Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento

ilustraciones, diagramas, tablas

Autores:
Gómez Alvarez, Ana Cristina
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81248
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81248
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
690 - Construcción de edificios::691 - Materiales de construcción
Cement - additives
Cemento - Aditivos
Arcillas
Funcionalización de arcillas
Área superficial específica
Capacidad de intercambio catiónico
Aditivo superplastificante
Aminas cuaternarias
Clay
Organoclay
Specific surface area
Cation exchange capacity
Superplasticizer
Quaternary ammonium compounds
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_53b5a5ee29c1c79962756c2a745690e3
oai_identifier_str oai:repositorio.unal.edu.co:unal/81248
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
dc.title.translated.eng.fl_str_mv Evaluation of the effect of the molecular weight of the sacrificial agents in the interaction of the superplasticizer admixtures with the clays present in cement-based mixes
title Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
spellingShingle Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
620 - Ingeniería y operaciones afines
690 - Construcción de edificios::691 - Materiales de construcción
Cement - additives
Cemento - Aditivos
Arcillas
Funcionalización de arcillas
Área superficial específica
Capacidad de intercambio catiónico
Aditivo superplastificante
Aminas cuaternarias
Clay
Organoclay
Specific surface area
Cation exchange capacity
Superplasticizer
Quaternary ammonium compounds
title_short Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
title_full Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
title_fullStr Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
title_full_unstemmed Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
title_sort Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento
dc.creator.fl_str_mv Gómez Alvarez, Ana Cristina
dc.contributor.advisor.none.fl_str_mv Orozco, Carlos Augusto
Tobon, Jorge Ivan
dc.contributor.author.none.fl_str_mv Gómez Alvarez, Ana Cristina
dc.contributor.researchgroup.spa.fl_str_mv Grupo del Cemento y Materiales de Construcción
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
690 - Construcción de edificios::691 - Materiales de construcción
topic 620 - Ingeniería y operaciones afines
690 - Construcción de edificios::691 - Materiales de construcción
Cement - additives
Cemento - Aditivos
Arcillas
Funcionalización de arcillas
Área superficial específica
Capacidad de intercambio catiónico
Aditivo superplastificante
Aminas cuaternarias
Clay
Organoclay
Specific surface area
Cation exchange capacity
Superplasticizer
Quaternary ammonium compounds
dc.subject.lemb.none.fl_str_mv Cement - additives
Cemento - Aditivos
dc.subject.proposal.spa.fl_str_mv Arcillas
Funcionalización de arcillas
Área superficial específica
Capacidad de intercambio catiónico
Aditivo superplastificante
Aminas cuaternarias
dc.subject.proposal.eng.fl_str_mv Clay
Organoclay
Specific surface area
Cation exchange capacity
Superplasticizer
Quaternary ammonium compounds
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-16T16:15:32Z
dc.date.available.none.fl_str_mv 2022-03-16T16:15:32Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81248
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81248
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ramachandran, V.S., Paroli, M., Beaudoin, J., Delgado, A. (2002). Handbook of Thermal Analysis of Construction Materials. New York, USA, Noyes Publication.
Gao, G., Ren, J., Liu, Y., Guo, J., Li, J. (2017). Interaction of polycarboxylate-based superplasticiser with clay in Portland cement systems. Advances in Cement Research, 30(6): 270–276.
Lui, X., Guan, J., Lai, G., Zheng, Y., Wang, Z., Cui, S., Lan, M, Li, H. (2017). Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete. Journal of Industrial and Engineering Chemistry,55, 80–90.
Borralleras, P. (2019). Intercalation mechanism of polycarboxylate-based superplasticizers into montmorillonite clays. (Tesis de doctorado). Universitat Politècnica de Catalunya, Barcelona.
Pansu, M., Gautheyrou, J. (2006). Handbook of Soil Analysis, Mineralogical, organic and Inorganic Methods. Holanda, Springer-Verlag Berlin Heidelberg.
Norvell, K., Stewart. G, Juenger, M., Fowler, D. (2007). Influence of Clays and Clay-Sized Particles on Concrete Performance. Journal of Materials in Civil Engineering, 19 (12), 1053-1059.
Muñoz, F., Tejedor, M., Isabel, M, Anderson, Marc, A., Cramer, S. (2010). Detection of Aggregate Clay Coatings and Impacts on Concrete. ACI Materials Journal, 107 (4), 387-395.
Tugrul, A., Hasdemir, S., Yılmaz, M. (2014). The Effect of Feldspar, Mica and Clay Minerals on Compressive Strength of Mortar. IAEG XII Congress, Engineering Geology for Society and Territory, 5, 93-96
Xu, H., Sun, S., Yu, Q., Wei, J. (2018). Effect of b-cyclodextrin pendant on the dispersion robustness of polycarboxylate superplasticizer toward kaolin. Polymer Composite, 39 (3), 55-761.
Lei, L., Werani, M (2021). Influence of side chain length of MPEG – based polycarboxylate superplasticizers on their resistance towards intercalation into clay structures. Construction and Building Materials, 281,122621.
Lei, L, Plank, J. (2014). A Study on the Impact of Different Clay Minerals on the Dispersing Force of Conventional and Modified Vinyl Ether Based Polycarboxylate Superplasticizers. Cement and Concrete Research, 60,1-10.
Zhao, Q., Choo, H., Bhatt, A., Burns, S., Bate, B. (2017). Review of the fundamental geochemical and physical behaviors of organoclays in barrier applications. Applied Clay Science. 142, 2-20.
Tang, X., Zhao, C., Yang, Y., Dong, Y., Lu, X. (2020). Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: Preparation, performance and mechanism. Construction and Building Materials, 252 (20), 119052.
Ma, Y., Shi, C., Lei, L., Sha, S., Zhou, B., Liu, Y, Xiao, Y. (2020). Research progress on polycarboxylate based superplasticizers with tolerance to clays - A review. Construction and Building Materials, 255, 119386.
Tan, H., Guo, Y., Ma, B., Huang, J., Gu, B., Zou, F. (2018). Effect of Sodium Tripolyphosphate on Clay Tolerance of Polycarboxylate Superplasticizer. KSCE Journal of Civil Engineering, 22, 2934-2941.
Jardine, L., Koyata, H., Folliard, K., Chin Ou, C., Jachimowic, F., Chun, B., Jeknovarian, A. Hill, C. (2003). Admixture for optimizing addition of EO/PO. USA, US 6,670,415 B2, Columbia, Oficina de Patentes y Marcas de Estados Unidos.
Koyata, H., Zhang, S., Chun, B. (2017). Method for modifying clay-activity and enhancing slump retention of hydratable cementitous compositions comprising clay-containing aggregates. Unión Europea EP-2 303 801 B1, Oficina Europea de Patentes.
Jacquet, A., Villard, E., Watt, O. (2007). Method for inerting impurities. US 2007/0287794 A1, Virginia, Oficina de Patentes y Marcas de Estados Unidos.
Kuo, L., Favero, C., Roux, C., Tregger, N. (2015). Functionalized polyamines clay mitigation. US 2015/0065614 A1, Columbia, Oficina de Patentes y Marcas de Estados Unidos.
Bergaya, F., Lagaly, G. (2006). Handbook of Clay Science, Amsterdam, Holanda, Elsevier.
Nehdi, M. (2014). Clay in cement-based materials: Critical overview of state-of-the-art. Construction and Building Materials, 51, 372–382.
Huggett J. M, (2015). Clay Minerals, Reference Module in Earth Systems and Environmental Sciences, Elsevier.
Whitworth, T. (1998) Clay minerals: Ion exchange. In: Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht.
Norma Técnica Colombiana, NTC 5268. Determinación de la capacidad de intercambio catiónico, 2006.
Al Ani, T., Sarapää, O. (2008). Clay and clay mineralogy. Geological Survey of Finland, Report
Betega de Paiva, L., Morales, A., Valenzuela Díaz, F. (2008). Organoclays: Properties, preparation and applications. Applied Clay science. 42 (1-2),8-24.
Puertas, F., Palacios, M., Alonso, M. (2009). Aditivos para el hormigón: compatibilidad cemento-aditivos basados en policarboxilatos. Monografías del Instituto Eduardo Torroja. Madrid, Consejo Superior de Investigaciones Científicas.
Mahmoud, A., Shehab, M., El-Dieb, A. (2010). Concrete mixtures incorporating synthesized sulfonated acetophenone–formaldehyde resin as superplasticizer. Cement and Concrete Composites, 32 (5), 392-397.
Dransfield, J. (2003). Admixtures for concrete, mortar and grout, In Advanced Concrete Technology, Butterworth-Heinemann, Oxford, 3-36.
Sha, S., Wang, M., Shi, C., Xiao, Y. (2020). Influence of the structures of polycarboxylate superplasticizer on its performance in cement-based materials-A review. Construction and Building Materials, 233,117257.
Flatt, R., Schober, I. (2012). Superplasticizers and the rheology of concrete. Understanding the Rheology of Concrete, Cambridge, UK, Woodhead Publishing, 144-208.
Dalas, F., Nonat, A., Pourchet, S., Mosquet, M., Rinaldi, D., Sabio, S . (2015). Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption. Cement and Concrete Research, 67, 21-30.
He, H., Zhou, Q., Martens, W., Kloprogge, T., Yuan, P., Zhu, J., Frost, R. (2006). Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689–696.
Oyanedel-Craver, V., Smith, J.(2006).Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. Journal of Hazardous Materials B137, 1102–1114.
Shah, K., Mishra, M., Shukla, A., Imae, T., Shah, D. (2013). Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of Colloid and Interface Science, 407 (1), 493–499.
Madejova, J., Jankovič, L., Slany, M., Hronsky,V. (2020). Conformation heterogeneity of alkylammonium surfactants self-assembled on montmorillonite: Effect of head-group structure and temperature. Applied Surface Science, 503 (2020) 144125.
Guéran, R. (2019). Organoclay applications and limits in the environment. Comptes Rendus Chimie, 22 (2-3), 132-141.
Chen, X., Guo, Y., Li, B., Zhou, M., Li, B., Liu, Z., Zhou, J. (2020). Coupled effects of the content and methylene blue value (MBV) of microfines on the performance of manufactured sand concrete. Construction and Building Materials, 240, 117953.
Wang, W., Deng, Z., Feng, Z., Lefeng, F., Baicun, Z. (2015). Interaction of Polycarboxylate-based Superplasticizer/Poly (vinyl alcohol) with Bentonite and Its Application in Mortar with Clay-bearing Aggregates. Superplasticizers and other chemical admixtures in concrete. Eleventh International Conference , Ontario, Canada, 333-348.
Fernandes, V., Purnell, P., Still, G., Thomas, T. (2007). The effect of clay content in sands used for cementitious materials in developing countries. Cement and Concrete Research, 37,751–758.
Ng, S., Plank, J. (2012). Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cement and Concrete Research, 42(6), 847–854.
Lei, L., Plank, J. (2012). A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance. Cement and Concrete Research, 42(10), 1299–1306.
Farris, S., Mora, L., Capretti, G., Piergiovanni, L. (2011). Charge density quantification of polyelectrolyte polysaccharides by conductometric titration: an analytical chemistry experiment. Journal of Chemical education, 89,121-124.
EPA Method 415.1. Determination of Total Organic Carbon in Water using Combustion or Oxidation.
ASTM C136 / C136M – 19. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.
ASTM C128/C128M-15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.
ASTM C29/C29M-17. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate.
ASTM C40/C40M-20. Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.
ASTM C117-17. Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.
INV E-235-13. Valor de azul de metileno en agregados finos.
Wang, X ., Wang, H. (2021). Structural Analysis of Interstratified Illite-Smectite by the Rietveld Method. Crystals, 11, 244.
Chipera, S., Bish, D. (2001). Baseline studies of the clay mineral society source clays: Powder X-ray diffraction analyses. Clay and Clay minerals, Vol 49 (5),398-409.
Vaculíková , l., Plevová, E, Vallová, S. Koutník, I .(2011).characterization and differentiation of kaolinites from selected czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geomater., Vol. 8, No. 1 (161), 59–67.
Wilson, M., Wilson, L., Patey, I. (2014). The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay minerals, 49, 147-164.
Weibel, R., Nielsen, M., Therkelsen, J., Jakobsen, F., Bjerager, M., Mørk, F., Mathiesen, A., Hovikoski, J., Pedersen, S., Johannessen, P., Dybkjær, K. (2020). Illite distribution and morphology explaining basinal variations in reservoir properties of Upper Jurassic sandstones, Danish North Sea, Marine and Petroleum Geology,116, 104290.
Giles, C., Smith, D., Huitson, A. (1974). General Treatment and Classification of the Solute Adsorption Isotherm. Journal of Colloid and Interface Science, 47 (3).
Giles, C., MacEwan, T., Nakhwa, S., Smith, D. (1960). Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. Journal of Chemical Society,3973-3993.
Ait-Akbour, R., Boustingorry, P., Leroux., F., Taviot-Guého, C. (2015). Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters on Montmorillonite (Mmt): Effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure. Journal of Colloid and Interface Science, 437,227–234.
Chalghaf, R., Oueslatin, W., Ammar, M., Ben Rhaiem, H., Haj Amara, A. (2013). Effect of temperature and pH value on cation exchange performance of a natural clay for selective (Cu2þ, Co2þ) removal: Equilibrium, sorption and kinetics. Progress in Natural Science: Materials International, 23-35
Caglar, B., Afsin, A., Tabak, A., Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal. 149,242–248.
Cheng, T., Yang, Y., Zhao, Y., Rao, F., Song, S. (2018). Evaluation of exfoliation degree of montmorillonite in aqueous dispersions through turbidity measurement. RSC Adv., 8, 40823-40828.
Li, Z., Jiang, W., Hong, H. (2008). An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite. Spectrochimica Acta Part A 71, 1525–1534.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 101 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.department.spa.fl_str_mv Departamento de Materiales y Minerales
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81248/3/1037583382.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81248/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81248/5/1037583382.2021.pdf.jpg
bitstream.checksum.fl_str_mv 6026ceef752261a9391dd3085eda83bb
8153f7789df02f0a4c9e079953658ab2
057634009424138d66b3bcc979f39ed7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089202057347072
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orozco, Carlos Augustofc5ca014e5c8225d4a8ad2e616f2d0cdTobon, Jorge Ivan1996d7d6cc6113858fc02571855981a1600Gómez Alvarez, Ana Cristina982553400b11b5dc3d666df24c50eb1bGrupo del Cemento y Materiales de Construcción2022-03-16T16:15:32Z2022-03-16T16:15:32Z2021https://repositorio.unal.edu.co/handle/unal/81248Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLa baja compatibilidad entre los aditivos superplastificantes base policarboxilato (PCE) y los agregados con trazas de arcilla, se ha considerado uno de los retos a resolver en la producción de concreto en los últimos años. A partir de una arena natural, se identificaron fases arcillosas tipo caolinita e Illita, mediante ensayos de Difracción de rayos X (DRX) y por tanto se seleccionaron 2 arcillas puras caolinita (KGa-2) e illita-esmectita (ISCz-1) de capacidad de intercambio catiónico (CIC) de 2.75 meq/100 g y de 27.50 meq/100 g respectivamente. Se evaluaron isotermas de adsorción entre la arcilla y el PCE mediante carbono orgánico total (COT) y se cuantificó una adsorción del 99% del aditivo en la arcilla ISCz-1 así como un incremento de la distancia interplanar de la arcilla de 10.68 Å hasta 11.54 Å, lo que sugiere la intercalación del PCE en la arcilla. Para KGa-2, la adsorción del PCE fue 79 % y no presentó cambios en la distancia interplanar, ni variaciones significativas en el área superficial específica debido a que la interacción entre ambas fases fue fundamentalmente física. Como estrategia de mitigación, se emplearon 2 aminas cuaternarias como agentes de sacrificio de diferente peso molecular; bromuro de hexadeciltrimetil amonio (HTB) y bromuro de tetraetil amonio (TTB) variando las proporciones en función de la capacidad de intercambio catiónico de la arcilla. Los cambios en ISCz-1 funcionalizada mostraron una reducción de 76% en el área superficial específica (BET) para 1.0 CIC-HTB y del 21 % a una relación 1.5 CIC-TTB. Los ensayos de mini-slump y reología mostraron que a mayor peso molecular, en especial para HTB, que presenta una cadena unida al átomo de nitrógeno más larga que TTB, puede ocurrir un efecto sinérgico entre el aditivo y la arcilla funcionalizada que aumenta la fluidez del mortero y reduce el esfuerzo de cedencia de la mezcla, así como una disminución del 25 % para HTB y 4% a 28 días para TTB en la resistencia a compresión de los morteros debido a poca adherencia de la arcilla funcionalizada con la pasta y a la alta fluidez que se obtiene en los morteros con la arcilla funcionalizada, específicamente con HTB. (Texto tomado de la fuente)The low compatibility between polycarboxylate-based superplasticizer admixtures and aggregates with traces of clay has been considered one of the challenges in concrete production in recent years. Therefore, kaolinite and illite clay minerals were identified in natural sand by X-ray diffraction (XRD), and two pure clays were selected for the study, kaolinite (KGa-2) and illite (ISCz-1) with cation exchange capacity (CEC) 2.75 meq/100 g y de 27.50 meq/100 g respectively. The adsorption isotherms with PCE using Total organic carbon (TOC) showed 99% adsorption of admixture on ISCz-1 and interplanar spacing increase from 10,68 Å to 11.54 Å, suggesting intercalation between the admixture and the clay. For KGa-2, the PCE adsorption was 79 % and did not change the interplanar spacing or specific surface area associated with physical interaction. A mitigation strategy based on two quaternary ammonium compounds as sacrificial agents with different molecular weight were tested: hexadecyltrimethylammonium bromide (HTB) and tetraethylammonium bromide (TTB) varying their proportions based on the cation exchange capacity of clay. The surface changes on functionalized ISCz-1 showed a reduction of 76 % on the surface area for 1.0 CEC HTB and 22 % for 1.5CEC TTB. The results by mini-slump tests and rheology measurements suggest that with higher molecular weight, in fact for HTB , that has a long chain linked to nitrogen atom, a synergistic effect may occur between the PCE increasing the mortar fluidity and cause a reduction in shear stress. A 25 % compressive strength decreased was measured at 28 days for HTB molecule and 4 % for TTB to low bond functionalized clay-paste and higher slump on functionalized mortar, mainly for HTB.MaestríaMagíster en Ingeniería - Materiales y ProcesosMateriales y MineralesÁrea Curricular de Materiales y Nanotecnologíaxvi, 101 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosDepartamento de Materiales y MineralesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines690 - Construcción de edificios::691 - Materiales de construcciónCement - additivesCemento - AditivosArcillasFuncionalización de arcillasÁrea superficial específicaCapacidad de intercambio catiónicoAditivo superplastificanteAminas cuaternariasClayOrganoclaySpecific surface areaCation exchange capacitySuperplasticizerQuaternary ammonium compoundsEvaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cementoEvaluation of the effect of the molecular weight of the sacrificial agents in the interaction of the superplasticizer admixtures with the clays present in cement-based mixesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRamachandran, V.S., Paroli, M., Beaudoin, J., Delgado, A. (2002). Handbook of Thermal Analysis of Construction Materials. New York, USA, Noyes Publication.Gao, G., Ren, J., Liu, Y., Guo, J., Li, J. (2017). Interaction of polycarboxylate-based superplasticiser with clay in Portland cement systems. Advances in Cement Research, 30(6): 270–276.Lui, X., Guan, J., Lai, G., Zheng, Y., Wang, Z., Cui, S., Lan, M, Li, H. (2017). Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete. Journal of Industrial and Engineering Chemistry,55, 80–90.Borralleras, P. (2019). Intercalation mechanism of polycarboxylate-based superplasticizers into montmorillonite clays. (Tesis de doctorado). Universitat Politècnica de Catalunya, Barcelona.Pansu, M., Gautheyrou, J. (2006). Handbook of Soil Analysis, Mineralogical, organic and Inorganic Methods. Holanda, Springer-Verlag Berlin Heidelberg.Norvell, K., Stewart. G, Juenger, M., Fowler, D. (2007). Influence of Clays and Clay-Sized Particles on Concrete Performance. Journal of Materials in Civil Engineering, 19 (12), 1053-1059.Muñoz, F., Tejedor, M., Isabel, M, Anderson, Marc, A., Cramer, S. (2010). Detection of Aggregate Clay Coatings and Impacts on Concrete. ACI Materials Journal, 107 (4), 387-395.Tugrul, A., Hasdemir, S., Yılmaz, M. (2014). The Effect of Feldspar, Mica and Clay Minerals on Compressive Strength of Mortar. IAEG XII Congress, Engineering Geology for Society and Territory, 5, 93-96Xu, H., Sun, S., Yu, Q., Wei, J. (2018). Effect of b-cyclodextrin pendant on the dispersion robustness of polycarboxylate superplasticizer toward kaolin. Polymer Composite, 39 (3), 55-761.Lei, L., Werani, M (2021). Influence of side chain length of MPEG – based polycarboxylate superplasticizers on their resistance towards intercalation into clay structures. Construction and Building Materials, 281,122621.Lei, L, Plank, J. (2014). A Study on the Impact of Different Clay Minerals on the Dispersing Force of Conventional and Modified Vinyl Ether Based Polycarboxylate Superplasticizers. Cement and Concrete Research, 60,1-10.Zhao, Q., Choo, H., Bhatt, A., Burns, S., Bate, B. (2017). Review of the fundamental geochemical and physical behaviors of organoclays in barrier applications. Applied Clay Science. 142, 2-20.Tang, X., Zhao, C., Yang, Y., Dong, Y., Lu, X. (2020). Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: Preparation, performance and mechanism. Construction and Building Materials, 252 (20), 119052.Ma, Y., Shi, C., Lei, L., Sha, S., Zhou, B., Liu, Y, Xiao, Y. (2020). Research progress on polycarboxylate based superplasticizers with tolerance to clays - A review. Construction and Building Materials, 255, 119386.Tan, H., Guo, Y., Ma, B., Huang, J., Gu, B., Zou, F. (2018). Effect of Sodium Tripolyphosphate on Clay Tolerance of Polycarboxylate Superplasticizer. KSCE Journal of Civil Engineering, 22, 2934-2941.Jardine, L., Koyata, H., Folliard, K., Chin Ou, C., Jachimowic, F., Chun, B., Jeknovarian, A. Hill, C. (2003). Admixture for optimizing addition of EO/PO. USA, US 6,670,415 B2, Columbia, Oficina de Patentes y Marcas de Estados Unidos.Koyata, H., Zhang, S., Chun, B. (2017). Method for modifying clay-activity and enhancing slump retention of hydratable cementitous compositions comprising clay-containing aggregates. Unión Europea EP-2 303 801 B1, Oficina Europea de Patentes.Jacquet, A., Villard, E., Watt, O. (2007). Method for inerting impurities. US 2007/0287794 A1, Virginia, Oficina de Patentes y Marcas de Estados Unidos.Kuo, L., Favero, C., Roux, C., Tregger, N. (2015). Functionalized polyamines clay mitigation. US 2015/0065614 A1, Columbia, Oficina de Patentes y Marcas de Estados Unidos.Bergaya, F., Lagaly, G. (2006). Handbook of Clay