03.028Zhou, W., Zhang, W., & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review. Chemical Engineering Journal, 403(July 2020), 126–272. https://doi.org/10.1016/j.cej.2020.126272Ammar, S., Abdelhedi, R., Flox, C., Arias, C., & Brillas, E. (2006). Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation. Environmental Chemistry Letters, 4(4), 229–233. https://doi.org/10.1007/s10311-006-0053-2Anjos, F. S. C., Vieira, E. F. S., & Cestari, A. R. (2002). Interaction of Indigo Carmine Dye with Chitosan Evaluated by Adsorption and Thermochemical Data. 246, 243–246. https://doi.org/10.1006/jcis.2002.8537Babak, S., Queru, S., & Feraud, M. (2016). Procede de preparation du carmin d’ indigo (Patent No. 3059664).Benkhaya, S., Harfi, S. El, & Harfi, A. El. (2017). Classifications, properties and applications of textile dyes : A review. Apllied Journal of Enviromental Engineering Science, 3, 311–320.Benkhaya, S., M’ rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107–891. https://doi.org/10.1016/j.inoche.2020.107891Bernal, A. (2013). Evaluación de una columna de burbujeo de flujo ascendente para la ozonación catalizada con arcillas pilareadas con Fe. Universidad Autónoma del Estado de México.Campos, R., Kandelbauer, A., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(2–3), 131–139. https://doi.org/10.1016/S0168-1656(01)00303-0Cano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944Chequer, M., Rodrigues De Oliveira, G., Anastácio, E., Carvalho, J., Boldrin, M., & Palma De Oliveira, D. (2013). Textile Dyes : Dyeing Process and Environmental Impact. In Eco-Friendly Textile Dyeing and Finishing (pp. 152–175).Choi, K. (2021). Dyes and Pigments Discoloration of indigo dyes by eco-friendly biocatalysts. Dyes and Pigments, 184(August 2020), 108749. https://doi.org/10.1016/j.dyepig.2020.108749Chowdhury, M. F., Khandaker, S., Sarker, F., Islam, A., Rahman, M. T., & Awual, M. R. (2020). Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. Journal of Molecular Liquids, 318, 114061. https://doi.org/10.1016/j.molliq.2020.114061Craick, J., Khan, D., & Afifi, R. (2009). The Safety of Intravenous Indigo Carmine to Assess Ureteric Patency During Transvaginal Uterosacral Suspension of the. Journal of Pelvic Medicine and Surgey, 15(1). https://doi.org/10.1097/SPV.0b013e3181986aceDalmázio, I., De Urzedo, A. P. F. ., Alvez, T. M. ., Cathatino, R. R., Eberlin, M. N., Nascentes, C. C., & Augusti, R. (2007). Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidative processes. Journal of Mass Spectrometry, 43(7), 854–864. https://doi.org/10.1002/jmsDe Oliveira, S., Carvalho, L., & Azevedo, R. (2010). Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials Journal, 174, 84–92. https://doi.org/10.1016/j.jhazmat.2009.09.020Duarte, S., Jiménez, A., Pineda, J., & Mora, E. (2018). Degradación de índigo carmín por hongos de pudrición blanca Indigo carmine degradation by white rot fungi. CEBA, 1(June), 4–12.García, N. (2016). Síntesis de hidrotalcitas con ftalocianina y aplicación en la decoloración de índigo carmín. Universidad Autónoma de Puebla.Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment II : hybrid methods. 8(03), 553–597. https://doi.org/10.1016/S1093-0191(03)00031-5Goud, B. S., Cha, Lim, H., Koyyada, G., & Kim, H. (2020). Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes : A Sustainable , Eco ‑ Friendly Alternative. Current Microbiology, 20, 1–16. https://doi.org/10.1007/s00284-020-02202-0Gregory, P. (1990). Classification of Dyes by Chemical Structure. The Chemistry and Application of Dyes, 17–47. https://doi.org/10.1007/978-1-4684-7715-3_2Jang, J. W., & Park, J. W. (2014). Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction. Journal of Hazardous Materials, 273, 1–6. https://doi.org/10.1016/j.jhazmat.2014.03.002Jones, S. M., & Solomon, E. I. (2015). Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences, 72(5), 869–883. https://doi.org/10.1007/s00018-014-1826-6Khataee, A. R., Vatanpour, V., & Ghadim, A. R. A. (2009). Decolorization of C . I . Acid Blue 9 solution by UV / Nano-TiO 2 , Fenton , Fenton-like , electro-Fenton and electrocoagulation processes : A comparative study. 161, 1225–1233. https://doi.org/10.1016/j.jhazmat.2008.04.075Li, H. X., Xu, B., Tang, L., Zhang, J. H., & Mao, Z. G. (2015). Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. International Biodeterioration and Biodegradation, 103, 30–37. https://doi.org/10.1016/j.ibiod.2015.04.007Li, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2014). Evaluation of Bacillus sp . MZS10 for decolorizing Azure B dye and its decolorization mechanism. Journal of Environmental Sciences, 26(5), 1125–1134. https://doi.org/10.1016/S1001-0742(13)60540-9MarketWatch. (2020, November). Global Indigo Carmine Market 2020 Regional Production Volume , Business Operation Data Analysis , Revenue and Growth Rate by 2026. MarketWatch News Department, 4–7.Marras, S. (2014). Aplpication of advanced methodologies to the identification of natural dyes and lakes in pictorial artworks. Unniveristà Ca’Fscaru Venezia.Mishra, A., Kumar, S., & Kumar, A. (2011). International Biodeterioration & Biodegradation Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus. International Biodeterioration & Biodegradation, 65(3), 487–493. https://doi.org/10.1016/j.ibiod.2011.01.011Prado, A. G. S., Torres, J. D., Faria, E. A., & Dias, S. C. L. (2004). Comparative adsorption studies of indigo carmine dye on chitin and chitosan. 277, 43–47. https://doi.org/10.1016/j.jcis.2004.04.056Quintero, L. U. Z., & Cardona, S. (2010). Índigo Carmín technologies for the decolorization of dyes : indigo and indigo carmine. Dyna, 77, 371–386.Ramya, M., Anusha, B., & Kalavathy, S. (2008). Decolorization and biodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation, 19(2), 283–291. https://doi.org/10.1007/s10532-007-9134-6Roshan, P., Blackburn, R. S., & Bechtold, T. (2001). Indigo and Indigo Colorants. Ullmann’s Encyclopedia of Industrial Chemistry, 1–16. http://repositorio.udlap.mx/xmlui/handle/123456789/8349Ruiz, S. (2011). Evaluación de la remoción del colorante INDIGO utilizado en empresas dedicadas a la producción de telas tipo DENIM empleando a Pleutoris ostreatus como modelo biológico. Univesrsidad de la Sabana.Sayʇili, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84–93. https://doi.org/10.1016/j.jclepro.2015.01.009Solís, H., Loera-Serna, S., Gómez-Chávez, V., Ruiz-Ramos, R., Cortés-Romero, C. M., & Ortiz, E. (2016). Degradation of Indigo Carmine Using Advanced Oxidation Processes: Synergy Effects and Toxicological Study. Journal of Environmental Protection, 07(12), 1693–1706. https://doi.org/10.4236/jep.2016.712137Stasiak, N., A-koch, W. K., & Owniak, K. G. (2014). Review Modern Industrial And Pharmacological Applications Of Indigo Dye And Its Derivatives: A Review. Acta Poloniae Pharmaceutica - Drug Research, 71(2), 215–221.Torres, T. (2015). Degradación de índigo carmín mediante procesos avanzados de oxidación empleando ozono catalizado con diferentes metales. Universidad Autónoma del Estado de México.Vasco, A. (2014). Evaluación de la adsorción de índigo carmin en pellets abrasivos para la industria textil. In Universidad Pontificia Bolivariana (Issue 1). Universidad Pontificia Bolivariana.Vidya Lekshmi, K. P., Yesodharan, S., & Yesodharan, E. P. (2018). MnO2 efficiently removes indigo carmine dyes from polluted water. Heliyon, 4(11). https://doi.org/10.1016/j.heliyon.2018.e00897Vikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K. H., Rai, B. N., & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367. https://doi.org/10.1016/j.biortech.2018.01.029Zaharia, C., & Suteu, D. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. In T. Puzyn (Ed.), Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update (1st ed., pp. 56–85). https://doi.org/10.5772/32373EstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalORIGINAL1085304038.2022.pdf1085304038.2022.pdfTesis de Maestria en Ingenieria Materiales y procesosapplication/pdf2724906https://repositorio.unal.edu.co/bitstream/unal/81923/1/1085304038.2022.pdf72bf0832f4f9cac77dc75724e9ee90e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81923/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1085304038.2022.pdf.jpg1085304038.2022.pdf.jpgGenerated Thumbnailimage/jpeg5469https://repositorio.unal.edu.co/bitstream/unal/81923/3/1085304038.2022.pdf.jpg8beacf585f4caaf10c9d70f7bb077ebeMD53unal/81923oai:repositorio.unal.edu.co:unal/819232023-10-20 21:05:05.011Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK