Operator-valued Fourier multipliers on toroidal Besov spaces

We prove in this paper that a sequence M: Zn → L(E) of bounded variation is a Fourier multiplier on the Besov space Bsp, q(Tn, E) for s ∈ R, 1 p ∞, 1 ≤ q ≤ ∞ and E a Banach space, if and only if E is a UMD-space. This extends the Theorem 4.2 in [3] to the n-dimensional case. As illustration of the a...

Full description

Autores:
Barraza Martínez, Bienvenido
González Martínez, Iván
Hernández Monzón, Jairo
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66457
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66457
http://bdigital.unal.edu.co/67485/
Palabra clave:
51 Matemáticas / Mathematics
Fourier multipliers
operator-valued symbols
UMD- spaces
toroidal Besov spaces
Multiplicadores de Fourier
símbolos operador-valuados
espacios UMD
espacios de Besov toroidales.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_543c4560eea369cdc05bcde9c79cc2df
oai_identifier_str oai:repositorio.unal.edu.co:unal/66457
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barraza Martínez, Bienvenidob9c76af7-6a13-4e38-bda1-c0adf2408d9d300González Martínez, Iván6118734b-4e0b-4e4c-9c6a-f660031f8c1c300Hernández Monzón, Jairo6ec02f73-77b2-4001-9b03-a45d7d16a0093002019-07-03T02:09:51Z2019-07-03T02:09:51Z2016-01-01ISSN: 2357-4100https://repositorio.unal.edu.co/handle/unal/66457http://bdigital.unal.edu.co/67485/We prove in this paper that a sequence M: Zn → L(E) of bounded variation is a Fourier multiplier on the Besov space Bsp, q(Tn, E) for s ∈ R, 1 p ∞, 1 ≤ q ≤ ∞ and E a Banach space, if and only if E is a UMD-space. This extends the Theorem 4.2 in [3] to the n-dimensional case. As illustration of the applicability of this results we study the solvability of two abstract Cauchy problems with periodic boundary conditions.En el presente artículo se prueba que una sucesión M: Zn → L(E) de variación acotada, es un multiplicador de Fourier sobre el espacio de Besov Bsp, q(Tn, E) para s ∈ R, 1  p  ∞, 1 ≤ q ≤ 1 y E un espacio de Banach, si y solo si, E es un espacio UMD. Este resultado extiende el Teorema 4.2 en [3] al caso n-dimensional. Como ilustración de la aplicabilidad de este resultado, se estudia la solubilidad de dos problemas de Cauchy abstractos con condiciones de frontera periódicas.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticashttps://revistas.unal.edu.co/index.php/recolma/article/view/62205Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasBarraza Martínez, Bienvenido and González Martínez, Iván and Hernández Monzón, Jairo (2016) Operator-valued Fourier multipliers on toroidal Besov spaces. Revista Colombiana de Matemáticas, 50 (1). pp. 109-137. ISSN 2357-410051 Matemáticas / MathematicsFourier multipliersoperator-valued symbolsUMD- spacestoroidal Besov spacesMultiplicadores de Fouriersímbolos operador-valuadosespacios UMDespacios de Besov toroidales.Operator-valued Fourier multipliers on toroidal Besov spacesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL62205-316266-1-SM.pdfapplication/pdf518980https://repositorio.unal.edu.co/bitstream/unal/66457/1/62205-316266-1-SM.pdfa6820843a00bd9399f0c811a8d880c97MD51THUMBNAIL62205-316266-1-SM.pdf.jpg62205-316266-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg4795https://repositorio.unal.edu.co/bitstream/unal/66457/2/62205-316266-1-SM.pdf.jpgbf2fe9cc4ae5b4b385d7ab47081471d2MD52unal/66457oai:repositorio.unal.edu.co:unal/664572023-05-25 23:02:46.727Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Operator-valued Fourier multipliers on toroidal Besov spaces
title Operator-valued Fourier multipliers on toroidal Besov spaces
spellingShingle Operator-valued Fourier multipliers on toroidal Besov spaces
51 Matemáticas / Mathematics
Fourier multipliers
operator-valued symbols
UMD- spaces
toroidal Besov spaces
Multiplicadores de Fourier
símbolos operador-valuados
espacios UMD
espacios de Besov toroidales.
title_short Operator-valued Fourier multipliers on toroidal Besov spaces
title_full Operator-valued Fourier multipliers on toroidal Besov spaces
title_fullStr Operator-valued Fourier multipliers on toroidal Besov spaces
title_full_unstemmed Operator-valued Fourier multipliers on toroidal Besov spaces
title_sort Operator-valued Fourier multipliers on toroidal Besov spaces
dc.creator.fl_str_mv Barraza Martínez, Bienvenido
González Martínez, Iván
Hernández Monzón, Jairo
dc.contributor.author.spa.fl_str_mv Barraza Martínez, Bienvenido
González Martínez, Iván
Hernández Monzón, Jairo
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Fourier multipliers
operator-valued symbols
UMD- spaces
toroidal Besov spaces
Multiplicadores de Fourier
símbolos operador-valuados
espacios UMD
espacios de Besov toroidales.
dc.subject.proposal.spa.fl_str_mv Fourier multipliers
operator-valued symbols
UMD- spaces
toroidal Besov spaces
Multiplicadores de Fourier
símbolos operador-valuados
espacios UMD
espacios de Besov toroidales.
description We prove in this paper that a sequence M: Zn → L(E) of bounded variation is a Fourier multiplier on the Besov space Bsp, q(Tn, E) for s ∈ R, 1 p ∞, 1 ≤ q ≤ ∞ and E a Banach space, if and only if E is a UMD-space. This extends the Theorem 4.2 in [3] to the n-dimensional case. As illustration of the applicability of this results we study the solvability of two abstract Cauchy problems with periodic boundary conditions.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-01-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:09:51Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:09:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2357-4100
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66457
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67485/
identifier_str_mv ISSN: 2357-4100
url https://repositorio.unal.edu.co/handle/unal/66457
http://bdigital.unal.edu.co/67485/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/recolma/article/view/62205
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.references.spa.fl_str_mv Barraza Martínez, Bienvenido and González Martínez, Iván and Hernández Monzón, Jairo (2016) Operator-valued Fourier multipliers on toroidal Besov spaces. Revista Colombiana de Matemáticas, 50 (1). pp. 109-137. ISSN 2357-4100
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66457/1/62205-316266-1-SM.pdf
https://repositorio.unal.edu.co/bitstream/unal/66457/2/62205-316266-1-SM.pdf.jpg
bitstream.checksum.fl_str_mv a6820843a00bd9399f0c811a8d880c97
bf2fe9cc4ae5b4b385d7ab47081471d2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090229742567424