Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022

ilustraciones, diagramas

Autores:
Marín-Rodríguez, Nini Johana
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83906
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83906
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
330 - Economía::333 - Economía de la tierra y de la energía
Petróleo - Aspectos económicos
Petroleum
CO2 emissions
Co-movements
Dependence
Oil prices
Green bonds
Scientometric analysis
Energy markets
Machine learning
Emisiones de CO2
Co-movimientos
Dependencia
Precios del petróleo
Bonos verdes
Análisis cienciométrico
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_543ebedecc7195f864d32130870cd1fe
oai_identifier_str oai:repositorio.unal.edu.co:unal/83906
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022
dc.title.translated.spa.fl_str_mv Análisis del co-movimiento dinámico de los precios del petróleo, los bonos verdes y las emisiones de CO2, 2014-2022
title Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022
spellingShingle Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022
620 - Ingeniería y operaciones afines
330 - Economía::333 - Economía de la tierra y de la energía
Petróleo - Aspectos económicos
Petroleum
CO2 emissions
Co-movements
Dependence
Oil prices
Green bonds
Scientometric analysis
Energy markets
Machine learning
Emisiones de CO2
Co-movimientos
Dependencia
Precios del petróleo
Bonos verdes
Análisis cienciométrico
title_short Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022
title_full Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022
title_fullStr Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022
title_full_unstemmed Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022
title_sort Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022
dc.creator.fl_str_mv Marín-Rodríguez, Nini Johana
dc.contributor.advisor.none.fl_str_mv Botero Botero, Sergio
González Ruiz, Juan David
dc.contributor.author.none.fl_str_mv Marín-Rodríguez, Nini Johana
dc.contributor.researchgroup.spa.fl_str_mv Modelamiento y Análisis Energía Ambiente Economía
dc.contributor.orcid.spa.fl_str_mv Marín-Rodríguez, Nini Johana [0000-0003-4318-7947]
González Ruiz, Juan David [0000-0003-4425-7687]
dc.contributor.cvlac.spa.fl_str_mv Marín-Rodríguez, Nini Johana [0001337439]
dc.contributor.scopus.spa.fl_str_mv Marín-Rodríguez, Nini Johana [57195913643]
dc.contributor.researchgate.spa.fl_str_mv Marín-Rodríguez, Nini Johana [ J-4437-2015]
dc.contributor.googlescholar.spa.fl_str_mv Marín-Rodríguez, Nini Johana [https://scholar.google.com/citations?user=QnylAiQAAAAJ&hl=es]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
330 - Economía::333 - Economía de la tierra y de la energía
topic 620 - Ingeniería y operaciones afines
330 - Economía::333 - Economía de la tierra y de la energía
Petróleo - Aspectos económicos
Petroleum
CO2 emissions
Co-movements
Dependence
Oil prices
Green bonds
Scientometric analysis
Energy markets
Machine learning
Emisiones de CO2
Co-movimientos
Dependencia
Precios del petróleo
Bonos verdes
Análisis cienciométrico
dc.subject.lemb.spa.fl_str_mv Petróleo - Aspectos económicos
dc.subject.lemb.eng.fl_str_mv Petroleum
dc.subject.proposal.eng.fl_str_mv CO2 emissions
Co-movements
Dependence
Oil prices
Green bonds
Scientometric analysis
Energy markets
Machine learning
dc.subject.proposal.spa.fl_str_mv Emisiones de CO2
Co-movimientos
Dependencia
Precios del petróleo
Bonos verdes
Análisis cienciométrico
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-30T12:47:08Z
dc.date.available.none.fl_str_mv 2023-05-30T12:47:08Z
dc.date.issued.none.fl_str_mv 2023-05-29
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83906
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83906
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abdelmaksoud, A. M., Balomenos, G. P., & Becker, T. C. (2022). Fuzzy-Logistic Models for Incorporating Epistemic Uncertainty in Bridge Management Decisions. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 8(3), 04022025.
Addison, P. S. (2017). The Illustrated Wavelet Transform Handbook. CRC Press. https://doi.org/10.1201/9781315372556
Adom, P. K., Kwakwa, P. A., & Amankvvaa, A. (2018). The long-run effects of economic, demographic, and political indices on actual and potential CO2 emissions. Journal of Environmental Management, 218, 516–526. https://doi.org/10.1016/j.jenvman.2018.04.090
Agboola, M. O., Bekun, F. V., & Balsalobre-Lorente, D. (2021). Implications of Social Isolation in Combating COVID-19 Outbreak in Kingdom of Saudi Arabia: Its Consequences on the Carbon Emissions Reduction. Sustainability, 13(16), 9476. https://doi.org/10.3390/su13169476
Aguiar-Conraria, L., & Soares, M. J. (2011). Oil and the macroeconomy: using wavelets to analyze old issues. Empirical Economics, 40(3), 645–655. https://doi.org/10.1007/s00181-010-0371-x
Ahmed, S., Chakrabortty, R. K., Essam, D. L., & Ding, W. (2022). Poly-linear regression with augmented long short term memory neural network: Predicting time series data. Information Sciences, 606, 573–600. https://doi.org/10.1016/j.ins.2022.05.078
Ahmed, W. M. A. (2022). On the higher-order moment interdependence of stock and commodity markets: A wavelet coherence analysis. The Quarterly Review of Economics and Finance, 83, 135–151. https://doi.org/10.1016/j.qref.2021.12.003
Akca, H. (2021). Environmental Kuznets Curve and financial development in Turkey: evidence from augmented ARDL approach. Environmental Science and Pollution Research, 28(48), 69149–69159. https://doi.org/10.1007/s11356-021-15417-w
Akkoc, U., & Civcir, I. (2019). Dynamic linkages between strategic commodities and stock market in Turkey: Evidence from SVAR-DCC-GARCH model. Resources Policy, 62, 231–239. https://doi.org/10.1016/j.resourpol.2019.03.017
Akram, V., & Haider, S. (2022). A Dynamic Nexus Between COVID-19 Sentiment, Clean Energy Stocks, Technology Stocks, and Oil Prices: Global Evidence. Energy RESEARCH LETTERS, 3(3). https://doi.org/10.46557/001c.32625
al Mamun, M., Boubaker, S., & Nguyen, D. K. (2022). Green finance and decarbonization: Evidence from around the world. Finance Research Letters, 46, 102807. https://doi.org/10.1016/j.frl.2022.102807
Albulescu, C. T., Demirer, R., Raheem, I. D., & Tiwari, A. K. (2019). Does the U.S. economic policy uncertainty connect financial markets? Evidence from oil and commodity currencies. Energy Economics, 83, 375–388. https://doi.org/https://doi.org/10.1016/j.eneco.2019.07.024
Alhodiry, A., Rjoub, H., & Samour, A. (2021). Impact of oil prices, the U.S interest rates on Turkey’s real estate market. New evidence from combined co-integration and bootstrap ARDL tests. Plos One, 16(1), e0242672. https://doi.org/10.1371/journal.pone.0242672
Ali, M., Tursoy, T., Samour, A., Moyo, D., & Konneh, A. (2022). Testing the impact of the gold price, oil price, and renewable energy on carbon emissions in South Africa: Novel evidence from bootstrap ARDL and NARDL approaches. Resources Policy, 79, 102984. https://doi.org/10.1016/j.resourpol.2022.102984
Ali, S. R. M., Mensi, W., Anik, K. I., Rahman, M., & Kang, S. H. (2022). The impacts of COVID-19 crisis on spillovers between the oil and stock markets: Evidence from the largest oil importers and exporters. Economic Analysis and Policy, 73, 345–372. https://doi.org/10.1016/j.eap.2021.11.009
Alkathery, M. A., & Chaudhuri, K. (2021). Co-movement between oil price, CO<inf>2</inf> emission,renewable energy and energy equities: Evidence from GCC countries. Journal of Environmental Management, 297. https://doi.org/10.1016/j.jenvman.2021.113350
Allen, R. G. D. (1950). The Substitution Effect in Value Theory. The Economic Journal, 60(240), 675. https://doi.org/10.2307/2226707
Aloui, R., ben Aïssa, M. S., & Nguyen, D. K. (2013). Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach. Journal of International Money and Finance, 32(1), 719–738. https://doi.org/10.1016/j.jimonfin.2012.06.006
Aloui, R., Hammoudeh, S., & Nguyen, D. K. (2013). A time-varying copula approach to oil and stock market dependence: The case of transition economies. Energy Economics, 39, 208–221. https://doi.org/10.1016/j.eneco.2013.04.012
Alshdadi, A. A., Hayat, M. K., Daud, A., Banjar, A., & Dawood, H. (2022). Measuring the impact of COVID-19 surveillance variables over the international oil market. International Journal of Advanced and Applied Sciences, 9(1), 27–33. https://doi.org/10.21833/IJAAS.2022.01.004
Alshehry, A. S., & Belloumi, M. (2017). Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia. Renewable and Sustainable Energy Reviews, 75, 1339–1347. https://doi.org/10.1016/j.rser.2016.11.122
Amano, R. A., & van Norden, S. (1998a). Exchange rates and oil prices. Review of International Economics, 6(4), 683–694. https://doi.org/10.1111/1467-9396.00136
Amano, R. A., & van Norden, S. (1998b). Oil prices and the rise and fall of the US real exchange rate. Journal of International Money and Finance, 17(2), 299–316. https://doi.org/10.1016/S0261-5606(98)00004-7
Andrews, D. W. K. (2003). Tests for parameter instability and structural change with unknown change point: A corrigendum. Econometrica, 71(1), 395–397. https://doi.org/10.1111/1468-0262.00405
Antonakakis, N., Chatziantoniou, I., & Filis, G. (2013). Dynamic co-movements of stock market returns, implied volatility and policy uncertainty. Economics Letters, 120(1), 87–92. https://doi.org/10.1016/j.econlet.2013.04.004
Antonakakis, N., Chatziantoniou, I., & Filis, G. (2017). Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest. International Review of Financial Analysis, 50, 1–26. https://doi.org/10.1016/j.irfa.2017.01.004
Apergis, N., & Miller, S. M. (2009). Do structural oil-market shocks affect stock prices? Energy Economics, 31(4), 569–575. https://doi.org/10.1016/j.eneco.2009.03.001
Apergis, N., & Payne, J. E. (2015). Renewable energy, output, carbon dioxide emissions, and oil prices: Evidence from South America. Energy Sources, Part B: Economics, Planning and Policy, 10(3), 281–287. https://doi.org/10.1080/15567249.2013.853713
Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Arouri, M. E. H., Jouini, J., & Nguyen, D. K. (2012). On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness. Energy Economics, 34(2), 611–617. https://doi.org/10.1016/j.eneco.2011.08.009
Azhgaliyeva, D., Kapoor, A., & Liu, Y. (2020). Green bonds for financing renewable energy and energy efficiency in South-East Asia: a review of policies. Journal of Sustainable Finance and Investment, 10(2), 113–140. https://doi.org/10.1080/20430795.2019.1704160
Azhgaliyeva, D., Kapsalyamova, Z., & Mishra, R. (2022). Oil price shocks and green bonds: An empirical evidence. Energy Economics, 112, 106108. https://doi.org/10.1016/j.eneco.2022.106108
Azhgaliyeva, D., Mishra, R., & Kapsalyamova, Z. (2021). Oil Price Shocks and Green Bonds: A Longitudinal Multilevel Model (ADBI Working Paper 1278). Asian Development Bank. https://www.adb.org/publications/oil-price-shocks-green-bonds-longitudinal-multilevel-model
Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22. https://doi.org/10.1002/jae.659
Balaguer, J., & Cantavella, M. (2016). Estimating the environmental Kuznets curve for Spain by considering fuel oil prices (1874–2011). Ecological Indicators, 60, 853–859. https://doi.org/10.1016/j.ecolind.2015.08.006
Bali, T. G., & Engle, R. F. (2010). The intertemporal capital asset pricing model with dynamic conditional correlations. Journal of Monetary Economics, 57(4), 377–390. https://doi.org/10.1016/j.jmoneco.2010.03.002
Balsalobre-Lorente, D., Driha, O. M., Bekun Festus Victor and Sinha, A., & Adedoyin, F. F. (2020). Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Quality Atmosphere And Health, 13(12), 1439–1451. https://doi.org/10.1007/s11869-020-00898-4
Barsky, R. B., & Kilian, L. (2004). Oil and the Macroeconomy Since the 1970s. Journal of Economic Perspectives, 18(4), 115–134. https://doi.org/10.1257/0895330042632708
Basher, S. A., Haug, A. A., & Sadorsky, P. (2012). Oil prices, exchange rates and emerging stock markets. Energy Economics, 34(1), 227–240.
Basher, S. A., & Sadorsky, P. (2006). Oil price risk and emerging stock markets. Global Finance Journal, 17(2), 224–251. https://doi.org/10.1016/j.gfj.2006.04.001
Basher, S. A., & Sadorsky, P. (2016). Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Economics, 54, 235–247. https://doi.org/10.1016/j.eneco.2015.11.022
Bashir, M. F. (2022). Oil price shocks, stock market returns, and volatility spillovers: a bibliometric analysis and its implications. Environmental Science and Pollution Research, 29(16), 22809–22828. https://doi.org/10.1007/s11356-021-18314-4
Bashir, M. F., MA, B., Shahbaz, M., & Jiao, Z. (2020). The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development. Plos One, 15(11), e0242412. https://doi.org/10.1371/journal.pone.0242412
Bashir, M. F., MA, B., Shahzad, L., Liu, B., & Ruan, Q. (2021). China’s quest for economic dominance and energy consumption: Can Asian economies provide natural resources for the success of One Belt One Road? Managerial and Decision Economics, 42(3), 570–587. https://doi.org/10.1002/mde.3255
Bassey, E. (2015). Oil price: Effect on carbon emission. Carbon Management Technology Conference 2015: Sustainable and Economical CCUS Options, CMTC 2015, 1, 37–51.
Baur, D. G. (2012). Financial contagion and the real economy. Journal of Banking & Finance, 36(10), 2680–2692. https://doi.org/10.1016/j.jbankfin.2011.05.019
Bayar, Y., Sasmaz, M. U., & Ozkaya, M. H. (2021). Impact of Trade and Financial Globalization on Renewable Energy in EU Transition Economies: A Bootstrap Panel Granger Causality Test. Energies, 14(1). https://doi.org/10.3390/en14010019
Behmiri, N. B., & Pires Manso, J. R. (2012). Crude oil conservation policy hypothesis in OECD (organisation for economic cooperation and development) countries: A multivariate panel Granger causality test. Energy, 43(1), 253–260. https://doi.org/10.1016/j.energy.2012.04.032
Beirne, J., & Gieck, J. (2014). Interdependence and contagion in global asset markets. Review of International Economics, 22(4), 639–659.
Belhassine, O. (2020). Volatility spillovers and hedging effectiveness between the oil market and Eurozone sectors: A tale of two crises. Research in International Business and Finance, 53. https://doi.org/10.1016/j.ribaf.2020.101195
Bengio, Y. (2012). Deep Learning of Representations for Unsupervised and Transfer Learning. In I. Guyon, G. Dror, V. Lemaire, G. Taylor, & D. Silver (Eds.), Proceedings of ICML Workshop on Unsupervised and Transfer Learning (Vol. 27, pp. 17–36). PMLR. https://proceedings.mlr.press/v27/bengio12a.html
Bhavsar, H., Jivani, A., Amesara, S., Shah, S., Gindani, P., & Patel, S. (2023). Stock Price Prediction Using Sentiment Analysis on News Headlines (pp. 25–34). https://doi.org/10.1007/978-981-19-3571-8_4
Bloomberg, & MSCI. (2021). Bloomberg MSCI Green Bond Indices. Bringing clarity to the green bond market through benchmark indices. In Manual. https://www.msci.com/documents/1296102/26180598/BBG+MSCI+Green+Bond+Indices+Primer.pdf
Bloomfield, P. (2013). Fourier analysis of time series: an introduction (Second Edition). John Wiley & Sons.
Bodart, V., & Candelon, B. (2009). Evidence of interdependence and contagion using a frequency domain framework. Emerging Markets Review, 10(2), 140–150. https://doi.org/10.1016/j.ememar.2008.11.003
Boersen, A., & Scholtens, B. (2014). The relationship between European electricity markets and emission allowance futures prices in phase II of the EU (European Union) emission trading scheme. Energy, 74, 585–594. https://doi.org/10.1016/j.energy.2014.07.024
Boldanov, R., Degiannakis, S., & Filis, G. (2016). Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries. International Review of Financial Analysis, 48, 209–220. https://doi.org/10.1016/j.irfa.2016.10.002
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
Boufateh, T. (2019). The environmental Kuznets curve by considering asymmetric oil price shocks: evidence from the top two. Environmental Science and Pollution Research, 26(1), 706–720. https://doi.org/10.1007/s11356-018-3641-3
Bouoiyour, J., Gauthier, M., & Bouri, E. (2023). Which is leading: Renewable or brown energy assets? Energy Economics, 117, 106339. https://doi.org/10.1016/j.eneco.2022.106339
Bouri, E., Chen, Q., Lien, D., & Lv, X. (2017). Causality between oil prices and the stock market in China: The relevance of the reformed oil product pricing mechanism. International Review of Economics and Finance, 48, 34–48. https://doi.org/10.1016/j.iref.2016.11.004
Bouri, E., Shahzad, S. J. H., Roubaud, D., Kristoufek, L., & Lucey, B. (2020). Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. The Quarterly Review of Economics and Finance, 77, 156–164. https://doi.org/https://doi.org/10.1016/j.qref.2020.03.004
Bradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137, 85–86.
Broadstock, D. C., & Cheng, L. T. W. (2019). Time-varying relation between black and green bond price benchmarks: Macroeconomic determinants for the first decade. Finance Research Letters, 29, 17–22. https://doi.org/https://doi.org/10.1016/j.frl.2019.02.006
Burandt, T. (2021). Decarbonizing the global energy system : modelling global and regional transformation pathways with multi-sector energy system models [Technische Universität Berlin]. https://doi.org/10.14279/depositonce-12079
Caporin, M., & McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1(1), 115–126. https://doi.org/10.3390/econometrics1010115
Cappiello, L., Engle, R. F., & Sheppard, K. (2006). Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial Econometrics, 4(4), 537–572. https://doi.org/10.1093/jjfinec/nbl005
Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194–211. https://doi.org/10.1016/j.eswa.2016.02.006
Çelik, T. Ö., Jamneshan, A., Montúfar, G., Sturmfels, B., & Venturello, L. (2021). Wasserstein distance to independence models. Journal of Symbolic Computation, 104, 855–873. https://doi.org/10.1016/j.jsc.2020.10.005
Chang, K., Ye, Z., & Wang, W. (2019). Volatility spillover effect and dynamic correlation between regional emissions allowances and fossil energy markets: New evidence from China’s emissions trading scheme pilots. Energy, 185, 1314–1324. https://doi.org/https://doi.org/10.1016/j.energy.2019.07.132
Chansanam, W., & Li, C. (2022). Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus. Sustainability, 14(9), 5339. https://doi.org/10.3390/su14095339
Charte, D., Charte, F., & Herrera, F. (2022). Reducing Data Complexity Using Autoencoders With Class-Informed Loss Functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9549–9560. https://doi.org/10.1109/TPAMI.2021.3127698
Chen, N.-F., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of Business, 383–403.
Chen, Q., & Taylor, D. (2020). Economic development and pollution emissions in Singapore: Evidence in support of the Environmental Kuznets Curve hypothesis and its implications for regional sustainability. Journal of Cleaner Production, 243, 118637. https://doi.org/10.1016/j.jclepro.2019.118637
Chen, S.-S. (2010). Do higher oil prices push the stock market into bear territory? Energy Economics, 32(2), 490–495. https://doi.org/10.1016/j.eneco.2009.08.018
Chen, X., Lun, Y., Yan, J., Hao, T., & Weng, H. (2019). Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Medical Informatics and Decision Making, 19(S2), 50. https://doi.org/10.1186/s12911-019-0757-4
Chen, Y., Qu, F., Li, W., & Chen, M. (2019). Volatility spillover and dynamic correlation between the carbon market and energy markets. Journal of Business Economics and Management, 20(5), 979–999. https://doi.org/10.3846/jbem.2019.10762
Chen, Y.-C., & Rogoff, K. (2003). Commodity currencies. Journal of International Economics, 60(1), 133–160. https://doi.org/10.1016/S0022-1996(02)00072-7
Cheng, H., Damerow, L., Sun, Y., & Blanke, M. (2017). Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks. Journal of Imaging, 3(1), 6. https://doi.org/10.3390/jimaging3010006
Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015
Chevallier, J. (2012). Time-varying correlations in oil, gas and CO2 prices: an application using BEKK, CCC and DCC-MGARCH models. Applied Economics, 44(32), 4257–4274.
Chiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial contagion: Evidence from Asian markets. Journal of International Money and Finance, 26(7), 1206–1228.
Choi, D., Gao, Z., & Jiang, W. (2020). Attention to global warming. Review of Financial Studies, 33(3), 1112–1145. https://doi.org/10.1093/rfs/hhz086
Ciner, C. (2001). Energy Shocks and Financial Markets: Nonlinear Linkages. Studies in Nonlinear Dynamics & Econometrics, 5(3). https://doi.org/10.2202/1558-3708.1079
Civcir, İ., & Akkoç, U. (2021). Dynamic volatility linkages and hedging between commodities and sectoral stock returns in Turkey: Evidence from SVAR-cDCC-GARCH model. International Journal of Finance and Economics, 26(2), 1978–1992. https://doi.org/10.1002/ijfe.1889
Colacito, R., Engle, R. F., & Ghysels, E. (2011). A component model for dynamic correlations. Journal of Econometrics, 164(1), 45–59. https://doi.org/10.1016/j.jeconom.2011.02.013
Cong, R.-G., Wei, Y.-M., Jiao, J.-L., & Fan, Y. (2008). Relationships between oil price shocks and stock market: An empirical analysis from China. Energy Policy, 36(9), 3544–3553. https://doi.org/10.1016/j.enpol.2008.06.006
Cramer, E., Gorjao, L. R., Mitsos, A., Schafer, B., Witthaut, D., & Dahmen, M. (2022). Validation Methods for Energy Time Series Scenarios From Deep Generative Models. IEEE Access, 10, 8194–8207. https://doi.org/10.1109/ACCESS.2022.3141875
Creti, A., Joëts, M., & Mignon, V. (2013). On the links between stock and commodity markets’ volatility. Energy Economics, 37, 16–28. https://doi.org/10.1016/j.eneco.2013.01.005
Darby, M. R. (1982). The price of oil and world inflation and recession. American Economic Review, 72(4), 738–751.
de Nard, G., Engle, R. F., Ledoit, O., & Wolf, M. (2022). Large dynamic covariance matrices: Enhancements based on intraday data. Journal of Banking and Finance, 138. https://doi.org/10.1016/j.jbankfin.2022.106426
de Souza, E. S., Freire, F. de S., & Pires, J. (2018). Determinants of CO2 emissions in the MERCOSUR: the role of economic growth, and renewable and non-renewable energy. Environmental Science and Pollution Research, 25(21, SI), 20769–20781. https://doi.org/10.1007/s11356-018-2231-8
Demir, S., Mincev, K., Kok, K., & Paterakis, N. G. (2021). Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting. Applied Energy, 304, 117695. https://doi.org/10.1016/j.apenergy.2021.117695
Dewandaru, G., Rizvi, S. A. R., Masih, R., Masih, M., & Alhabshi, S. O. (2014). Stock market co-movements: Islamic versus conventional equity indices with multi-timescales analysis. Economic Systems, 38(4), 553–571. https://doi.org/10.1016/j.ecosys.2014.05.003
Dibal, P. Y., Onwuka, E. N., Agajo, J., & Alenoghena, C. O. (2018). Application of wavelet transform in spectrum sensing for cognitive radio: A survey. Physical Communication, 28, 45–57. https://doi.org/10.1016/j.phycom.2018.03.004
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431. https://doi.org/doi.org/10.1080/01621459.1979.10482531
Diebold, F. X., & Yilmaz, K. (2009). Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets. The Economic Journal, 119(534), 158–171. https://doi.org/10.1111/j.1468-0297.2008.02208.x
Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006
Disli, M., Nagayev, R., Salim, K., Rizkiah, S. K., & Aysan, A. F. (2021). In search of safe haven assets during COVID-19 pandemic: An empirical analysis of different investor types. Research in International Business and Finance, 58, 101461. https://doi.org/10.1016/j.ribaf.2021.101461
Dong, F., Gao, Y., Li, Y., Zhu, J., Hu, M., & Zhang, X. (2022). Exploring volatility of carbon price in European Union due to COVID-19 pandemic. Environmental Science and Pollution Research, 29(6), 8269–8280. https://doi.org/10.1007/s11356-021-16052-1
Dutta, A. (2018). Implied volatility linkages between the U.S. and emerging equity markets: A note. Global Finance Journal, 35, 138–146. https://doi.org/10.1016/j.gfj.2017.09.002
Dutta, A., Bouri, E., & Noor, M. H. (2018). Return and volatility linkages between CO2 emission and clean energy stock prices. Energy, 164, 803–810. https://doi.org/10.1016/j.energy.2018.09.055
Dutta, A., Bouri, E., & Noor, M. H. (2021). Climate bond, stock, gold, and oil markets: Dynamic correlations and hedging analyses during the COVID-19 outbreak. Resources Policy, 74, 102265. https://doi.org/10.1016/j.resourpol.2021.102265
Elder, J., & Serletis, A. (2010). Oil Price Uncertainty. Journal of Money, Credit and Banking, 42(6), 1137–1159. https://doi.org/10.1111/j.1538-4616.2010.00323.x
Elie, B., Naji, J., Dutta, A., & Uddin, G. S. (2019). Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach. Energy, 178, 544–553. https://doi.org/10.1016/j.energy.2019.04.155
Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339–350.
Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251. https://doi.org/10.2307/1913236
Engle, R. F., Ledoit, O., & Wolf, M. (2019). Large Dynamic Covariance Matrices. Journal of Business and Economic Statistics, 37(2), 363–375. https://doi.org/10.1080/07350015.2017.1345683
Engle, R., & Kroner, K. (1995). Multivariate Simultaneous Generalized ARCH. Econometric Theory, 11, 122–150.
Erdogan, S., Okumus, I., & Guzel, A. E. (2020). Revisiting the Environmental Kuznets Curve hypothesis in OECD countries: the role of renewable, non-renewable energy, and oil prices. Environmental Science and Pollution Research, 27(19), 23655–23663. https://doi.org/10.1007/s11356-020-08520-x
Fatica, S., & Panzica, R. (2021). Green bonds as a tool against climate change? Business Strategy and the Environment, 30(5), 2688–2701. https://doi.org/10.1002/bse.2771
Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917–963. https://doi.org/10.1007/s10618-019-00619-1
Feng, Y., & Cui, Y. (2022). Dual and single hedging strategy: a novel comparison from the direct and cross hedging perspective. China Finance Review International, 12(1), 161–179. https://doi.org/10.1108/CFRI-05-2020-0053
Filis, G., Degiannakis, S., & Floros, C. (2011). Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis, 20(3), 152–164. https://doi.org/10.1016/j.irfa.2011.02.014
Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. Journal of Finance, 57(5), 2223–2261. https://doi.org/10.1111/0022-1082.00494
Forbes, K., & Rigobon, R. (2001). Measuring contagion: conceptual and empirical issues. In International financial contagion (pp. 43–66). Springer.
Ftiti, Z., Guesmi, K., & Abid, I. (2016). Oil price and stock market co-movement: What can we learn from time-scale approaches? International Review of Financial Analysis, 46, 266–280. https://doi.org/10.1016/j.irfa.2015.08.011
Ftiti, Z., Guesmi, K., Teulon, F., & Chouachi, S. (2016). Relationship between crude oil prices and economic growth in selected OPEC countries. Journal of Applied Business Research, 32(1), 11–22. https://doi.org/10.19030/jabr.v32i1.9483
Gajurel, D., & Chawla, A. (2022). The oil price crisis and contagion effects on the Canadian economy. Applied Economics, 54(13), 1527–1543. https://doi.org/10.1080/00036846.2021.1980196
Garfield, E. (1970). Citation Indexing for Studying Science. Nature, 227(5259), 669–671. https://doi.org/10.1038/227669a0
Ghorbali, B., Naoui, K., & Derbali, A. (2022). Co-movement Among COVID-19 Pandemic, Crude Oil, Stock Market of US, and Bitcoin: Empirical Evidence from WCA. In Accounting, Finance, Sustainability, Governance and Fraud. https://doi.org/10.1007/978-981-19-1036-4_3
Giuliodori, A., Berrone, P., & Ricart, J. E. (2022). Where smart meets sustainability: The role of Smart Governance in achieving the Sustainable Development Goals in cities. BRQ Business Research Quarterly, 234094442210912. https://doi.org/10.1177/23409444221091281
Golub, S. S. (1983). Oil Prices and Exchange Rates. The Economic Journal, 93(371), 576. https://doi.org/10.2307/2232396
González-Ruiz, J. D., Mejía-Escobar, J. C., Rojo-Suárez, J., & Alonso-Conde, A.-B. (2023). Green Bonds for Renewable Energy in Latin America and the Caribbean. The Energy Journal, 44(01). https://doi.org/10.5547/01956574.44.4.jgon
Gonzalez-Ruiz, J. D., Peña, A., Duque, E. A., Patiño, A., Chiclana, F., & Góngora, M. (2019). Stochastic logistic fuzzy maps for the construction of integrated multirates scenarios in the financing of infrastructure projects. Applied Soft Computing, 85, 105818. https://doi.org/10.1016/j.asoc.2019.105818
González-Ruiz, J., Mejía-Escobar, J., Rojo-Suárez, J., & Alonso-Conde, A. (2023). Green Bonds for Renewable Energy in Latin America and the Caribbean. The Energy Journal, 44(5), 25–45. https://doi.org/10.5547/01956574.44.4.jgon
Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. In E. Ghysels, N. R. Swanson, & M. W. Watson (Eds.), Essays in Econometrics (Vol. 2, pp. 31–47). Cambridge University Press. https://doi.org/10.1017/CBO9780511753978.002
Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561–566. https://doi.org/10.5194/npg-11-561-2004
Gustafsson, R., Dutta, A., & Bouri, E. (2022). Are energy metals hedges or safe havens for clean energy stock returns? Energy, 244, 122708. https://doi.org/10.1016/j.energy.2021.122708
Habib, Y., Xia, E., Fareed, Z., & Hashmi, S. H. (2021). Time–frequency co-movement between COVID-19, crude oil prices, and atmospheric CO2 emissions: Fresh global insights from partial and multiple coherence approach. Environment, Development and Sustainability, 23(6), 9397–9417. https://doi.org/10.1007/s10668-020-01031-2
Hamilton, J. D. (1983). Oil and the macroeconomy since world war II. Journal of Political Economy, 91(2), 228–248. https://doi.org/10.1086/261140
Hamilton, J. D. (2003). What is an oil shock? Journal of Econometrics, 113(2), 363–398. https://doi.org/10.1016/S0304-4076(02)00207-5
Hammoudeh, S., Ajmi, A. N., & Mokni, K. (2020). Relationship between green bonds and financial and environmental variables: A novel time-varying causality. Energy Economics, 92, 104941. https://doi.org/https://doi.org/10.1016/j.eneco.2020.104941
Hammoudeh, S., Dibooglu, S., & Aleisa, E. (2004). Relationships among U.S. oil prices and oil industry equity indices. International Review of Economics & Finance, 13(4), 427–453. https://doi.org/10.1016/S1059-0560(03)00011-X
Hansun, S., Putri, F. P., M. Khaliq, A. Q., & Hugeng, H. (2022). On searching the best mode for forex forecasting: bidirectional long short-term memory default mode is not enough. IAES International Journal of Artificial Intelligence (IJ-AI), 11(4), 1596. https://doi.org/10.11591/ijai.v11.i4.pp1596-1606
Henriques, I., & Sadorsky, P. (2008). Oil prices and the stock prices of alternative energy companies. Energy Economics, 30(3), 998–1010. https://doi.org/10.1016/j.eneco.2007.11.001
Hernán, M. A., Hsu, J., & Healy, B. (2019). A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks. Chance, 32(1), 42–49. https://doi.org/10.1080/09332480.2019.1579578
Huang, R. D., Masulis, R. W., & Stoll, H. R. (1996). Energy shocks and financial markets. Journal of Futures Markets, 16(1), 1–27. https://doi.org/10.1002/(sici)1096-9934(199602)16:1<1::aid-fut1>3.3.co;2-g
Hudgins, L., Friehe, C. A., & Mayer, M. E. (1993). Wavelet transforms and atmopsheric turbulence. Physical Review Letters, 71(20), 3279–3282. https://doi.org/10.1103/PhysRevLett.71.3279
Hung, N. T. (2021). Nexus between green bonds, financial, and environmental indicators. Economics and Business Letters, 10(3), 191–199. https://doi.org/10.17811/ebl.10.3.2021.191-199
Husaini, D. H., Lean, H. H., & Ab-Rahim, R. (2021). The relationship between energy subsidies, oil prices, and CO2 emissions in selected Asian countries: a panel threshold analysis. Australasian Journal of Environmental Management, 28(4), 339–354. https://doi.org/10.1080/14486563.2021.1961620
Jammazi, R. (2012). Cross dynamics of oil-stock interactions: A redundant wavelet analysis. Energy, 44(1), 750–777. https://doi.org/10.1016/j.energy.2012.05.017
Jammazi, R., & Reboredo, J. C. (2016). Dependence and risk management in oil and stock markets. A wavelet-copula analysis. Energy, 107, 866–888. https://doi.org/10.1016/j.energy.2016.02.093
Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine Learning: A Brief Primer. Behavior Therapy, 51(5), 675–687. https://doi.org/10.1016/j.beth.2020.05.002
Jin, J., Han, L., Wu, L., & Zeng, H. (2020). The hedging effect of green bonds on carbon market risk. International Review of Financial Analysis, 71. https://doi.org/10.1016/j.irfa.2020.101509
Jones, C. M., & Kaul, G. (1996). Oil and the stock markets. Journal of Finance, 51(2), 463–491. https://doi.org/10.1111/j.1540-6261.1996.tb02691.x
Kang, W., & Ratti, R. A. (2013). Structural oil price shocks and policy uncertainty. Economic Modelling, 35, 314–319. https://doi.org/10.1016/j.econmod.2013.07.025
Kassouri, Y., Bilgili, F., & Kuşkaya, S. (2022). A wavelet-based model of world oil shocks interaction with CO2 emissions in the US. Environmental Science & Policy, 127, 280–292. https://doi.org/10.1016/j.envsci.2021.10.020
Kassouri, Y., Kacou, K. Y. T., & Alola, A. A. (2021). Are oil-clean energy and high technology stock prices in the same straits? Bubbles speculation and time-varying perspectives. Energy, 232, 121021. https://doi.org/10.1016/j.energy.2021.121021
Khan, I., Rehman, F. U., Pyplacz, P., Khan, M. A., Wisniewska, A., & Liczmanska-Kopcewicz, K. (2021). A Dynamic Linkage between Financial Development, Energy Consumption and Economic Growth: Evidence from an Asymmetric and Nonlinear ARDL Model. Energies, 14(16). https://doi.org/10.3390/en14165006
Khosravi, V., Doulati Ardejani, F., Yousefi, S., & Aryafar, A. (2018). Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma, 318, 29–41. https://doi.org/10.1016/j.geoderma.2017.12.025
Kilian, L. (2009). Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review, 99(3), 1053–1069. https://doi.org/10.1257/aer.99.3.1053
Kilian, L., & Park, C. (2009). The impact of oil price shocks on the U.S. stock market. International Economic Review, 50(4), 1267–1287. https://doi.org/10.1111/j.1468-2354.2009.00568.x
Kirikkaleli, D., & Güngör, H. (2021). Co-movement of commodity price indexes and energy price index: a wavelet coherence approach. Financial Innovation, 7(1), 15. https://doi.org/10.1186/s40854-021-00230-8
Koch, N. (2014). Dynamic linkages among carbon, energy and financial markets: A smooth transition approach. Applied Economics, 46(7), 715–729. https://doi.org/10.1080/00036846.2013.854301
Kumar, S., Managi, S., & Matsuda, A. (2012). Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Economics, 34(1), 215–226. https://doi.org/10.1016/j.eneco.2011.03.002
Kuzmanovic, M., Hatt, T., & Feuerriegel, S. (2021). Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies. In S. Roy, S. Pfohl, E. Rocheteau, G. A. Tadesse, L. Oala, F. Falck, Y. Zhou, L. Shen, G. Zamzmi, P. Mugambi, A. Zirikly, M. B. A. McDermott, & E. Alsentzer (Eds.), Proceedings of Machine Learning for Health (Vol. 158, pp. 143–155). PMLR. https://proceedings.mlr.press/v158/kuzmanovic21a.html
Lamouchi, R. A., & Alawi, S. M. (2020). Dynamic linkages between the oil spot, oil futures, and stock markets: Evidence from Dubai. International Journal of Energy Economics and Policy, 10(1), 377–383. https://doi.org/10.32479/ijeep.8705
Le, T.-H., & Nguyen, C. P. (2019). Is energy security a driver for economic growth? Evidence from a global sample. Energy Policy, 129, 436–451. https://doi.org/10.1016/j.enpol.2019.02.038
Le, T.-L., Abakah, E. J. A., & Tiwari, A. K. (2021). Time and frequency domain connectedness and spill-over among fintech, green bonds and cryptocurrencies in the age of the fourth industrial revolution. Technological Forecasting and Social Change, 162, 120382. https://doi.org/10.1016/j.techfore.2020.120382
Lee, C.-C., Lee, C.-C., & Li, Y.-Y. (2021). Oil price shocks, geopolitical risks, and green bond market dynamics. The North American Journal of Economics and Finance, 55, 101309. https://doi.org/https://doi.org/10.1016/j.najef.2020.101309
Lee, K., Ni, S., & Ratti, R. A. (1995). Oil Shocks and the Macroeconomy: The Role of Price Variability. The Energy Journal, 16(4). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol16-No4-2
Lee, Y., & Yoon, S.-M. (2020). Dynamic spillover and hedging among carbon, biofuel and oil. Energies, 13(17). https://doi.org/10.3390/en13174382
Li, H., Zhou, D., Hu, J., & Guo, L. (2022). Dynamic linkages among oil price, green bond, carbon market and low-carbon footprint company stock price: Evidence from the TVP-VAR model. Energy Reports, 8, 11249–11258. https://doi.org/10.1016/j.egyr.2022.08.230
Li, Z., Ma, X., & Xin, H. (2017). Feature engineering of machine-learning chemisorption models for catalyst design. Catalysis Today, 280, 232–238. https://doi.org/10.1016/j.cattod.2016.04.013
Lichtenberger, A., Braga, J. P., & Semmler, W. (2022). Green Bonds for the Transition to a Low-Carbon Economy. Econometrics, 10(1). https://doi.org/10.3390/econometrics10010011
Lin, B., & Chen, Y. (2019). Dynamic linkages and spillover effects between CET market, coal market and stock market of new energy companies: A case of Beijing CET market in China. Energy, 172, 1198–1210. https://doi.org/10.1016/j.energy.2019.02.029
Lin, B., & Su, T. (2020). Mapping the oil price-stock market nexus researches: A scientometric review. International Review of Economics and Finance, 67, 133–147. https://doi.org/10.1016/j.iref.2020.01.007
Lin, J.-B., & Tsai, W. (2019). The relations of oil price change with fear gauges in global political and economic environment. Energies, 14(15). https://doi.org/10.3390/en12152982
Liu, M. (2022). The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic. Economic Analysis and Policy, 75, 288–309. https://doi.org/10.1016/j.eap.2022.05.012
Liu, X., Bouri, E., & Jalkh, N. (2021). Dynamics and Determinants of Market Integration of Green, Clean, Dirty Energy Investments and Conventional Stock Indices. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.786528
Liu, Z., Zhang, J., & Li, Y. (2022). Towards better time series prediction with model-independent, low-dispersion clusters of contextual subsequence embeddings. Knowledge-Based Systems, 235, 107641. https://doi.org/10.1016/j.knosys.2021.107641
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–323. http://www.jstor.org/stable/24529203
Luo, R., Li, Y., Wang, Z., & Sun, M. (2022). Co-Movement between Carbon Prices and Energy Prices in Time and Frequency Domains: A Wavelet-Based Analysis for Beijing Carbon Emission Trading System. International Journal of Environmental Research and Public Health, 19(9). https://doi.org/10.3390/ijerph19095217
Ma, F., Wei, Y., Huang, D., & Zhao, L. (2013). Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC. Physica A: Statistical Mechanics and Its Applications, 392(21), 5356–5368. https://doi.org/10.1016/j.physa.2013.06.061
Ma, Z., Yan, Y., Wu, R., & Li, F. (2021). Research on the Correlation Between WTI Crude Oil Futures Price and European Carbon Futures Price. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.735665
Maghyereh, A., & Abdoh, H. (2022). Extreme dependence between structural oil shocks and stock markets in GCC countries. Resources Policy, 76. https://doi.org/10.1016/j.resourpol.2022.102626
Maghyereh, A. I., Awartani, B., & Abdoh, H. (2019). The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations. Energy, 169, 895–913. https://doi.org/10.1016/j.energy.2018.12.039
Mahmood, H., Asadov, A., Tanveer, M., Furqan, M., & Yu, Z. (2022). Impact of Oil Price, Economic Growth and Urbanization on CO2 Emissions in GCC Countries: Asymmetry Analysis. Sustainability, 14(8), 4562.
Mahmood, H., & Furqan, M. (2021). Oil rents and greenhouse gas emissions: spatial analysis of Gulf Cooperation Council countries. Environment, Development and Sustainability, 23(4), 6215–6233. https://doi.org/10.1007/s10668-020-00869-w
Maji, I. K., Habibullah, M. S., & Saari, M. Y. (2020). Does oil price shocks mitigate sectoral co2 emissions in malaysia? Evidence from ardl estimations. Kasetsart Journal of Social Sciences, 41(3), 633–640. https://doi.org/10.34044/j.kjss.2020.41.3.28
Malik, M. I., & Rashid, A. (2017). Return and volatility spillover between sectoral stock and oil price: Evidence from pakistan stock exchange. Annals of Financial Economics, 12(2). https://doi.org/10.1142/S2010495217500075
Manjunath, S., & Halasuru Manjunath, P. (2023). A Novel Approach for Financial Markets Forecasting Using Deep Learning with Long Short Term Networks (pp. 456–462). https://doi.org/10.1007/978-3-031-17091-1_46
Marimoutou, V., & Soury, M. (2015). Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model. Energy, 88, 417–429. https://doi.org/10.1016/j.energy.2015.05.060
Marín-Rodríguez, N. J., González-Ruiz, J. D., & Botero Botero, S. (2022). Dynamic Co-Movements among Oil Prices and Financial Assets: A Scientometric Analysis. Sustainability, 14(19). https://doi.org/10.3390/su141912796
Marín-Rodríguez, N. J., González-Ruiz, J. D., & Botero, S. (2022). Dynamic relationships among green bonds, CO2 emissions, and oil prices. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.992726
Marín-Rodríguez, N. J., González-Ruiz, J. D., & Botero, S. (2023). A Wavelet Analysis of the Dynamic Connectedness among Oil Prices, Green Bonds, and CO2 Emissions. Risks, 11(1), 15. https://doi.org/10.3390/risks11010015
Marquez-Cardenas, V., Gonzalez-Ruiz, J. D., & Duque-Grisales, E. (2021). Board gender diversity and firm performance: evidence from Latin America. Journal of Sustainable Finance and Investment. https://doi.org/10.1080/20430795.2021.2017256
Marshall, A. (1890). Principles of Economics, 8th edn (1920). London, Mcmillan.
Mejia-Escobar, J. C., González-Ruiz, J. D., & Duque-Grisales, E. (2020). Sustainable financial products in the Latin America banking industry: Current status and insights. Sustainability (Switzerland), 12(14). https://doi.org/10.3390/su12145648
Mejía-Escobar, J. C., González-Ruiz, J. D., & Franco-Sepúlveda, G. (2021). Current state and development of green bonds market in the Latin America and the caribbean. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910872
Melek, N. C. (2018). The response of US investment to oil price shocks: does the shale boom matter? Economic Review, Federal Reserve Bank of Kansas City Forthcoming.
Mensah, I. A., Sun, M., Gao, C., Omari-Sasu, A. Y., Zhu, D., Ampimah, B. C., & Quarcoo, A. (2019). Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. Journal of Cleaner Production, 228, 161–174. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.04.281
Mensi, W. (2019). Global financial crisis and co-movements between oil prices and sector stock markets in Saudi Arabia: A VaR based wavelet. Borsa Istanbul Review, 19(1), 24–38. https://doi.org/10.1016/j.bir.2017.11.005
Mensi, W., Beljid, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 32, 15–22. https://doi.org/10.1016/j.econmod.2013.01.023
Mensi, W., Hammoudeh, S., Reboredo, J. C., & Nguyen, D. K. (2014). Do global factors impact BRICS stock markets? A quantile regression approach. Emerging Markets Review, 19, 1–17. https://doi.org/10.1016/j.ememar.2014.04.002
Mensi, W., Hammoudeh, S., & Yoon, S.-M. (2015). Structural breaks, dynamic correlations, asymmetric volatility transmission, and hedging strategies for petroleum prices and USD exchange rate. Energy Economics, 48, 46–60. https://doi.org/10.1016/j.eneco.2014.12.004
Mensi, W., Rehman, M. U., Maitra, D., Al-Yahyaee, K. H., & Vo, X. V. (2021). Oil, natural gas and BRICS stock markets: Evidence of systemic risks and co-movements in the time-frequency domain. Resources Policy, 72. https://doi.org/10.1016/j.resourpol.2021.102062
Mesbah, M., Shahsavari, S., Soroush, E., Rahaei, N., & Rezakazemi, M. (2018). Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. Journal of CO2 Utilization, 25, 99–107. https://doi.org/10.1016/j.jcou.2018.03.004
Mitra, A., & Bhattacharjee, K. (2015). Financial interdependence of international stock markets: A literature review. Indian Journal of Finance, 9(5), 20–33. https://doi.org/10.17010/ijf/2015/v9i5/71447
Mohan, S., Mullapudi, S., Sammeta, S., Vijayvergia, P., & Anastasiu, D. C. (2019). Stock Price Prediction Using News Sentiment Analysis. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 205–208. https://doi.org/10.1109/BigDataService.2019.00035
Moomaw, W. R., & Unruh, G. C. (1997). Are environmental Kuznets curves misleading us? The case of CO2 emissions. Environment and Development Economics, 2(4), 451–463. https://doi.org/10.1017/S1355770X97000247
Moral-Munoz, J. A., Arroyo-Morales, M., Herrera-Viedma, E., & Cobo, M. J. (2018). An Overview of Thematic Evolution of Physical Therapy Research Area From 1951 to 2013. Frontiers in Research Metrics and Analytics, 3. https://doi.org/10.3389/frma.2018.00013
Morlet, J., Arens, G., Fourgeau, E., & Glard, D. (1982). Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. Geophysics, 47(2), 203–221. https://doi.org/10.1190/1.1441328
Moutinho, V., Madaleno, M., & Elheddad, M. (2020). Determinants of the Environmental Kuznets Curve considering economic activity sector diversification in the OPEC countries. Journal of Cleaner Production, 271, 122642. https://doi.org/10.1016/j.jclepro.2020.122642
Mujtaba, A., & Jena, P. K. (2021). Analyzing asymmetric impact of economic growth, energy use, FDI inflows, and oil prices on CO2 emissions through NARDL approach. Environmental Science and Pollution Research, 28(24), 30873–30886. https://doi.org/10.1007/s11356-021-12660-z
Mumu, J. R., Saona, P., Russell, H. I., & Azad, Md. A. K. (2021). Corporate governance and remuneration: a bibliometric analysis. Journal of Asian Business and Economic Studies, 28(4), 242–262. https://doi.org/10.1108/JABES-03-2021-0025
Naeem, M. A., Bouri, E., Costa, M. D., Naifar, N., & Shahzad, S. J. H. (2021). Energy markets and green bonds: A tail dependence analysis with time-varying optimal copulas and portfolio implications. Resources Policy, 74, 102418. https://doi.org/10.1016/j.resourpol.2021.102418
Naeem, M. A., Mbarki, I., Alharthi, M., Omri, A., & Shahzad, S. J. H. (2021). Did COVID-19 Impact the Connectedness Between Green Bonds and Other Financial Markets? Evidence From Time-Frequency Domain With Portfolio Implications. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.657533
Nagayev, R., Disli, M., Inghelbrecht, K., & Ng, A. (2016). On the dynamic links between commodities and Islamic equity. Energy Economics, 58, 125–140. https://doi.org/10.1016/j.eneco.2016.06.011
Nandy, A., Zhu, J., Janet, J. P., Duan, C., Getman, R. B., & Kulik, H. J. (2019). Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. ACS Catalysis, 9(9), 8243–8255. https://doi.org/10.1021/acscatal.9b02165
Narayan, P. K., & Narayan, S. (2010). Modelling the impact of oil prices on Vietnam’s stock prices. Applied Energy, 87(1), 356–361. https://doi.org/10.1016/j.apenergy.2009.05.037
Naser, H. (2015). Analysing the long-run relationship among oil market, nuclear energy consumption, and economic growth: An evidence from emerging economies. ENERGY, 89, 421–434. https://doi.org/10.1016/j.energy.2015.05.115
Nenonen, S., Koski, A., Lassila, A. P., & Lehikoinen, S. (2019). Towards low carbon economy - Green bond and asset development. IOP Conference Series: Earth and Environmental Science, 352(1). https://doi.org/10.1088/1755-1315/352/1/012028
Nguyen, T. T. H., Naeem, M. A., Balli, F., Balli, H. O., & Vo, X. V. (2021). Time-frequency comovement among green bonds, stocks, commodities, clean energy, and conventional bonds. Finance Research Letters, 40. https://doi.org/10.1016/j.frl.2020.101739
Ni, J., & Xu, Y. (2023). Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method. Computational Economics, 61(1), 35–55. https://doi.org/10.1007/s10614-021-10198-3
Omane-Adjepong, M., Alagidede, P., & Akosah, N. K. (2019). Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility. Physica A: Statistical Mechanics and Its Applications, 514, 105–120. https://doi.org/10.1016/j.physa.2018.09.013
Omri, A., ben Mabrouk, N., & Sassi-Tmar, A. (2015). Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries. Renewable & Sustainable Energy Reviews, 42, 1012–1022. https://doi.org/10.1016/j.rser.2014.10.046
Omri, A., Daly, S., & Nguyen, D. K. (2015). A robust analysis of the relationship between renewable energy consumption and its main drivers. Applied Economics, 47(28), 2913–2923. https://doi.org/10.1080/00036846.2015.1011312
Orlov, A. G. (2009). A cospectral analysis of exchange rate comovements during Asian financial crisis. Journal of International Financial Markets, Institutions and Money, 19(5), 742–758. https://doi.org/https://doi.org/10.1016/j.intfin.2008.12.004
Osorio, S., Tietjen, O., Pahle, M., Pietzcker, R. C., & Edenhofer, O. (2021). Reviewing the Market Stability Reserve in light of more ambitious EU ETS emission targets. Energy Policy, 158. https://doi.org/10.1016/j.enpol.2021.112530
Ozturk, M. B. E., & Cavdar, S. C. (2021). The Contagion of Covid-19 Pandemic on The Volatilities of International Crude Oil Prices, Gold, Exchange Rates and Bitcoin. Journal of Asian Finance, Economics and Business, 8(3), 171–179. https://doi.org/10.13106/jafeb.2021.vol8.no3.0171
Pakel, C., Shephard, N., Sheppard, K., & Engle, R. F. (2021). Fitting Vast Dimensional Time-Varying Covariance Models. Journal of Business and Economic Statistics, 39(3), 652–668. https://doi.org/10.1080/07350015.2020.1713795
Pal, D., & Mitra, S. K. (2019). Oil price and automobile stock return co-movement: A wavelet coherence analysis. Economic Modelling, 76, 172–181. https://doi.org/10.1016/j.econmod.2018.07.028
Panaretos, V. M., & Zemel, Y. (2019). Statistical Aspects of Wasserstein Distances. Annual Review of Statistics and Its Application, 6(1), 405–431. https://doi.org/10.1146/annurev-statistics-030718-104938
Park, J., & Ratti, R. A. (2008). Oil price shocks and stock markets in the U.S. and 13 European countries. Energy Economics, 30(5), 2587–2608. https://doi.org/10.1016/j.eneco.2008.04.003
Park, O., & Seok, M. (2007). Selection of an appropriate model to predict plume dispersion in coastal areas. Atmospheric Environment, 41(29), 6095–6101. https://doi.org/10.1016/j.atmosenv.2007.04.010
Pata, U. K. (2021). Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective. RENEWABLE ENERGY, 173, 197–208. https://doi.org/10.1016/j.renene.2021.03.125
Patel, R., Goodell, J. W., Oriani, M. E., Paltrinieri, A., & Yarovaya, L. (2022). A bibliometric review of financial market integration literature. International Review of Financial Analysis, 80, 102035. https://doi.org/https://doi.org/10.1016/j.irfa.2022.102035
Peña, A., Bonet, I., Lochmuller, C., Alejandro Patiño, H., Chiclana, F., & Góngora, M. (2018). A fuzzy credibility model to estimate the Operational Value at Risk using internal and external data of risk events. Knowledge-Based Systems, 159, 98–109. https://doi.org/10.1016/j.knosys.2018.06.007
Peña, A., Bonet, I., Lochmuller, C., Chiclana, F., & Góngora, M. (2018). An integrated inverse adaptive neural fuzzy system with Monte-Carlo sampling method for operational risk management. Expert Systems with Applications, 98, 11–26. https://doi.org/10.1016/j.eswa.2018.01.001
Peña, A., Puerta, A., Bonet, I., Góngora, M., & Carafinni, F. (2020). Criterios para la configuración de plataformas de inteligencia aumentada para el mejoramiento de la sostenibilidad de cultivos agrícolas. In III Congreso Internacional de Ingeniería de Sistemas. Universidad de Lima.
Peña, A., Tejada, J. C., Gonzalez-Ruiz, J. D., & Gongora, M. (2022). Deep Learning to Improve the Sustainability of Agricultural Crops Affected by Phytosanitary Events: A Financial-Risk Approach. Sustainability, 14(11), 6668. https://doi.org/10.3390/su14116668
Pericoli, M., & Sbracia, M. (2003). A primer on financial contagion. Journal of Economic Surveys, 17(4), 571–608.
Pham, H. N. A., Ramiah, V., Moosa, N., Huynh, T., & Pham, N. (2018). The financial effects of Trumpism. Economic Modelling, 74, 264–274. https://doi.org/https://doi.org/10.1016/j.econmod.2018.05.020
Piñeiro-Chousa, J., López-Cabarcos, M. Á., & Šević, A. (2022). Green bond market and Sentiment: Is there a switching Behaviour? Journal of Business Research, 141, 520–527. https://doi.org/10.1016/j.jbusres.2021.11.048
Pirgaip, B., & Dincergok, B. (2020). Economic policy uncertainty, energy consumption and carbon emissions in G7 countries: evidence from a panel Granger causality analysis. Environmental Science and Pollution Research, 27(24), 30050–30066. https://doi.org/10.1007/s11356-020-08642-2
Prabheesh, K. P., Padhan, R., & Garg, B. (2020). COVID-19 and the Oil Price – Stock Market Nexus: Evidence From Net Oil-Importing Countries. Energy RESEARCH LETTERS, 1(2). https://doi.org/10.46557/001c.13745
Quadrelli, R., & Peterson, S. (2007). The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy, 35(11), 5938–5952. https://doi.org/https://doi.org/10.1016/j.enpol.2007.07.001
Qureshi, S., Aftab, M., Bouri, E., & Saeed, T. (2020). Dynamic interdependence of cryptocurrency markets: An analysis across time and frequency. Physica A: Statistical Mechanics and Its Applications, 559, 125077. https://doi.org/10.1016/j.physa.2020.125077
Rai, K., & Garg, B. (2022). Dynamic correlations and volatility spillovers between stock price and exchange rate in BRIICS economies: evidence from the COVID-19 outbreak period. Applied Economics Letters, 29(8), 738–745. https://doi.org/10.1080/13504851.2021.1884835
Rangel, J. G., & Engle, R. F. (2012). The Factor-Spline-GARCH model for high and low frequency correlations. Journal of Business and Economic Statistics, 30(1), 109–124. https://doi.org/10.1080/07350015.2012.643132
Rannou, Y., Boutabba, M. A., & Barneto, P. (2021). Are Green Bond and Carbon Markets in Europe complements or substitutes? Insights from the activity of power firms. Energy Economics, 104. https://doi.org/10.1016/j.eneco.2021.105651
Rao, A., Gupta, M., Sharma, G. D., Mahendru, M., & Agrawal, A. (2022). Revisiting the financial market interdependence during COVID-19 times: a study of green bonds, cryptocurrency, commodities and other financial markets. International Journal of Managerial Finance, 18(4), 725–755. https://doi.org/10.1108/IJMF-04-2022-0165
Rasheed, M. Q., Haseeb, A., Adebayo, T. S., Ahmed, Z., & Ahmad, M. (2022). The long-run relationship between energy consumption, oil prices, and carbon dioxide emissions in European countries. Environmental Science and Pollution Research, 29(16), 24234–24247. https://doi.org/10.1007/s11356-021-17601-4
Reboredo, J. C. (2012). Modelling oil price and exchange rate co-movements. Journal of Policy Modeling, 34(3), 419–440. https://doi.org/10.1016/j.jpolmod.2011.10.005
Reboredo, J. C. (2013). Modeling EU allowances and oil market interdependence. Implications for portfolio management. Energy Economics, 36, 471–480. https://doi.org/10.1016/j.eneco.2012.10.004
Reboredo, J. C. (2015). Is there dependence and systemic risk between oil and renewable energy stock prices? Energy Economics, 48, 32–45. https://doi.org/10.1016/j.eneco.2014.12.009
Reboredo, J. C. (2018). Green bond and financial markets: Co-movement, diversification and price spillover effects. Energy Economics, 74, 38–50. https://doi.org/10.1016/j.eneco.2018.05.030
Reboredo, J. C., & Rivera-Castro, M. A. (2014). Wavelet-based evidence of the impact of oil prices on stock returns. International Review of Economics and Finance, 29, 145–176. https://doi.org/10.1016/j.iref.2013.05.014
Reboredo, J. C., Rivera-Castro, M. A., & Ugolini, A. (2017). Wavelet-based test of co-movement and causality between oil and renewable energy stock prices. Energy Economics, 61, 241–252. https://doi.org/10.1016/j.eneco.2016.10.015
Reboredo, J. C., & Ugolini, A. (2020). Price connectedness between green bond and financial markets. Economic Modelling, 88, 25–38. https://doi.org/10.1016/j.econmod.2019.09.004
Reboredo, J. C., Ugolini, A., & Aiube, F. A. L. (2020). Network connectedness of green bonds and asset classes. Energy Economics, 86, 104629. https://doi.org/10.1016/j.eneco.2019.104629
Ren, C. (2022). Volatility Spillovers and Nexus across Oil, Gold, and Stock European Markets. American Business Review, 25(1), 52–185. https://doi.org/10.37625/abr.25.1.152-185
Ren, X., Dou, Y., Dong, K., & Li, Y. (2022). Information spillover and market connectedness: multi-scale quantile-on-quantile analysis of the crude oil and carbon markets. Applied Economics, 54(38), 4465–4485. https://doi.org/10.1080/00036846.2022.2030855
Ren, X., Li, Y., Qi, Y., & Duan, K. (2022). Asymmetric effects of decomposed oil-price shocks on the EU carbon market dynamics. Energy, 254. https://doi.org/10.1016/j.energy.2022.124172
Ren, X., Li, Y., yan, C., Wen, F., & Lu, Z. (2022). The interrelationship between the carbon market and the green bonds market: Evidence from wavelet quantile-on-quantile method. Technological Forecasting and Social Change, 179. https://doi.org/10.1016/j.techfore.2022.121611
Ren, X., Lu, Z., Cheng, C., Shi, Y., & Shen, J. (2019). On dynamic linkages of the state natural gas markets in the USA: Evidence from an empirical spatio-temporal network quantile analysis. Energy Economics, 80, 234–252. https://doi.org/10.1016/j.eneco.2019.01.001
Ren, X., Shao, Q., & Zhong, R. (2020). Nexus between green finance, non-fossil energy use, and carbon intensity: Empirical evidence from China based on a vector error correction model. Journal of Cleaner Production, 277, 122844. https://doi.org/10.1016/j.jclepro.2020.122844
Ren, Y.-S., Narayan, S., & Ma, C. (2021). Air quality, COVID-19, and the oil market: Evidence from China’s provinces. Economic Analysis And Policy, 72, 58–72. https://doi.org/10.1016/j.eap.2021.07.012
Reza, S., Ferreira, M. C., Machado, J. J. M., & Tavares, J. M. R. S. (2022). A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Systems with Applications, 202, 117275. https://doi.org/10.1016/j.eswa.2022.117275
Rittler, D. (2012). Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis. Journal of Banking & Finance, 36(3), 774–785. https://doi.org/10.1016/j.jbankfin.2011.09.009
Robledo, S., Osorio, G., & Lopez, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Revista Vínculos, 11(2), 6–16. https://doi.org/10.14483/2322939X.9664
Rodriguez-Fernandez, M. (2016). Social responsibility and financial performance: The role of good corporate governance. BRQ Business Research Quarterly, 19(2), 137–151. https://doi.org/10.1016/j.brq.2015.08.001
Roy, R. P., & Roy, S. S. (2017). Financial contagion and volatility spillover: An exploration into Indian commodity derivative market. Economic Modelling, 67, 368–380.
Royal, S., Singh, K., & Chander, R. (2022). A nexus between renewable energy, FDI, oil prices, oil rent and CO<inf>2</inf> emission: panel data evidence from G7 economies. OPEC Energy Review, 46(2), 208–227. https://doi.org/10.1111/opec.12228
Saboori, B., Al-mulali, U., bin Baba, M., & Mohammed, A. H. (2016). Oil-Induced environmental Kuznets curve in organization of petroleum exporting countries (OPEC). International Journal of Green Energy, 13(4), 408–416. https://doi.org/10.1080/15435075.2014.961468
Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics, 21(5), 449–469. https://doi.org/https://doi.org/10.1016/S0140-9883(99)00020-1
Sadorsky, P. (2001). Risk factors in stock returns of Canadian oil and gas companies. Energy Economics, 23(1), 17–28. https://doi.org/10.1016/S0140-9883(00)00072-4
Sadorsky, P. (2009). Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Economics, 31(3), 456–462. https://doi.org/10.1016/j.eneco.2008.12.010
Sadorsky, P. (2012). Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Economics, 34(1), 248–255. https://doi.org/10.1016/j.eneco.2011.03.006
Sadorsky, P. (2014). Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Economics, 43, 72–81. https://doi.org/10.1016/j.eneco.2014.02.014
Saeed, T., Bouri, E., & Alsulami, H. (2021). Extreme return connectedness and its determinants between clean/green and dirty energy investments. Energy Economics, 96, 105017. https://doi.org/10.1016/j.eneco.2020.105017
Saeed, T., Bouri, E., & Tran, D. K. (2020). Hedging Strategies of Green Assets against Dirty Energy Assets. Energies, 13(12), 3141. https://doi.org/10.3390/en13123141
Sahu, P. K., Solarin, S. A., Al-mulali, U., & Ozturk, I. (2022). Investigating the asymmetry effects of crude oil price on renewable energy consumption in the United States. Environmental Science and Pollution Research, 29(1), 817–827. https://doi.org/10.1007/s11356-021-15577-9
Salem, S. (2017). Key Commodity Markets: Dynamic Correlations & Volatilities in Time-Frequency Domain. University of Surrey (United Kingdom).
Sari, R., Hammoudeh, S., & Soytas, U. (2010). Dynamics of oil price, precious metal prices, and exchange rate. Energy Economics, 32(2), 351–362. https://doi.org/10.1016/j.eneco.2009.08.010
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
Sener, S. E. C., Sharp, J. L., & Anctil, A. (2018). Factors impacting diverging paths of renewable energy: A review. Renewable & Sustainable Energy Reviews, 81(2), 2335–2342. https://doi.org/10.1016/j.rser.2017.06.042
Shah, M. I., Foglia, M., Shahzad, U., & Fareed, Z. (2022). Green innovation, resource price and carbon emissions during the COVID-19 times: New findings from wavelet local multiple correlation analysis. Technological Forecasting and Social Change, 184. https://doi.org/10.1016/j.techfore.2022.121957
Shahzad, S. J. H., Mensi, W., Hammoudeh, S., Rehman, M. U., & Al-Yahyaee, K. H. (2018). Extreme dependence and risk spillovers between oil and Islamic stock markets. Emerging Markets Review, 34, 42–63. https://doi.org/10.1016/j.ememar.2017.10.003
Shankaranarayana, S. M., & Runje, D. (2019). ALIME: Autoencoder Based Approach for Local Interpretability (pp. 454–463). https://doi.org/10.1007/978-3-030-33607-3_49
Sharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis, 70, 101496. https://doi.org/10.1016/j.irfa.2020.101496
Singh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools and Applications, 76(18), 18569–18584. https://doi.org/10.1007/s11042-016-4159-7
Singh, S., Bansal, P., & Bhardwaj, N. (2022). Correlation between geopolitical risk, economic policy uncertainty, and Bitcoin using partial and multiple wavelet coherence in P5 + 1 nations. Research in International Business and Finance, 63, 101756. https://doi.org/10.1016/j.ribaf.2022.101756
Singhal, S., & Ghosh, S. (2016). Returns and volatility linkages between international crude oil price, metal and other stock indices in India: Evidence from VAR-DCC-GARCH models. Resources Policy, 50, 276–288. https://doi.org/10.1016/j.resourpol.2016.10.001
Su, C. W., Chen, Y., Hu, J., Chang, T., & Umar, M. (2022). Can the green bond market enter a new era under the fluctuation of oil price? Economic Research-Ekonomska Istrazivanja. https://doi.org/10.1080/1331677X.2022.2077794
Surya, E., & Wibowo, S. S. (2018). Empirical analysis of oil price volatility and stock returns in ASEAN-5 countries using DCC-GARCH. Pertanika Journal of Social Sciences and Humanities, 26(August), 251–263.
Syed, A. A., Ahmed, F., Kamal, M. A., Ullah, A., & Ramos-Requena, J. P. (2022). Is There an Asymmetric Relationship between Economic Policy Uncertainty, Cryptocurrencies, and Global Green Bonds? Evidence from the United States of America. Mathematics, 10(5). https://doi.org/10.3390/math10050720
Tang, W., Wu, L., & Zhang, Z. (2010). Oil price shocks and their short- and long-term effects on the Chinese economy. Energy Economics, 32, S3–S14. https://doi.org/10.1016/j.eneco.2010.01.002
Tatar, A., Shokrollahi, A., Mesbah, M., Rashid, S., Arabloo, M., & Bahadori, A. (2013). Implementing Radial Basis Function Networks for modeling CO2-reservoir oil minimum miscibility pressure. Journal of Natural Gas Science and Engineering, 15, 82–92. https://doi.org/10.1016/j.jngse.2013.09.008
Tiwari, A. K., Aikins Abakah, E. J., Gabauer, D., & Dwumfour, R. A. (2021). Green Bond, Renewable Energy Stocks and Carbon Price: Dynamic Connectedness, Hedging and Investment Strategies during COVID-19 pandemic. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3897284
Tiwari, A. K., Aikins Abakah, E. J., Gabauer, D., & Dwumfour, R. A. (2022). Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies. Global Finance Journal, 51. https://doi.org/10.1016/j.gfj.2021.100692
Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
Torrence, C., & Webster, P. J. (1999). Interdecadal Changes in the ENSO–Monsoon System. Journal of Climate, 12(8), 2679–2690. https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2
Troster, V., Shahbaz, M., & Uddin, G. S. (2018). Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis. Energy Economics, 70, 440–452. https://doi.org/10.1016/j.eneco.2018.01.029
Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017). Using deep learning to detect price change indications in financial markets. 2017 25th European Signal Processing Conference (EUSIPCO), 2511–2515. https://doi.org/10.23919/EUSIPCO.2017.8081663
Tse, Y. K., & Tsui, A. K. C. (2002). A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business and Economic Statistics, 20(3), 351–362. https://doi.org/10.1198/073500102288618496
Turhan, M. I., Sensoy, A., & Hacihasanoglu, E. (2014). A comparative analysis of the dynamic relationship between oil prices and exchange rates. Journal of International Financial Markets, Institutions and Money, 32(1), 397–414. https://doi.org/10.1016/j.intfin.2014.07.003
Uzar, U. (2020). Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption? Renewable Energy, 155, 591–603. https://doi.org/10.1016/j.renene.2020.03.172
van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7
Vayá-Valcarce, E., & Frexedas, O. V. (2005). Financial contagion between economies: an exploratory spatial analysis. Estudios De Economia Aplicada, 23(1), 151–166.
Vieira, A. (2015). Predicting online user behaviour using deep learning algorithms. ArXiv Preprint.
Wang, C., Chen, Y., Zhang, S., & Zhang, Q. (2022). Stock market index prediction using deep Transformer model. Expert Systems with Applications, 208, 118128. https://doi.org/10.1016/j.eswa.2022.118128
Wang, S., & Wang, D. (2022). Exploring the Relationship Between ESG Performance and Green Bond Issuance. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.897577
Wang, W., Huang, Y., Wang, Y., & Wang, L. (2014). Generalized autoencoder: A neural network framework for dimensionality reduction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 490–497.
Wang, X., Li, J., & Ren, X. (2022). Asymmetric causality of economic policy uncertainty and oil volatility index on time-varying nexus of the clean energy, carbon and green bond. International Review of Financial Analysis, 83. https://doi.org/10.1016/j.irfa.2022.102306
Wang, Y., Wu, C., & Yang, L. (2013). Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries. Journal of Comparative Economics, 41(4), 1220–1239. https://doi.org/10.1016/j.jce.2012.12.004
Wei, P., Li, Y., Ren, X., & Duan, K. (2022). Crude oil price uncertainty and corporate carbon emissions. Environmental Science and Pollution Research, 29(2), 2385–2400. https://doi.org/10.1007/s11356-021-15837-8
Wen, X., Bouri, E., & Roubaud, D. (2017). Can energy commodity futures add to the value of carbon assets? Economic Modelling, 62, 194–206. https://doi.org/10.1016/j.econmod.2016.12.022
Wu, D., Wang, X., & Wu, S. (2022). A hybrid framework based on extreme learning machine, discrete wavelet transform, and autoencoder with feature penalty for stock prediction. Expert Systems with Applications, 207, 118006. https://doi.org/10.1016/j.eswa.2022.118006
Xuefeng, Z., Razzaq, A., Gokmenoglu, K. K., & Rehman, F. U. (2022). Time varying interdependency between COVID-19, tourism market, oil prices, and sustainable climate in United States: evidence from advance wavelet coherence approach. Economic Research-Ekonomska Istrazivanja, 35(1), 3337–3359. https://doi.org/10.1080/1331677X.2021.1992642
Yan, L., Wang, H., Athari, S. A., & Atif, F. (2022). Driving green bond market through energy prices, gold prices and green energy stocks: evidence from a non-linear approach. Economic Research-Ekonomska Istrazivanja. https://doi.org/10.1080/1331677X.2022.2049977
Yun, K. K., Yoon, S. W., & Won, D. (2023). Interpretable stock price forecasting model using genetic algorithm-machine learning regressions and best feature subset selection. Expert Systems with Applications, 213, 118803. https://doi.org/10.1016/j.eswa.2022.118803
Zaghdoudi, T. (2017). Oil prices, renewable energy, CO2 emissions and economic growth in OECD countries. Economics Bulletin, 37(3), 1844–1850. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028668466&partnerID=40&md5=d2530fbe0feb8e695f473eebbe41a2f3
Zhang, B., & Zhou, Y. (2022). Oil prices, emission permits trade of carbon, and the dependence between their quantiles. International Journal of Circuits, Systems and Signal Processing, 16, 38–45.
Zhang, Z., Zohren, S., & Roberts, S. (2019). DeepLOB: Deep Convolutional Neural Networks for Limit Order Books. IEEE Transactions on Signal Processing, 67(11), 3001–3012. https://doi.org/10.1109/TSP.2019.2907260
Zheng, Y., Zhou, M., & Wen, F. (2021). Asymmetric effects of oil shocks on carbon allowance price: Evidence from China. Energy Economics, 97. https://doi.org/10.1016/j.eneco.2021.105183
Zou, X. (2018). An analysis of the effect of carbon emission, GDP and international crude oil prices based on synthesis integration model. International Journal of Energy Sector Management, 12(4), 641–655. https://doi.org/10.1108/IJESM-10-2017-0013
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 225 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Industria y Organizaciones
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83906/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83906/2/43209431.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83906/3/43209431.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
128473cd57a75da98844e4453f66db86
5fa86bee49a7de35247d40d4aa5c7e4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089518300528640
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Botero Botero, Sergio8570007158169aa7e9d0ec814380de02González Ruiz, Juan Davide44383d10b9ef44cc877f20dcbd6e649500Marín-Rodríguez, Nini Johana77516f2171852ca338950d4ac0c7c1c4500Modelamiento y Análisis Energía Ambiente EconomíaMarín-Rodríguez, Nini Johana [0000-0003-4318-7947]González Ruiz, Juan David [0000-0003-4425-7687]Marín-Rodríguez, Nini Johana [0001337439]Marín-Rodríguez, Nini Johana [57195913643]Marín-Rodríguez, Nini Johana [ J-4437-2015]Marín-Rodríguez, Nini Johana [https://scholar.google.com/citations?user=QnylAiQAAAAJ&hl=es]2023-05-30T12:47:08Z2023-05-30T12:47:08Z2023-05-29https://repositorio.unal.edu.co/handle/unal/83906Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThis research addresses the problem of the coverage gap in the extant literature to know how oil prices, green bonds, and CO2 emissions are related to each other. Additionally, to research the short and long-term relations using a machine learning model for measuring co-movements among these important variables in the global energy transition context. Therefore, this study’s primary objective is to analyze the results of the short- and long-term co-movements and the implications for researchers, investors, and policy-makers. To validate the analysis, we use daily data from oil prices, green bonds, and CO2 emissions from 2014 to 2022. In addition, a scientometric analysis of the principal methodologies for measuring the co-movements among financial markets, using techniques such as the analysis of (i) sources, (ii) authors, (iii) documents, and (iv) cluster analysis. In this way, this research applies methodologies like Granger Causality Test, Dynamic Conditional Correlation (DCC-Garch), Wavelet power spectrum (WPS), and wavelet coherence analyses (WCA). Additionally, this study employs a machine learning model for measuring the relationships among the selected variables. Specifically, the Fuzzy Logistic Autoencoder (FLAE) was implemented. Furthermore, the results of the machine learning model were validated and compared with the estimated models. Finally, this study represents a breakthrough in explaining the relationship among these variables.Esta investigación aborda el vacío en la literatura existente sobre cómo se relacionan entre sí los precios del petróleo, los bonos verdes y las emisiones de CO2. Además, se investigan las relaciones a corto y largo plazo de los co-movimientos entre estas importantes variables en el contexto de la transición energética mundial, utilizando un modelo de aprendizaje automático. Por lo tanto, el objetivo principal de este estudio es analizar los resultados de los co-movimientos a corto y largo plazo y las implicaciones para investigadores, inversores y responsables de política. Para validar el análisis, utilizamos datos diarios de los precios del petróleo, los bonos verdes y las emisiones de CO2 desde 2014 hasta 2022. Además, se realiza un análisis cienciométrico de las principales metodologías para medir los co-movimientos entre los mercados financieros, utilizando técnicas como el análisis de (i) fuentes, (ii) autores, (iii) documentos, y (iv) análisis de clusters. De este modo, esta investigación aplica metodologías como la prueba de causalidad de Granger, la correlación condicional dinámica (Dynamic Conditional Correlation, DCC-Garch), el espectro de potencia wavelet (Wavelet Power Spectrum, WPS) y el análisis de coherencia wavelet (Wavelet Coherence Analyses, WCA). Además, este estudio emplea un modelo de aprendizaje automático para medir las relaciones entre las variables seleccionadas. En concreto, se implementó el autoencoder logístico difuso (Fuzzy Logistic Autoencoder, FLAE). Además, los resultados del modelo de aprendizaje automático se validaron y compararon con los modelos estimados. Por último, este estudio representa un avance en la explicación de la relación entre estas variables. (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaInvestigación en Finanzas (Finance Research)Área Curricular de Materiales y Nanotecnologíaxx, 225 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Industria y OrganizacionesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines330 - Economía::333 - Economía de la tierra y de la energíaPetróleo - Aspectos económicosPetroleumCO2 emissionsCo-movementsDependenceOil pricesGreen bondsScientometric analysisEnergy marketsMachine learningEmisiones de CO2Co-movimientosDependenciaPrecios del petróleoBonos verdesAnálisis cienciométricoDynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022Análisis del co-movimiento dinámico de los precios del petróleo, los bonos verdes y las emisiones de CO2, 2014-2022Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaAbdelmaksoud, A. M., Balomenos, G. P., & Becker, T. C. (2022). Fuzzy-Logistic Models for Incorporating Epistemic Uncertainty in Bridge Management Decisions. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 8(3), 04022025.Addison, P. S. (2017). The Illustrated Wavelet Transform Handbook. CRC Press. https://doi.org/10.1201/9781315372556Adom, P. K., Kwakwa, P. A., & Amankvvaa, A. (2018). The long-run effects of economic, demographic, and political indices on actual and potential CO2 emissions. Journal of Environmental Management, 218, 516–526. https://doi.org/10.1016/j.jenvman.2018.04.090Agboola, M. O., Bekun, F. V., & Balsalobre-Lorente, D. (2021). Implications of Social Isolation in Combating COVID-19 Outbreak in Kingdom of Saudi Arabia: Its Consequences on the Carbon Emissions Reduction. Sustainability, 13(16), 9476. https://doi.org/10.3390/su13169476Aguiar-Conraria, L., & Soares, M. J. (2011). Oil and the macroeconomy: using wavelets to analyze old issues. Empirical Economics, 40(3), 645–655. https://doi.org/10.1007/s00181-010-0371-xAhmed, S., Chakrabortty, R. K., Essam, D. L., & Ding, W. (2022). Poly-linear regression with augmented long short term memory neural network: Predicting time series data. Information Sciences, 606, 573–600. https://doi.org/10.1016/j.ins.2022.05.078Ahmed, W. M. A. (2022). On the higher-order moment interdependence of stock and commodity markets: A wavelet coherence analysis. The Quarterly Review of Economics and Finance, 83, 135–151. https://doi.org/10.1016/j.qref.2021.12.003Akca, H. (2021). Environmental Kuznets Curve and financial development in Turkey: evidence from augmented ARDL approach. Environmental Science and Pollution Research, 28(48), 69149–69159. https://doi.org/10.1007/s11356-021-15417-wAkkoc, U., & Civcir, I. (2019). Dynamic linkages between strategic commodities and stock market in Turkey: Evidence from SVAR-DCC-GARCH model. Resources Policy, 62, 231–239. https://doi.org/10.1016/j.resourpol.2019.03.017Akram, V., & Haider, S. (2022). A Dynamic Nexus Between COVID-19 Sentiment, Clean Energy Stocks, Technology Stocks, and Oil Prices: Global Evidence. Energy RESEARCH LETTERS, 3(3). https://doi.org/10.46557/001c.32625al Mamun, M., Boubaker, S., & Nguyen, D. K. (2022). Green finance and decarbonization: Evidence from around the world. Finance Research Letters, 46, 102807. https://doi.org/10.1016/j.frl.2022.102807Albulescu, C. T., Demirer, R., Raheem, I. D., & Tiwari, A. K. (2019). Does the U.S. economic policy uncertainty connect financial markets? Evidence from oil and commodity currencies. Energy Economics, 83, 375–388. https://doi.org/https://doi.org/10.1016/j.eneco.2019.07.024Alhodiry, A., Rjoub, H., & Samour, A. (2021). Impact of oil prices, the U.S interest rates on Turkey’s real estate market. New evidence from combined co-integration and bootstrap ARDL tests. Plos One, 16(1), e0242672. https://doi.org/10.1371/journal.pone.0242672Ali, M., Tursoy, T., Samour, A., Moyo, D., & Konneh, A. (2022). Testing the impact of the gold price, oil price, and renewable energy on carbon emissions in South Africa: Novel evidence from bootstrap ARDL and NARDL approaches. Resources Policy, 79, 102984. https://doi.org/10.1016/j.resourpol.2022.102984Ali, S. R. M., Mensi, W., Anik, K. I., Rahman, M., & Kang, S. H. (2022). The impacts of COVID-19 crisis on spillovers between the oil and stock markets: Evidence from the largest oil importers and exporters. Economic Analysis and Policy, 73, 345–372. https://doi.org/10.1016/j.eap.2021.11.009Alkathery, M. A., & Chaudhuri, K. (2021). Co-movement between oil price, CO<inf>2</inf> emission,renewable energy and energy equities: Evidence from GCC countries. Journal of Environmental Management, 297. https://doi.org/10.1016/j.jenvman.2021.113350Allen, R. G. D. (1950). The Substitution Effect in Value Theory. The Economic Journal, 60(240), 675. https://doi.org/10.2307/2226707Aloui, R., ben Aïssa, M. S., & Nguyen, D. K. (2013). Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach. Journal of International Money and Finance, 32(1), 719–738. https://doi.org/10.1016/j.jimonfin.2012.06.006Aloui, R., Hammoudeh, S., & Nguyen, D. K. (2013). A time-varying copula approach to oil and stock market dependence: The case of transition economies. Energy Economics, 39, 208–221. https://doi.org/10.1016/j.eneco.2013.04.012Alshdadi, A. A., Hayat, M. K., Daud, A., Banjar, A., & Dawood, H. (2022). Measuring the impact of COVID-19 surveillance variables over the international oil market. International Journal of Advanced and Applied Sciences, 9(1), 27–33. https://doi.org/10.21833/IJAAS.2022.01.004Alshehry, A. S., & Belloumi, M. (2017). Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia. Renewable and Sustainable Energy Reviews, 75, 1339–1347. https://doi.org/10.1016/j.rser.2016.11.122Amano, R. A., & van Norden, S. (1998a). Exchange rates and oil prices. Review of International Economics, 6(4), 683–694. https://doi.org/10.1111/1467-9396.00136Amano, R. A., & van Norden, S. (1998b). Oil prices and the rise and fall of the US real exchange rate. Journal of International Money and Finance, 17(2), 299–316. https://doi.org/10.1016/S0261-5606(98)00004-7Andrews, D. W. K. (2003). Tests for parameter instability and structural change with unknown change point: A corrigendum. Econometrica, 71(1), 395–397. https://doi.org/10.1111/1468-0262.00405Antonakakis, N., Chatziantoniou, I., & Filis, G. (2013). Dynamic co-movements of stock market returns, implied volatility and policy uncertainty. Economics Letters, 120(1), 87–92. https://doi.org/10.1016/j.econlet.2013.04.004Antonakakis, N., Chatziantoniou, I., & Filis, G. (2017). Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest. International Review of Financial Analysis, 50, 1–26. https://doi.org/10.1016/j.irfa.2017.01.004Apergis, N., & Miller, S. M. (2009). Do structural oil-market shocks affect stock prices? Energy Economics, 31(4), 569–575. https://doi.org/10.1016/j.eneco.2009.03.001Apergis, N., & Payne, J. E. (2015). Renewable energy, output, carbon dioxide emissions, and oil prices: Evidence from South America. Energy Sources, Part B: Economics, Planning and Policy, 10(3), 281–287. https://doi.org/10.1080/15567249.2013.853713Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007Arouri, M. E. H., Jouini, J., & Nguyen, D. K. (2012). On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness. Energy Economics, 34(2), 611–617. https://doi.org/10.1016/j.eneco.2011.08.009Azhgaliyeva, D., Kapoor, A., & Liu, Y. (2020). Green bonds for financing renewable energy and energy efficiency in South-East Asia: a review of policies. Journal of Sustainable Finance and Investment, 10(2), 113–140. https://doi.org/10.1080/20430795.2019.1704160Azhgaliyeva, D., Kapsalyamova, Z., & Mishra, R. (2022). Oil price shocks and green bonds: An empirical evidence. Energy Economics, 112, 106108. https://doi.org/10.1016/j.eneco.2022.106108Azhgaliyeva, D., Mishra, R., & Kapsalyamova, Z. (2021). Oil Price Shocks and Green Bonds: A Longitudinal Multilevel Model (ADBI Working Paper 1278). Asian Development Bank. https://www.adb.org/publications/oil-price-shocks-green-bonds-longitudinal-multilevel-modelBai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22. https://doi.org/10.1002/jae.659Balaguer, J., & Cantavella, M. (2016). Estimating the environmental Kuznets curve for Spain by considering fuel oil prices (1874–2011). Ecological Indicators, 60, 853–859. https://doi.org/10.1016/j.ecolind.2015.08.006Bali, T. G., & Engle, R. F. (2010). The intertemporal capital asset pricing model with dynamic conditional correlations. Journal of Monetary Economics, 57(4), 377–390. https://doi.org/10.1016/j.jmoneco.2010.03.002Balsalobre-Lorente, D., Driha, O. M., Bekun Festus Victor and Sinha, A., & Adedoyin, F. F. (2020). Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Quality Atmosphere And Health, 13(12), 1439–1451. https://doi.org/10.1007/s11869-020-00898-4Barsky, R. B., & Kilian, L. (2004). Oil and the Macroeconomy Since the 1970s. Journal of Economic Perspectives, 18(4), 115–134. https://doi.org/10.1257/0895330042632708Basher, S. A., Haug, A. A., & Sadorsky, P. (2012). Oil prices, exchange rates and emerging stock markets. Energy Economics, 34(1), 227–240.Basher, S. A., & Sadorsky, P. (2006). Oil price risk and emerging stock markets. Global Finance Journal, 17(2), 224–251. https://doi.org/10.1016/j.gfj.2006.04.001Basher, S. A., & Sadorsky, P. (2016). Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Economics, 54, 235–247. https://doi.org/10.1016/j.eneco.2015.11.022Bashir, M. F. (2022). Oil price shocks, stock market returns, and volatility spillovers: a bibliometric analysis and its implications. Environmental Science and Pollution Research, 29(16), 22809–22828. https://doi.org/10.1007/s11356-021-18314-4Bashir, M. F., MA, B., Shahbaz, M., & Jiao, Z. (2020). The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development. Plos One, 15(11), e0242412. https://doi.org/10.1371/journal.pone.0242412Bashir, M. F., MA, B., Shahzad, L., Liu, B., & Ruan, Q. (2021). China’s quest for economic dominance and energy consumption: Can Asian economies provide natural resources for the success of One Belt One Road? Managerial and Decision Economics, 42(3), 570–587. https://doi.org/10.1002/mde.3255Bassey, E. (2015). Oil price: Effect on carbon emission. Carbon Management Technology Conference 2015: Sustainable and Economical CCUS Options, CMTC 2015, 1, 37–51.Baur, D. G. (2012). Financial contagion and the real economy. Journal of Banking & Finance, 36(10), 2680–2692. https://doi.org/10.1016/j.jbankfin.2011.05.019Bayar, Y., Sasmaz, M. U., & Ozkaya, M. H. (2021). Impact of Trade and Financial Globalization on Renewable Energy in EU Transition Economies: A Bootstrap Panel Granger Causality Test. Energies, 14(1). https://doi.org/10.3390/en14010019Behmiri, N. B., & Pires Manso, J. R. (2012). Crude oil conservation policy hypothesis in OECD (organisation for economic cooperation and development) countries: A multivariate panel Granger causality test. Energy, 43(1), 253–260. https://doi.org/10.1016/j.energy.2012.04.032Beirne, J., & Gieck, J. (2014). Interdependence and contagion in global asset markets. Review of International Economics, 22(4), 639–659.Belhassine, O. (2020). Volatility spillovers and hedging effectiveness between the oil market and Eurozone sectors: A tale of two crises. Research in International Business and Finance, 53. https://doi.org/10.1016/j.ribaf.2020.101195Bengio, Y. (2012). Deep Learning of Representations for Unsupervised and Transfer Learning. In I. Guyon, G. Dror, V. Lemaire, G. Taylor, & D. Silver (Eds.), Proceedings of ICML Workshop on Unsupervised and Transfer Learning (Vol. 27, pp. 17–36). PMLR. https://proceedings.mlr.press/v27/bengio12a.htmlBhavsar, H., Jivani, A., Amesara, S., Shah, S., Gindani, P., & Patel, S. (2023). Stock Price Prediction Using Sentiment Analysis on News Headlines (pp. 25–34). https://doi.org/10.1007/978-981-19-3571-8_4Bloomberg, & MSCI. (2021). Bloomberg MSCI Green Bond Indices. Bringing clarity to the green bond market through benchmark indices. In Manual. https://www.msci.com/documents/1296102/26180598/BBG+MSCI+Green+Bond+Indices+Primer.pdfBloomfield, P. (2013). Fourier analysis of time series: an introduction (Second Edition). John Wiley & Sons.Bodart, V., & Candelon, B. (2009). Evidence of interdependence and contagion using a frequency domain framework. Emerging Markets Review, 10(2), 140–150. https://doi.org/10.1016/j.ememar.2008.11.003Boersen, A., & Scholtens, B. (2014). The relationship between European electricity markets and emission allowance futures prices in phase II of the EU (European Union) emission trading scheme. Energy, 74, 585–594. https://doi.org/10.1016/j.energy.2014.07.024Boldanov, R., Degiannakis, S., & Filis, G. (2016). Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries. International Review of Financial Analysis, 48, 209–220. https://doi.org/10.1016/j.irfa.2016.10.002Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1Boufateh, T. (2019). The environmental Kuznets curve by considering asymmetric oil price shocks: evidence from the top two. Environmental Science and Pollution Research, 26(1), 706–720. https://doi.org/10.1007/s11356-018-3641-3Bouoiyour, J., Gauthier, M., & Bouri, E. (2023). Which is leading: Renewable or brown energy assets? Energy Economics, 117, 106339. https://doi.org/10.1016/j.eneco.2022.106339Bouri, E., Chen, Q., Lien, D., & Lv, X. (2017). Causality between oil prices and the stock market in China: The relevance of the reformed oil product pricing mechanism. International Review of Economics and Finance, 48, 34–48. https://doi.org/10.1016/j.iref.2016.11.004Bouri, E., Shahzad, S. J. H., Roubaud, D., Kristoufek, L., & Lucey, B. (2020). Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. The Quarterly Review of Economics and Finance, 77, 156–164. https://doi.org/https://doi.org/10.1016/j.qref.2020.03.004Bradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137, 85–86.Broadstock, D. C., & Cheng, L. T. W. (2019). Time-varying relation between black and green bond price benchmarks: Macroeconomic determinants for the first decade. Finance Research Letters, 29, 17–22. https://doi.org/https://doi.org/10.1016/j.frl.2019.02.006Burandt, T. (2021). Decarbonizing the global energy system : modelling global and regional transformation pathways with multi-sector energy system models [Technische Universität Berlin]. https://doi.org/10.14279/depositonce-12079Caporin, M., & McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1(1), 115–126. https://doi.org/10.3390/econometrics1010115Cappiello, L., Engle, R. F., & Sheppard, K. (2006). Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial Econometrics, 4(4), 537–572. https://doi.org/10.1093/jjfinec/nbl005Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194–211. https://doi.org/10.1016/j.eswa.2016.02.006Çelik, T. Ö., Jamneshan, A., Montúfar, G., Sturmfels, B., & Venturello, L. (2021). Wasserstein distance to independence models. Journal of Symbolic Computation, 104, 855–873. https://doi.org/10.1016/j.jsc.2020.10.005Chang, K., Ye, Z., & Wang, W. (2019). Volatility spillover effect and dynamic correlation between regional emissions allowances and fossil energy markets: New evidence from China’s emissions trading scheme pilots. Energy, 185, 1314–1324. https://doi.org/https://doi.org/10.1016/j.energy.2019.07.132Chansanam, W., & Li, C. (2022). Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus. Sustainability, 14(9), 5339. https://doi.org/10.3390/su14095339Charte, D., Charte, F., & Herrera, F. (2022). Reducing Data Complexity Using Autoencoders With Class-Informed Loss Functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9549–9560. https://doi.org/10.1109/TPAMI.2021.3127698Chen, N.-F., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of Business, 383–403.Chen, Q., & Taylor, D. (2020). Economic development and pollution emissions in Singapore: Evidence in support of the Environmental Kuznets Curve hypothesis and its implications for regional sustainability. Journal of Cleaner Production, 243, 118637. https://doi.org/10.1016/j.jclepro.2019.118637Chen, S.-S. (2010). Do higher oil prices push the stock market into bear territory? Energy Economics, 32(2), 490–495. https://doi.org/10.1016/j.eneco.2009.08.018Chen, X., Lun, Y., Yan, J., Hao, T., & Weng, H. (2019). Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Medical Informatics and Decision Making, 19(S2), 50. https://doi.org/10.1186/s12911-019-0757-4Chen, Y., Qu, F., Li, W., & Chen, M. (2019). Volatility spillover and dynamic correlation between the carbon market and energy markets. Journal of Business Economics and Management, 20(5), 979–999. https://doi.org/10.3846/jbem.2019.10762Chen, Y.-C., & Rogoff, K. (2003). Commodity currencies. Journal of International Economics, 60(1), 133–160. https://doi.org/10.1016/S0022-1996(02)00072-7Cheng, H., Damerow, L., Sun, Y., & Blanke, M. (2017). Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks. Journal of Imaging, 3(1), 6. https://doi.org/10.3390/jimaging3010006Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015Chevallier, J. (2012). Time-varying correlations in oil, gas and CO2 prices: an application using BEKK, CCC and DCC-MGARCH models. Applied Economics, 44(32), 4257–4274.Chiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial contagion: Evidence from Asian markets. Journal of International Money and Finance, 26(7), 1206–1228.Choi, D., Gao, Z., & Jiang, W. (2020). Attention to global warming. Review of Financial Studies, 33(3), 1112–1145. https://doi.org/10.1093/rfs/hhz086Ciner, C. (2001). Energy Shocks and Financial Markets: Nonlinear Linkages. Studies in Nonlinear Dynamics & Econometrics, 5(3). https://doi.org/10.2202/1558-3708.1079Civcir, İ., & Akkoç, U. (2021). Dynamic volatility linkages and hedging between commodities and sectoral stock returns in Turkey: Evidence from SVAR-cDCC-GARCH model. International Journal of Finance and Economics, 26(2), 1978–1992. https://doi.org/10.1002/ijfe.1889Colacito, R., Engle, R. F., & Ghysels, E. (2011). A component model for dynamic correlations. Journal of Econometrics, 164(1), 45–59. https://doi.org/10.1016/j.jeconom.2011.02.013Cong, R.-G., Wei, Y.-M., Jiao, J.-L., & Fan, Y. (2008). Relationships between oil price shocks and stock market: An empirical analysis from China. Energy Policy, 36(9), 3544–3553. https://doi.org/10.1016/j.enpol.2008.06.006Cramer, E., Gorjao, L. R., Mitsos, A., Schafer, B., Witthaut, D., & Dahmen, M. (2022). Validation Methods for Energy Time Series Scenarios From Deep Generative Models. IEEE Access, 10, 8194–8207. https://doi.org/10.1109/ACCESS.2022.3141875Creti, A., Joëts, M., & Mignon, V. (2013). On the links between stock and commodity markets’ volatility. Energy Economics, 37, 16–28. https://doi.org/10.1016/j.eneco.2013.01.005Darby, M. R. (1982). The price of oil and world inflation and recession. American Economic Review, 72(4), 738–751.de Nard, G., Engle, R. F., Ledoit, O., & Wolf, M. (2022). Large dynamic covariance matrices: Enhancements based on intraday data. Journal of Banking and Finance, 138. https://doi.org/10.1016/j.jbankfin.2022.106426de Souza, E. S., Freire, F. de S., & Pires, J. (2018). Determinants of CO2 emissions in the MERCOSUR: the role of economic growth, and renewable and non-renewable energy. Environmental Science and Pollution Research, 25(21, SI), 20769–20781. https://doi.org/10.1007/s11356-018-2231-8Demir, S., Mincev, K., Kok, K., & Paterakis, N. G. (2021). Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting. Applied Energy, 304, 117695. https://doi.org/10.1016/j.apenergy.2021.117695Dewandaru, G., Rizvi, S. A. R., Masih, R., Masih, M., & Alhabshi, S. O. (2014). Stock market co-movements: Islamic versus conventional equity indices with multi-timescales analysis. Economic Systems, 38(4), 553–571. https://doi.org/10.1016/j.ecosys.2014.05.003Dibal, P. Y., Onwuka, E. N., Agajo, J., & Alenoghena, C. O. (2018). Application of wavelet transform in spectrum sensing for cognitive radio: A survey. Physical Communication, 28, 45–57. https://doi.org/10.1016/j.phycom.2018.03.004Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431. https://doi.org/doi.org/10.1080/01621459.1979.10482531Diebold, F. X., & Yilmaz, K. (2009). Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets. The Economic Journal, 119(534), 158–171. https://doi.org/10.1111/j.1468-0297.2008.02208.xDiebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006Disli, M., Nagayev, R., Salim, K., Rizkiah, S. K., & Aysan, A. F. (2021). In search of safe haven assets during COVID-19 pandemic: An empirical analysis of different investor types. Research in International Business and Finance, 58, 101461. https://doi.org/10.1016/j.ribaf.2021.101461Dong, F., Gao, Y., Li, Y., Zhu, J., Hu, M., & Zhang, X. (2022). Exploring volatility of carbon price in European Union due to COVID-19 pandemic. Environmental Science and Pollution Research, 29(6), 8269–8280. https://doi.org/10.1007/s11356-021-16052-1Dutta, A. (2018). Implied volatility linkages between the U.S. and emerging equity markets: A note. Global Finance Journal, 35, 138–146. https://doi.org/10.1016/j.gfj.2017.09.002Dutta, A., Bouri, E., & Noor, M. H. (2018). Return and volatility linkages between CO2 emission and clean energy stock prices. Energy, 164, 803–810. https://doi.org/10.1016/j.energy.2018.09.055Dutta, A., Bouri, E., & Noor, M. H. (2021). Climate bond, stock, gold, and oil markets: Dynamic correlations and hedging analyses during the COVID-19 outbreak. Resources Policy, 74, 102265. https://doi.org/10.1016/j.resourpol.2021.102265Elder, J., & Serletis, A. (2010). Oil Price Uncertainty. Journal of Money, Credit and Banking, 42(6), 1137–1159. https://doi.org/10.1111/j.1538-4616.2010.00323.xElie, B., Naji, J., Dutta, A., & Uddin, G. S. (2019). Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach. Energy, 178, 544–553. https://doi.org/10.1016/j.energy.2019.04.155Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339–350.Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251. https://doi.org/10.2307/1913236Engle, R. F., Ledoit, O., & Wolf, M. (2019). Large Dynamic Covariance Matrices. Journal of Business and Economic Statistics, 37(2), 363–375. https://doi.org/10.1080/07350015.2017.1345683Engle, R., & Kroner, K. (1995). Multivariate Simultaneous Generalized ARCH. Econometric Theory, 11, 122–150.Erdogan, S., Okumus, I., & Guzel, A. E. (2020). Revisiting the Environmental Kuznets Curve hypothesis in OECD countries: the role of renewable, non-renewable energy, and oil prices. Environmental Science and Pollution Research, 27(19), 23655–23663. https://doi.org/10.1007/s11356-020-08520-xFatica, S., & Panzica, R. (2021). Green bonds as a tool against climate change? Business Strategy and the Environment, 30(5), 2688–2701. https://doi.org/10.1002/bse.2771Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917–963. https://doi.org/10.1007/s10618-019-00619-1Feng, Y., & Cui, Y. (2022). Dual and single hedging strategy: a novel comparison from the direct and cross hedging perspective. China Finance Review International, 12(1), 161–179. https://doi.org/10.1108/CFRI-05-2020-0053Filis, G., Degiannakis, S., & Floros, C. (2011). Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis, 20(3), 152–164. https://doi.org/10.1016/j.irfa.2011.02.014Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. Journal of Finance, 57(5), 2223–2261. https://doi.org/10.1111/0022-1082.00494Forbes, K., & Rigobon, R. (2001). Measuring contagion: conceptual and empirical issues. In International financial contagion (pp. 43–66). Springer.Ftiti, Z., Guesmi, K., & Abid, I. (2016). Oil price and stock market co-movement: What can we learn from time-scale approaches? International Review of Financial Analysis, 46, 266–280. https://doi.org/10.1016/j.irfa.2015.08.011Ftiti, Z., Guesmi, K., Teulon, F., & Chouachi, S. (2016). Relationship between crude oil prices and economic growth in selected OPEC countries. Journal of Applied Business Research, 32(1), 11–22. https://doi.org/10.19030/jabr.v32i1.9483Gajurel, D., & Chawla, A. (2022). The oil price crisis and contagion effects on the Canadian economy. Applied Economics, 54(13), 1527–1543. https://doi.org/10.1080/00036846.2021.1980196Garfield, E. (1970). Citation Indexing for Studying Science. Nature, 227(5259), 669–671. https://doi.org/10.1038/227669a0Ghorbali, B., Naoui, K., & Derbali, A. (2022). Co-movement Among COVID-19 Pandemic, Crude Oil, Stock Market of US, and Bitcoin: Empirical Evidence from WCA. In Accounting, Finance, Sustainability, Governance and Fraud. https://doi.org/10.1007/978-981-19-1036-4_3Giuliodori, A., Berrone, P., & Ricart, J. E. (2022). Where smart meets sustainability: The role of Smart Governance in achieving the Sustainable Development Goals in cities. BRQ Business Research Quarterly, 234094442210912. https://doi.org/10.1177/23409444221091281Golub, S. S. (1983). Oil Prices and Exchange Rates. The Economic Journal, 93(371), 576. https://doi.org/10.2307/2232396González-Ruiz, J. D., Mejía-Escobar, J. C., Rojo-Suárez, J., & Alonso-Conde, A.-B. (2023). Green Bonds for Renewable Energy in Latin America and the Caribbean. The Energy Journal, 44(01). https://doi.org/10.5547/01956574.44.4.jgonGonzalez-Ruiz, J. D., Peña, A., Duque, E. A., Patiño, A., Chiclana, F., & Góngora, M. (2019). Stochastic logistic fuzzy maps for the construction of integrated multirates scenarios in the financing of infrastructure projects. Applied Soft Computing, 85, 105818. https://doi.org/10.1016/j.asoc.2019.105818González-Ruiz, J., Mejía-Escobar, J., Rojo-Suárez, J., & Alonso-Conde, A. (2023). Green Bonds for Renewable Energy in Latin America and the Caribbean. The Energy Journal, 44(5), 25–45. https://doi.org/10.5547/01956574.44.4.jgonGranger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. In E. Ghysels, N. R. Swanson, & M. W. Watson (Eds.), Essays in Econometrics (Vol. 2, pp. 31–47). Cambridge University Press. https://doi.org/10.1017/CBO9780511753978.002Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561–566. https://doi.org/10.5194/npg-11-561-2004Gustafsson, R., Dutta, A., & Bouri, E. (2022). Are energy metals hedges or safe havens for clean energy stock returns? Energy, 244, 122708. https://doi.org/10.1016/j.energy.2021.122708Habib, Y., Xia, E., Fareed, Z., & Hashmi, S. H. (2021). Time–frequency co-movement between COVID-19, crude oil prices, and atmospheric CO2 emissions: Fresh global insights from partial and multiple coherence approach. Environment, Development and Sustainability, 23(6), 9397–9417. https://doi.org/10.1007/s10668-020-01031-2Hamilton, J. D. (1983). Oil and the macroeconomy since world war II. Journal of Political Economy, 91(2), 228–248. https://doi.org/10.1086/261140Hamilton, J. D. (2003). What is an oil shock? Journal of Econometrics, 113(2), 363–398. https://doi.org/10.1016/S0304-4076(02)00207-5Hammoudeh, S., Ajmi, A. N., & Mokni, K. (2020). Relationship between green bonds and financial and environmental variables: A novel time-varying causality. Energy Economics, 92, 104941. https://doi.org/https://doi.org/10.1016/j.eneco.2020.104941Hammoudeh, S., Dibooglu, S., & Aleisa, E. (2004). Relationships among U.S. oil prices and oil industry equity indices. International Review of Economics & Finance, 13(4), 427–453. https://doi.org/10.1016/S1059-0560(03)00011-XHansun, S., Putri, F. P., M. Khaliq, A. Q., & Hugeng, H. (2022). On searching the best mode for forex forecasting: bidirectional long short-term memory default mode is not enough. IAES International Journal of Artificial Intelligence (IJ-AI), 11(4), 1596. https://doi.org/10.11591/ijai.v11.i4.pp1596-1606Henriques, I., & Sadorsky, P. (2008). Oil prices and the stock prices of alternative energy companies. Energy Economics, 30(3), 998–1010. https://doi.org/10.1016/j.eneco.2007.11.001Hernán, M. A., Hsu, J., & Healy, B. (2019). A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks. Chance, 32(1), 42–49. https://doi.org/10.1080/09332480.2019.1579578Huang, R. D., Masulis, R. W., & Stoll, H. R. (1996). Energy shocks and financial markets. Journal of Futures Markets, 16(1), 1–27. https://doi.org/10.1002/(sici)1096-9934(199602)16:1<1::aid-fut1>3.3.co;2-gHudgins, L., Friehe, C. A., & Mayer, M. E. (1993). Wavelet transforms and atmopsheric turbulence. Physical Review Letters, 71(20), 3279–3282. https://doi.org/10.1103/PhysRevLett.71.3279Hung, N. T. (2021). Nexus between green bonds, financial, and environmental indicators. Economics and Business Letters, 10(3), 191–199. https://doi.org/10.17811/ebl.10.3.2021.191-199Husaini, D. H., Lean, H. H., & Ab-Rahim, R. (2021). The relationship between energy subsidies, oil prices, and CO2 emissions in selected Asian countries: a panel threshold analysis. Australasian Journal of Environmental Management, 28(4), 339–354. https://doi.org/10.1080/14486563.2021.1961620Jammazi, R. (2012). Cross dynamics of oil-stock interactions: A redundant wavelet analysis. Energy, 44(1), 750–777. https://doi.org/10.1016/j.energy.2012.05.017Jammazi, R., & Reboredo, J. C. (2016). Dependence and risk management in oil and stock markets. A wavelet-copula analysis. Energy, 107, 866–888. https://doi.org/10.1016/j.energy.2016.02.093Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine Learning: A Brief Primer. Behavior Therapy, 51(5), 675–687. https://doi.org/10.1016/j.beth.2020.05.002Jin, J., Han, L., Wu, L., & Zeng, H. (2020). The hedging effect of green bonds on carbon market risk. International Review of Financial Analysis, 71. https://doi.org/10.1016/j.irfa.2020.101509Jones, C. M., & Kaul, G. (1996). Oil and the stock markets. Journal of Finance, 51(2), 463–491. https://doi.org/10.1111/j.1540-6261.1996.tb02691.xKang, W., & Ratti, R. A. (2013). Structural oil price shocks and policy uncertainty. Economic Modelling, 35, 314–319. https://doi.org/10.1016/j.econmod.2013.07.025Kassouri, Y., Bilgili, F., & Kuşkaya, S. (2022). A wavelet-based model of world oil shocks interaction with CO2 emissions in the US. Environmental Science & Policy, 127, 280–292. https://doi.org/10.1016/j.envsci.2021.10.020Kassouri, Y., Kacou, K. Y. T., & Alola, A. A. (2021). Are oil-clean energy and high technology stock prices in the same straits? Bubbles speculation and time-varying perspectives. Energy, 232, 121021. https://doi.org/10.1016/j.energy.2021.121021Khan, I., Rehman, F. U., Pyplacz, P., Khan, M. A., Wisniewska, A., & Liczmanska-Kopcewicz, K. (2021). A Dynamic Linkage between Financial Development, Energy Consumption and Economic Growth: Evidence from an Asymmetric and Nonlinear ARDL Model. Energies, 14(16). https://doi.org/10.3390/en14165006Khosravi, V., Doulati Ardejani, F., Yousefi, S., & Aryafar, A. (2018). Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma, 318, 29–41. https://doi.org/10.1016/j.geoderma.2017.12.025Kilian, L. (2009). Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review, 99(3), 1053–1069. https://doi.org/10.1257/aer.99.3.1053Kilian, L., & Park, C. (2009). The impact of oil price shocks on the U.S. stock market. International Economic Review, 50(4), 1267–1287. https://doi.org/10.1111/j.1468-2354.2009.00568.xKirikkaleli, D., & Güngör, H. (2021). Co-movement of commodity price indexes and energy price index: a wavelet coherence approach. Financial Innovation, 7(1), 15. https://doi.org/10.1186/s40854-021-00230-8Koch, N. (2014). Dynamic linkages among carbon, energy and financial markets: A smooth transition approach. Applied Economics, 46(7), 715–729. https://doi.org/10.1080/00036846.2013.854301Kumar, S., Managi, S., & Matsuda, A. (2012). Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Economics, 34(1), 215–226. https://doi.org/10.1016/j.eneco.2011.03.002Kuzmanovic, M., Hatt, T., & Feuerriegel, S. (2021). Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies. In S. Roy, S. Pfohl, E. Rocheteau, G. A. Tadesse, L. Oala, F. Falck, Y. Zhou, L. Shen, G. Zamzmi, P. Mugambi, A. Zirikly, M. B. A. McDermott, & E. Alsentzer (Eds.), Proceedings of Machine Learning for Health (Vol. 158, pp. 143–155). PMLR. https://proceedings.mlr.press/v158/kuzmanovic21a.htmlLamouchi, R. A., & Alawi, S. M. (2020). Dynamic linkages between the oil spot, oil futures, and stock markets: Evidence from Dubai. International Journal of Energy Economics and Policy, 10(1), 377–383. https://doi.org/10.32479/ijeep.8705Le, T.-H., & Nguyen, C. P. (2019). Is energy security a driver for economic growth? Evidence from a global sample. Energy Policy, 129, 436–451. https://doi.org/10.1016/j.enpol.2019.02.038Le, T.-L., Abakah, E. J. A., & Tiwari, A. K. (2021). Time and frequency domain connectedness and spill-over among fintech, green bonds and cryptocurrencies in the age of the fourth industrial revolution. Technological Forecasting and Social Change, 162, 120382. https://doi.org/10.1016/j.techfore.2020.120382Lee, C.-C., Lee, C.-C., & Li, Y.-Y. (2021). Oil price shocks, geopolitical risks, and green bond market dynamics. The North American Journal of Economics and Finance, 55, 101309. https://doi.org/https://doi.org/10.1016/j.najef.2020.101309Lee, K., Ni, S., & Ratti, R. A. (1995). Oil Shocks and the Macroeconomy: The Role of Price Variability. The Energy Journal, 16(4). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol16-No4-2Lee, Y., & Yoon, S.-M. (2020). Dynamic spillover and hedging among carbon, biofuel and oil. Energies, 13(17). https://doi.org/10.3390/en13174382Li, H., Zhou, D., Hu, J., & Guo, L. (2022). Dynamic linkages among oil price, green bond, carbon market and low-carbon footprint company stock price: Evidence from the TVP-VAR model. Energy Reports, 8, 11249–11258. https://doi.org/10.1016/j.egyr.2022.08.230Li, Z., Ma, X., & Xin, H. (2017). Feature engineering of machine-learning chemisorption models for catalyst design. Catalysis Today, 280, 232–238. https://doi.org/10.1016/j.cattod.2016.04.013Lichtenberger, A., Braga, J. P., & Semmler, W. (2022). Green Bonds for the Transition to a Low-Carbon Economy. Econometrics, 10(1). https://doi.org/10.3390/econometrics10010011Lin, B., & Chen, Y. (2019). Dynamic linkages and spillover effects between CET market, coal market and stock market of new energy companies: A case of Beijing CET market in China. Energy, 172, 1198–1210. https://doi.org/10.1016/j.energy.2019.02.029Lin, B., & Su, T. (2020). Mapping the oil price-stock market nexus researches: A scientometric review. International Review of Economics and Finance, 67, 133–147. https://doi.org/10.1016/j.iref.2020.01.007Lin, J.-B., & Tsai, W. (2019). The relations of oil price change with fear gauges in global political and economic environment. Energies, 14(15). https://doi.org/10.3390/en12152982Liu, M. (2022). The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic. Economic Analysis and Policy, 75, 288–309. https://doi.org/10.1016/j.eap.2022.05.012Liu, X., Bouri, E., & Jalkh, N. (2021). Dynamics and Determinants of Market Integration of Green, Clean, Dirty Energy Investments and Conventional Stock Indices. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.786528Liu, Z., Zhang, J., & Li, Y. (2022). Towards better time series prediction with model-independent, low-dispersion clusters of contextual subsequence embeddings. Knowledge-Based Systems, 235, 107641. https://doi.org/10.1016/j.knosys.2021.107641Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–323. http://www.jstor.org/stable/24529203Luo, R., Li, Y., Wang, Z., & Sun, M. (2022). Co-Movement between Carbon Prices and Energy Prices in Time and Frequency Domains: A Wavelet-Based Analysis for Beijing Carbon Emission Trading System. International Journal of Environmental Research and Public Health, 19(9). https://doi.org/10.3390/ijerph19095217Ma, F., Wei, Y., Huang, D., & Zhao, L. (2013). Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC. Physica A: Statistical Mechanics and Its Applications, 392(21), 5356–5368. https://doi.org/10.1016/j.physa.2013.06.061Ma, Z., Yan, Y., Wu, R., & Li, F. (2021). Research on the Correlation Between WTI Crude Oil Futures Price and European Carbon Futures Price. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.735665Maghyereh, A., & Abdoh, H. (2022). Extreme dependence between structural oil shocks and stock markets in GCC countries. Resources Policy, 76. https://doi.org/10.1016/j.resourpol.2022.102626Maghyereh, A. I., Awartani, B., & Abdoh, H. (2019). The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations. Energy, 169, 895–913. https://doi.org/10.1016/j.energy.2018.12.039Mahmood, H., Asadov, A., Tanveer, M., Furqan, M., & Yu, Z. (2022). Impact of Oil Price, Economic Growth and Urbanization on CO2 Emissions in GCC Countries: Asymmetry Analysis. Sustainability, 14(8), 4562.Mahmood, H., & Furqan, M. (2021). Oil rents and greenhouse gas emissions: spatial analysis of Gulf Cooperation Council countries. Environment, Development and Sustainability, 23(4), 6215–6233. https://doi.org/10.1007/s10668-020-00869-wMaji, I. K., Habibullah, M. S., & Saari, M. Y. (2020). Does oil price shocks mitigate sectoral co2 emissions in malaysia? Evidence from ardl estimations. Kasetsart Journal of Social Sciences, 41(3), 633–640. https://doi.org/10.34044/j.kjss.2020.41.3.28Malik, M. I., & Rashid, A. (2017). Return and volatility spillover between sectoral stock and oil price: Evidence from pakistan stock exchange. Annals of Financial Economics, 12(2). https://doi.org/10.1142/S2010495217500075Manjunath, S., & Halasuru Manjunath, P. (2023). A Novel Approach for Financial Markets Forecasting Using Deep Learning with Long Short Term Networks (pp. 456–462). https://doi.org/10.1007/978-3-031-17091-1_46Marimoutou, V., & Soury, M. (2015). Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model. Energy, 88, 417–429. https://doi.org/10.1016/j.energy.2015.05.060Marín-Rodríguez, N. J., González-Ruiz, J. D., & Botero Botero, S. (2022). Dynamic Co-Movements among Oil Prices and Financial Assets: A Scientometric Analysis. Sustainability, 14(19). https://doi.org/10.3390/su141912796Marín-Rodríguez, N. J., González-Ruiz, J. D., & Botero, S. (2022). Dynamic relationships among green bonds, CO2 emissions, and oil prices. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.992726Marín-Rodríguez, N. J., González-Ruiz, J. D., & Botero, S. (2023). A Wavelet Analysis of the Dynamic Connectedness among Oil Prices, Green Bonds, and CO2 Emissions. Risks, 11(1), 15. https://doi.org/10.3390/risks11010015Marquez-Cardenas, V., Gonzalez-Ruiz, J. D., & Duque-Grisales, E. (2021). Board gender diversity and firm performance: evidence from Latin America. Journal of Sustainable Finance and Investment. https://doi.org/10.1080/20430795.2021.2017256Marshall, A. (1890). Principles of Economics, 8th edn (1920). London, Mcmillan.Mejia-Escobar, J. C., González-Ruiz, J. D., & Duque-Grisales, E. (2020). Sustainable financial products in the Latin America banking industry: Current status and insights. Sustainability (Switzerland), 12(14). https://doi.org/10.3390/su12145648Mejía-Escobar, J. C., González-Ruiz, J. D., & Franco-Sepúlveda, G. (2021). Current state and development of green bonds market in the Latin America and the caribbean. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910872Melek, N. C. (2018). The response of US investment to oil price shocks: does the shale boom matter? Economic Review, Federal Reserve Bank of Kansas City Forthcoming.Mensah, I. A., Sun, M., Gao, C., Omari-Sasu, A. Y., Zhu, D., Ampimah, B. C., & Quarcoo, A. (2019). Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. Journal of Cleaner Production, 228, 161–174. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.04.281Mensi, W. (2019). Global financial crisis and co-movements between oil prices and sector stock markets in Saudi Arabia: A VaR based wavelet. Borsa Istanbul Review, 19(1), 24–38. https://doi.org/10.1016/j.bir.2017.11.005Mensi, W., Beljid, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 32, 15–22. https://doi.org/10.1016/j.econmod.2013.01.023Mensi, W., Hammoudeh, S., Reboredo, J. C., & Nguyen, D. K. (2014). Do global factors impact BRICS stock markets? A quantile regression approach. Emerging Markets Review, 19, 1–17. https://doi.org/10.1016/j.ememar.2014.04.002Mensi, W., Hammoudeh, S., & Yoon, S.-M. (2015). Structural breaks, dynamic correlations, asymmetric volatility transmission, and hedging strategies for petroleum prices and USD exchange rate. Energy Economics, 48, 46–60. https://doi.org/10.1016/j.eneco.2014.12.004Mensi, W., Rehman, M. U., Maitra, D., Al-Yahyaee, K. H., & Vo, X. V. (2021). Oil, natural gas and BRICS stock markets: Evidence of systemic risks and co-movements in the time-frequency domain. Resources Policy, 72. https://doi.org/10.1016/j.resourpol.2021.102062Mesbah, M., Shahsavari, S., Soroush, E., Rahaei, N., & Rezakazemi, M. (2018). Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. Journal of CO2 Utilization, 25, 99–107. https://doi.org/10.1016/j.jcou.2018.03.004Mitra, A., & Bhattacharjee, K. (2015). Financial interdependence of international stock markets: A literature review. Indian Journal of Finance, 9(5), 20–33. https://doi.org/10.17010/ijf/2015/v9i5/71447Mohan, S., Mullapudi, S., Sammeta, S., Vijayvergia, P., & Anastasiu, D. C. (2019). Stock Price Prediction Using News Sentiment Analysis. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 205–208. https://doi.org/10.1109/BigDataService.2019.00035Moomaw, W. R., & Unruh, G. C. (1997). Are environmental Kuznets curves misleading us? The case of CO2 emissions. Environment and Development Economics, 2(4), 451–463. https://doi.org/10.1017/S1355770X97000247Moral-Munoz, J. A., Arroyo-Morales, M., Herrera-Viedma, E., & Cobo, M. J. (2018). An Overview of Thematic Evolution of Physical Therapy Research Area From 1951 to 2013. Frontiers in Research Metrics and Analytics, 3. https://doi.org/10.3389/frma.2018.00013Morlet, J., Arens, G., Fourgeau, E., & Glard, D. (1982). Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. Geophysics, 47(2), 203–221. https://doi.org/10.1190/1.1441328Moutinho, V., Madaleno, M., & Elheddad, M. (2020). Determinants of the Environmental Kuznets Curve considering economic activity sector diversification in the OPEC countries. Journal of Cleaner Production, 271, 122642. https://doi.org/10.1016/j.jclepro.2020.122642Mujtaba, A., & Jena, P. K. (2021). Analyzing asymmetric impact of economic growth, energy use, FDI inflows, and oil prices on CO2 emissions through NARDL approach. Environmental Science and Pollution Research, 28(24), 30873–30886. https://doi.org/10.1007/s11356-021-12660-zMumu, J. R., Saona, P., Russell, H. I., & Azad, Md. A. K. (2021). Corporate governance and remuneration: a bibliometric analysis. Journal of Asian Business and Economic Studies, 28(4), 242–262. https://doi.org/10.1108/JABES-03-2021-0025Naeem, M. A., Bouri, E., Costa, M. D., Naifar, N., & Shahzad, S. J. H. (2021). Energy markets and green bonds: A tail dependence analysis with time-varying optimal copulas and portfolio implications. Resources Policy, 74, 102418. https://doi.org/10.1016/j.resourpol.2021.102418Naeem, M. A., Mbarki, I., Alharthi, M., Omri, A., & Shahzad, S. J. H. (2021). Did COVID-19 Impact the Connectedness Between Green Bonds and Other Financial Markets? Evidence From Time-Frequency Domain With Portfolio Implications. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.657533Nagayev, R., Disli, M., Inghelbrecht, K., & Ng, A. (2016). On the dynamic links between commodities and Islamic equity. Energy Economics, 58, 125–140. https://doi.org/10.1016/j.eneco.2016.06.011Nandy, A., Zhu, J., Janet, J. P., Duan, C., Getman, R. B., & Kulik, H. J. (2019). Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. ACS Catalysis, 9(9), 8243–8255. https://doi.org/10.1021/acscatal.9b02165Narayan, P. K., & Narayan, S. (2010). Modelling the impact of oil prices on Vietnam’s stock prices. Applied Energy, 87(1), 356–361. https://doi.org/10.1016/j.apenergy.2009.05.037Naser, H. (2015). Analysing the long-run relationship among oil market, nuclear energy consumption, and economic growth: An evidence from emerging economies. ENERGY, 89, 421–434. https://doi.org/10.1016/j.energy.2015.05.115Nenonen, S., Koski, A., Lassila, A. P., & Lehikoinen, S. (2019). Towards low carbon economy - Green bond and asset development. IOP Conference Series: Earth and Environmental Science, 352(1). https://doi.org/10.1088/1755-1315/352/1/012028Nguyen, T. T. H., Naeem, M. A., Balli, F., Balli, H. O., & Vo, X. V. (2021). Time-frequency comovement among green bonds, stocks, commodities, clean energy, and conventional bonds. Finance Research Letters, 40. https://doi.org/10.1016/j.frl.2020.101739Ni, J., & Xu, Y. (2023). Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method. Computational Economics, 61(1), 35–55. https://doi.org/10.1007/s10614-021-10198-3Omane-Adjepong, M., Alagidede, P., & Akosah, N. K. (2019). Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility. Physica A: Statistical Mechanics and Its Applications, 514, 105–120. https://doi.org/10.1016/j.physa.2018.09.013Omri, A., ben Mabrouk, N., & Sassi-Tmar, A. (2015). Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries. Renewable & Sustainable Energy Reviews, 42, 1012–1022. https://doi.org/10.1016/j.rser.2014.10.046Omri, A., Daly, S., & Nguyen, D. K. (2015). A robust analysis of the relationship between renewable energy consumption and its main drivers. Applied Economics, 47(28), 2913–2923. https://doi.org/10.1080/00036846.2015.1011312Orlov, A. G. (2009). A cospectral analysis of exchange rate comovements during Asian financial crisis. Journal of International Financial Markets, Institutions and Money, 19(5), 742–758. https://doi.org/https://doi.org/10.1016/j.intfin.2008.12.004Osorio, S., Tietjen, O., Pahle, M., Pietzcker, R. C., & Edenhofer, O. (2021). Reviewing the Market Stability Reserve in light of more ambitious EU ETS emission targets. Energy Policy, 158. https://doi.org/10.1016/j.enpol.2021.112530Ozturk, M. B. E., & Cavdar, S. C. (2021). The Contagion of Covid-19 Pandemic on The Volatilities of International Crude Oil Prices, Gold, Exchange Rates and Bitcoin. Journal of Asian Finance, Economics and Business, 8(3), 171–179. https://doi.org/10.13106/jafeb.2021.vol8.no3.0171Pakel, C., Shephard, N., Sheppard, K., & Engle, R. F. (2021). Fitting Vast Dimensional Time-Varying Covariance Models. Journal of Business and Economic Statistics, 39(3), 652–668. https://doi.org/10.1080/07350015.2020.1713795Pal, D., & Mitra, S. K. (2019). Oil price and automobile stock return co-movement: A wavelet coherence analysis. Economic Modelling, 76, 172–181. https://doi.org/10.1016/j.econmod.2018.07.028Panaretos, V. M., & Zemel, Y. (2019). Statistical Aspects of Wasserstein Distances. Annual Review of Statistics and Its Application, 6(1), 405–431. https://doi.org/10.1146/annurev-statistics-030718-104938Park, J., & Ratti, R. A. (2008). Oil price shocks and stock markets in the U.S. and 13 European countries. Energy Economics, 30(5), 2587–2608. https://doi.org/10.1016/j.eneco.2008.04.003Park, O., & Seok, M. (2007). Selection of an appropriate model to predict plume dispersion in coastal areas. Atmospheric Environment, 41(29), 6095–6101. https://doi.org/10.1016/j.atmosenv.2007.04.010Pata, U. K. (2021). Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective. RENEWABLE ENERGY, 173, 197–208. https://doi.org/10.1016/j.renene.2021.03.125Patel, R., Goodell, J. W., Oriani, M. E., Paltrinieri, A., & Yarovaya, L. (2022). A bibliometric review of financial market integration literature. International Review of Financial Analysis, 80, 102035. https://doi.org/https://doi.org/10.1016/j.irfa.2022.102035Peña, A., Bonet, I., Lochmuller, C., Alejandro Patiño, H., Chiclana, F., & Góngora, M. (2018). A fuzzy credibility model to estimate the Operational Value at Risk using internal and external data of risk events. Knowledge-Based Systems, 159, 98–109. https://doi.org/10.1016/j.knosys.2018.06.007Peña, A., Bonet, I., Lochmuller, C., Chiclana, F., & Góngora, M. (2018). An integrated inverse adaptive neural fuzzy system with Monte-Carlo sampling method for operational risk management. Expert Systems with Applications, 98, 11–26. https://doi.org/10.1016/j.eswa.2018.01.001Peña, A., Puerta, A., Bonet, I., Góngora, M., & Carafinni, F. (2020). Criterios para la configuración de plataformas de inteligencia aumentada para el mejoramiento de la sostenibilidad de cultivos agrícolas. In III Congreso Internacional de Ingeniería de Sistemas. Universidad de Lima.Peña, A., Tejada, J. C., Gonzalez-Ruiz, J. D., & Gongora, M. (2022). Deep Learning to Improve the Sustainability of Agricultural Crops Affected by Phytosanitary Events: A Financial-Risk Approach. Sustainability, 14(11), 6668. https://doi.org/10.3390/su14116668Pericoli, M., & Sbracia, M. (2003). A primer on financial contagion. Journal of Economic Surveys, 17(4), 571–608.Pham, H. N. A., Ramiah, V., Moosa, N., Huynh, T., & Pham, N. (2018). The financial effects of Trumpism. Economic Modelling, 74, 264–274. https://doi.org/https://doi.org/10.1016/j.econmod.2018.05.020Piñeiro-Chousa, J., López-Cabarcos, M. Á., & Šević, A. (2022). Green bond market and Sentiment: Is there a switching Behaviour? Journal of Business Research, 141, 520–527. https://doi.org/10.1016/j.jbusres.2021.11.048Pirgaip, B., & Dincergok, B. (2020). Economic policy uncertainty, energy consumption and carbon emissions in G7 countries: evidence from a panel Granger causality analysis. Environmental Science and Pollution Research, 27(24), 30050–30066. https://doi.org/10.1007/s11356-020-08642-2Prabheesh, K. P., Padhan, R., & Garg, B. (2020). COVID-19 and the Oil Price – Stock Market Nexus: Evidence From Net Oil-Importing Countries. Energy RESEARCH LETTERS, 1(2). https://doi.org/10.46557/001c.13745Quadrelli, R., & Peterson, S. (2007). The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy, 35(11), 5938–5952. https://doi.org/https://doi.org/10.1016/j.enpol.2007.07.001Qureshi, S., Aftab, M., Bouri, E., & Saeed, T. (2020). Dynamic interdependence of cryptocurrency markets: An analysis across time and frequency. Physica A: Statistical Mechanics and Its Applications, 559, 125077. https://doi.org/10.1016/j.physa.2020.125077Rai, K., & Garg, B. (2022). Dynamic correlations and volatility spillovers between stock price and exchange rate in BRIICS economies: evidence from the COVID-19 outbreak period. Applied Economics Letters, 29(8), 738–745. https://doi.org/10.1080/13504851.2021.1884835Rangel, J. G., & Engle, R. F. (2012). The Factor-Spline-GARCH model for high and low frequency correlations. Journal of Business and Economic Statistics, 30(1), 109–124. https://doi.org/10.1080/07350015.2012.643132Rannou, Y., Boutabba, M. A., & Barneto, P. (2021). Are Green Bond and Carbon Markets in Europe complements or substitutes? Insights from the activity of power firms. Energy Economics, 104. https://doi.org/10.1016/j.eneco.2021.105651Rao, A., Gupta, M., Sharma, G. D., Mahendru, M., & Agrawal, A. (2022). Revisiting the financial market interdependence during COVID-19 times: a study of green bonds, cryptocurrency, commodities and other financial markets. International Journal of Managerial Finance, 18(4), 725–755. https://doi.org/10.1108/IJMF-04-2022-0165Rasheed, M. Q., Haseeb, A., Adebayo, T. S., Ahmed, Z., & Ahmad, M. (2022). The long-run relationship between energy consumption, oil prices, and carbon dioxide emissions in European countries. Environmental Science and Pollution Research, 29(16), 24234–24247. https://doi.org/10.1007/s11356-021-17601-4Reboredo, J. C. (2012). Modelling oil price and exchange rate co-movements. Journal of Policy Modeling, 34(3), 419–440. https://doi.org/10.1016/j.jpolmod.2011.10.005Reboredo, J. C. (2013). Modeling EU allowances and oil market interdependence. Implications for portfolio management. Energy Economics, 36, 471–480. https://doi.org/10.1016/j.eneco.2012.10.004Reboredo, J. C. (2015). Is there dependence and systemic risk between oil and renewable energy stock prices? Energy Economics, 48, 32–45. https://doi.org/10.1016/j.eneco.2014.12.009Reboredo, J. C. (2018). Green bond and financial markets: Co-movement, diversification and price spillover effects. Energy Economics, 74, 38–50. https://doi.org/10.1016/j.eneco.2018.05.030Reboredo, J. C., & Rivera-Castro, M. A. (2014). Wavelet-based evidence of the impact of oil prices on stock returns. International Review of Economics and Finance, 29, 145–176. https://doi.org/10.1016/j.iref.2013.05.014Reboredo, J. C., Rivera-Castro, M. A., & Ugolini, A. (2017). Wavelet-based test of co-movement and causality between oil and renewable energy stock prices. Energy Economics, 61, 241–252. https://doi.org/10.1016/j.eneco.2016.10.015Reboredo, J. C., & Ugolini, A. (2020). Price connectedness between green bond and financial markets. Economic Modelling, 88, 25–38. https://doi.org/10.1016/j.econmod.2019.09.004Reboredo, J. C., Ugolini, A., & Aiube, F. A. L. (2020). Network connectedness of green bonds and asset classes. Energy Economics, 86, 104629. https://doi.org/10.1016/j.eneco.2019.104629Ren, C. (2022). Volatility Spillovers and Nexus across Oil, Gold, and Stock European Markets. American Business Review, 25(1), 52–185. https://doi.org/10.37625/abr.25.1.152-185Ren, X., Dou, Y., Dong, K., & Li, Y. (2022). Information spillover and market connectedness: multi-scale quantile-on-quantile analysis of the crude oil and carbon markets. Applied Economics, 54(38), 4465–4485. https://doi.org/10.1080/00036846.2022.2030855Ren, X., Li, Y., Qi, Y., & Duan, K. (2022). Asymmetric effects of decomposed oil-price shocks on the EU carbon market dynamics. Energy, 254. https://doi.org/10.1016/j.energy.2022.124172Ren, X., Li, Y., yan, C., Wen, F., & Lu, Z. (2022). The interrelationship between the carbon market and the green bonds market: Evidence from wavelet quantile-on-quantile method. Technological Forecasting and Social Change, 179. https://doi.org/10.1016/j.techfore.2022.121611Ren, X., Lu, Z., Cheng, C., Shi, Y., & Shen, J. (2019). On dynamic linkages of the state natural gas markets in the USA: Evidence from an empirical spatio-temporal network quantile analysis. Energy Economics, 80, 234–252. https://doi.org/10.1016/j.eneco.2019.01.001Ren, X., Shao, Q., & Zhong, R. (2020). Nexus between green finance, non-fossil energy use, and carbon intensity: Empirical evidence from China based on a vector error correction model. Journal of Cleaner Production, 277, 122844. https://doi.org/10.1016/j.jclepro.2020.122844Ren, Y.-S., Narayan, S., & Ma, C. (2021). Air quality, COVID-19, and the oil market: Evidence from China’s provinces. Economic Analysis And Policy, 72, 58–72. https://doi.org/10.1016/j.eap.2021.07.012Reza, S., Ferreira, M. C., Machado, J. J. M., & Tavares, J. M. R. S. (2022). A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Systems with Applications, 202, 117275. https://doi.org/10.1016/j.eswa.2022.117275Rittler, D. (2012). Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis. Journal of Banking & Finance, 36(3), 774–785. https://doi.org/10.1016/j.jbankfin.2011.09.009Robledo, S., Osorio, G., & Lopez, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Revista Vínculos, 11(2), 6–16. https://doi.org/10.14483/2322939X.9664Rodriguez-Fernandez, M. (2016). Social responsibility and financial performance: The role of good corporate governance. BRQ Business Research Quarterly, 19(2), 137–151. https://doi.org/10.1016/j.brq.2015.08.001Roy, R. P., & Roy, S. S. (2017). Financial contagion and volatility spillover: An exploration into Indian commodity derivative market. Economic Modelling, 67, 368–380.Royal, S., Singh, K., & Chander, R. (2022). A nexus between renewable energy, FDI, oil prices, oil rent and CO<inf>2</inf> emission: panel data evidence from G7 economies. OPEC Energy Review, 46(2), 208–227. https://doi.org/10.1111/opec.12228Saboori, B., Al-mulali, U., bin Baba, M., & Mohammed, A. H. (2016). Oil-Induced environmental Kuznets curve in organization of petroleum exporting countries (OPEC). International Journal of Green Energy, 13(4), 408–416. https://doi.org/10.1080/15435075.2014.961468Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics, 21(5), 449–469. https://doi.org/https://doi.org/10.1016/S0140-9883(99)00020-1Sadorsky, P. (2001). Risk factors in stock returns of Canadian oil and gas companies. Energy Economics, 23(1), 17–28. https://doi.org/10.1016/S0140-9883(00)00072-4Sadorsky, P. (2009). Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Economics, 31(3), 456–462. https://doi.org/10.1016/j.eneco.2008.12.010Sadorsky, P. (2012). Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Economics, 34(1), 248–255. https://doi.org/10.1016/j.eneco.2011.03.006Sadorsky, P. (2014). Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Economics, 43, 72–81. https://doi.org/10.1016/j.eneco.2014.02.014Saeed, T., Bouri, E., & Alsulami, H. (2021). Extreme return connectedness and its determinants between clean/green and dirty energy investments. Energy Economics, 96, 105017. https://doi.org/10.1016/j.eneco.2020.105017Saeed, T., Bouri, E., & Tran, D. K. (2020). Hedging Strategies of Green Assets against Dirty Energy Assets. Energies, 13(12), 3141. https://doi.org/10.3390/en13123141Sahu, P. K., Solarin, S. A., Al-mulali, U., & Ozturk, I. (2022). Investigating the asymmetry effects of crude oil price on renewable energy consumption in the United States. Environmental Science and Pollution Research, 29(1), 817–827. https://doi.org/10.1007/s11356-021-15577-9Salem, S. (2017). Key Commodity Markets: Dynamic Correlations & Volatilities in Time-Frequency Domain. University of Surrey (United Kingdom).Sari, R., Hammoudeh, S., & Soytas, U. (2010). Dynamics of oil price, precious metal prices, and exchange rate. Energy Economics, 32(2), 351–362. https://doi.org/10.1016/j.eneco.2009.08.010Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003Sener, S. E. C., Sharp, J. L., & Anctil, A. (2018). Factors impacting diverging paths of renewable energy: A review. Renewable & Sustainable Energy Reviews, 81(2), 2335–2342. https://doi.org/10.1016/j.rser.2017.06.042Shah, M. I., Foglia, M., Shahzad, U., & Fareed, Z. (2022). Green innovation, resource price and carbon emissions during the COVID-19 times: New findings from wavelet local multiple correlation analysis. Technological Forecasting and Social Change, 184. https://doi.org/10.1016/j.techfore.2022.121957Shahzad, S. J. H., Mensi, W., Hammoudeh, S., Rehman, M. U., & Al-Yahyaee, K. H. (2018). Extreme dependence and risk spillovers between oil and Islamic stock markets. Emerging Markets Review, 34, 42–63. https://doi.org/10.1016/j.ememar.2017.10.003Shankaranarayana, S. M., & Runje, D. (2019). ALIME: Autoencoder Based Approach for Local Interpretability (pp. 454–463). https://doi.org/10.1007/978-3-030-33607-3_49Sharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis, 70, 101496. https://doi.org/10.1016/j.irfa.2020.101496Singh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools and Applications, 76(18), 18569–18584. https://doi.org/10.1007/s11042-016-4159-7Singh, S., Bansal, P., & Bhardwaj, N. (2022). Correlation between geopolitical risk, economic policy uncertainty, and Bitcoin using partial and multiple wavelet coherence in P5 + 1 nations. Research in International Business and Finance, 63, 101756. https://doi.org/10.1016/j.ribaf.2022.101756Singhal, S., & Ghosh, S. (2016). Returns and volatility linkages between international crude oil price, metal and other stock indices in India: Evidence from VAR-DCC-GARCH models. Resources Policy, 50, 276–288. https://doi.org/10.1016/j.resourpol.2016.10.001Su, C. W., Chen, Y., Hu, J., Chang, T., & Umar, M. (2022). Can the green bond market enter a new era under the fluctuation of oil price? Economic Research-Ekonomska Istrazivanja. https://doi.org/10.1080/1331677X.2022.2077794Surya, E., & Wibowo, S. S. (2018). Empirical analysis of oil price volatility and stock returns in ASEAN-5 countries using DCC-GARCH. Pertanika Journal of Social Sciences and Humanities, 26(August), 251–263.Syed, A. A., Ahmed, F., Kamal, M. A., Ullah, A., & Ramos-Requena, J. P. (2022). Is There an Asymmetric Relationship between Economic Policy Uncertainty, Cryptocurrencies, and Global Green Bonds? Evidence from the United States of America. Mathematics, 10(5). https://doi.org/10.3390/math10050720Tang, W., Wu, L., & Zhang, Z. (2010). Oil price shocks and their short- and long-term effects on the Chinese economy. Energy Economics, 32, S3–S14. https://doi.org/10.1016/j.eneco.2010.01.002Tatar, A., Shokrollahi, A., Mesbah, M., Rashid, S., Arabloo, M., & Bahadori, A. (2013). Implementing Radial Basis Function Networks for modeling CO2-reservoir oil minimum miscibility pressure. Journal of Natural Gas Science and Engineering, 15, 82–92. https://doi.org/10.1016/j.jngse.2013.09.008Tiwari, A. K., Aikins Abakah, E. J., Gabauer, D., & Dwumfour, R. A. (2021). Green Bond, Renewable Energy Stocks and Carbon Price: Dynamic Connectedness, Hedging and Investment Strategies during COVID-19 pandemic. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3897284Tiwari, A. K., Aikins Abakah, E. J., Gabauer, D., & Dwumfour, R. A. (2022). Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies. Global Finance Journal, 51. https://doi.org/10.1016/j.gfj.2021.100692Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2Torrence, C., & Webster, P. J. (1999). Interdecadal Changes in the ENSO–Monsoon System. Journal of Climate, 12(8), 2679–2690. https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2Troster, V., Shahbaz, M., & Uddin, G. S. (2018). Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis. Energy Economics, 70, 440–452. https://doi.org/10.1016/j.eneco.2018.01.029Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017). Using deep learning to detect price change indications in financial markets. 2017 25th European Signal Processing Conference (EUSIPCO), 2511–2515. https://doi.org/10.23919/EUSIPCO.2017.8081663Tse, Y. K., & Tsui, A. K. C. (2002). A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business and Economic Statistics, 20(3), 351–362. https://doi.org/10.1198/073500102288618496Turhan, M. I., Sensoy, A., & Hacihasanoglu, E. (2014). A comparative analysis of the dynamic relationship between oil prices and exchange rates. Journal of International Financial Markets, Institutions and Money, 32(1), 397–414. https://doi.org/10.1016/j.intfin.2014.07.003Uzar, U. (2020). Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption? Renewable Energy, 155, 591–603. https://doi.org/10.1016/j.renene.2020.03.172van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7Vayá-Valcarce, E., & Frexedas, O. V. (2005). Financial contagion between economies: an exploratory spatial analysis. Estudios De Economia Aplicada, 23(1), 151–166.Vieira, A. (2015). Predicting online user behaviour using deep learning algorithms. ArXiv Preprint.Wang, C., Chen, Y., Zhang, S., & Zhang, Q. (2022). Stock market index prediction using deep Transformer model. Expert Systems with Applications, 208, 118128. https://doi.org/10.1016/j.eswa.2022.118128Wang, S., & Wang, D. (2022). Exploring the Relationship Between ESG Performance and Green Bond Issuance. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.897577Wang, W., Huang, Y., Wang, Y., & Wang, L. (2014). Generalized autoencoder: A neural network framework for dimensionality reduction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 490–497.Wang, X., Li, J., & Ren, X. (2022). Asymmetric causality of economic policy uncertainty and oil volatility index on time-varying nexus of the clean energy, carbon and green bond. International Review of Financial Analysis, 83. https://doi.org/10.1016/j.irfa.2022.102306Wang, Y., Wu, C., & Yang, L. (2013). Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries. Journal of Comparative Economics, 41(4), 1220–1239. https://doi.org/10.1016/j.jce.2012.12.004Wei, P., Li, Y., Ren, X., & Duan, K. (2022). Crude oil price uncertainty and corporate carbon emissions. Environmental Science and Pollution Research, 29(2), 2385–2400. https://doi.org/10.1007/s11356-021-15837-8Wen, X., Bouri, E., & Roubaud, D. (2017). Can energy commodity futures add to the value of carbon assets? Economic Modelling, 62, 194–206. https://doi.org/10.1016/j.econmod.2016.12.022Wu, D., Wang, X., & Wu, S. (2022). A hybrid framework based on extreme learning machine, discrete wavelet transform, and autoencoder with feature penalty for stock prediction. Expert Systems with Applications, 207, 118006. https://doi.org/10.1016/j.eswa.2022.118006Xuefeng, Z., Razzaq, A., Gokmenoglu, K. K., & Rehman, F. U. (2022). Time varying interdependency between COVID-19, tourism market, oil prices, and sustainable climate in United States: evidence from advance wavelet coherence approach. Economic Research-Ekonomska Istrazivanja, 35(1), 3337–3359. https://doi.org/10.1080/1331677X.2021.1992642Yan, L., Wang, H., Athari, S. A., & Atif, F. (2022). Driving green bond market through energy prices, gold prices and green energy stocks: evidence from a non-linear approach. Economic Research-Ekonomska Istrazivanja. https://doi.org/10.1080/1331677X.2022.2049977Yun, K. K., Yoon, S. W., & Won, D. (2023). Interpretable stock price forecasting model using genetic algorithm-machine learning regressions and best feature subset selection. Expert Systems with Applications, 213, 118803. https://doi.org/10.1016/j.eswa.2022.118803Zaghdoudi, T. (2017). Oil prices, renewable energy, CO2 emissions and economic growth in OECD countries. Economics Bulletin, 37(3), 1844–1850. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028668466&partnerID=40&md5=d2530fbe0feb8e695f473eebbe41a2f3Zhang, B., & Zhou, Y. (2022). Oil prices, emission permits trade of carbon, and the dependence between their quantiles. International Journal of Circuits, Systems and Signal Processing, 16, 38–45.Zhang, Z., Zohren, S., & Roberts, S. (2019). DeepLOB: Deep Convolutional Neural Networks for Limit Order Books. IEEE Transactions on Signal Processing, 67(11), 3001–3012. https://doi.org/10.1109/TSP.2019.2907260Zheng, Y., Zhou, M., & Wen, F. (2021). Asymmetric effects of oil shocks on carbon allowance price: Evidence from China. Energy Economics, 97. https://doi.org/10.1016/j.eneco.2021.105183Zou, X. (2018). An analysis of the effect of carbon emission, GDP and international crude oil prices based on synthesis integration model. International Journal of Energy Sector Management, 12(4), 641–655. https://doi.org/10.1108/IJESM-10-2017-0013InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83906/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL43209431.2023.pdf43209431.2023.pdfTesis de Doctorado en Ingeniería - Industria y Organizacionesapplication/pdf6943063https://repositorio.unal.edu.co/bitstream/unal/83906/2/43209431.2023.pdf128473cd57a75da98844e4453f66db86MD52THUMBNAIL43209431.2023.pdf.jpg43209431.2023.pdf.jpgGenerated Thumbnailimage/jpeg4698https://repositorio.unal.edu.co/bitstream/unal/83906/3/43209431.2023.pdf.jpg5fa86bee49a7de35247d40d4aa5c7e4fMD53unal/83906oai:repositorio.unal.edu.co:unal/839062023-08-07 23:03:40.453Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=