Science, Amsterdam, Holanda, Elsevier.Nehdi, M. (2014). Clay in cement-based materials: Critical overview of state-of-the-art. Construction and Building Materials, 51, 372–382.Huggett J. M, (2015). Clay Minerals, Reference Module in Earth Systems and Environmental Sciences, Elsevier.Whitworth, T. (1998) Clay minerals: Ion exchange. In: Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht.Norma Técnica Colombiana, NTC 5268. Determinación de la capacidad de intercambio catiónico, 2006.Al Ani, T., Sarapää, O. (2008). Clay and clay mineralogy. Geological Survey of Finland, ReportBetega de Paiva, L., Morales, A., Valenzuela Díaz, F. (2008). Organoclays: Properties, preparation and applications. Applied Clay science. 42 (1-2),8-24.Puertas, F., Palacios, M., Alonso, M. (2009). Aditivos para el hormigón: compatibilidad cemento-aditivos basados en policarboxilatos. Monografías del Instituto Eduardo Torroja. Madrid, Consejo Superior de Investigaciones Científicas.Mahmoud, A., Shehab, M., El-Dieb, A. (2010). Concrete mixtures incorporating synthesized sulfonated acetophenone–formaldehyde resin as superplasticizer. Cement and Concrete Composites, 32 (5), 392-397.Dransfield, J. (2003). Admixtures for concrete, mortar and grout, In Advanced Concrete Technology, Butterworth-Heinemann, Oxford, 3-36.Sha, S., Wang, M., Shi, C., Xiao, Y. (2020). Influence of the structures of polycarboxylate superplasticizer on its performance in cement-based materials-A review. Construction and Building Materials, 233,117257.Flatt, R., Schober, I. (2012). Superplasticizers and the rheology of concrete. Understanding the Rheology of Concrete, Cambridge, UK, Woodhead Publishing, 144-208.Dalas, F., Nonat, A., Pourchet, S., Mosquet, M., Rinaldi, D., Sabio, S . (2015). Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption. Cement and Concrete Research, 67, 21-30.He, H., Zhou, Q., Martens, W., Kloprogge, T., Yuan, P., Zhu, J., Frost, R. (2006). Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689–696.Oyanedel-Craver, V., Smith, J.(2006).Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. Journal of Hazardous Materials B137, 1102–1114.Shah, K., Mishra, M., Shukla, A., Imae, T., Shah, D. (2013). Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of Colloid and Interface Science, 407 (1), 493–499.Madejova, J., Jankovič, L., Slany, M., Hronsky,V. (2020). Conformation heterogeneity of alkylammonium surfactants self-assembled on montmorillonite: Effect of head-group structure and temperature. Applied Surface Science, 503 (2020) 144125.Guéran, R. (2019). Organoclay applications and limits in the environment. Comptes Rendus Chimie, 22 (2-3), 132-141.Chen, X., Guo, Y., Li, B., Zhou, M., Li, B., Liu, Z., Zhou, J. (2020). Coupled effects of the content and methylene blue value (MBV) of microfines on the performance of manufactured sand concrete. Construction and Building Materials, 240, 117953.Wang, W., Deng, Z., Feng, Z., Lefeng, F., Baicun, Z. (2015). Interaction of Polycarboxylate-based Superplasticizer/Poly (vinyl alcohol) with Bentonite and Its Application in Mortar with Clay-bearing Aggregates. Superplasticizers and other chemical admixtures in concrete. Eleventh International Conference , Ontario, Canada, 333-348.Fernandes, V., Purnell, P., Still, G., Thomas, T. (2007). The effect of clay content in sands used for cementitious materials in developing countries. Cement and Concrete Research, 37,751–758.Ng, S., Plank, J. (2012). Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cement and Concrete Research, 42(6), 847–854.Lei, L., Plank, J. (2012). A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance. Cement and Concrete Research, 42(10), 1299–1306.Farris, S., Mora, L., Capretti, G., Piergiovanni, L. (2011). Charge density quantification of polyelectrolyte polysaccharides by conductometric titration: an analytical chemistry experiment. Journal of Chemical education, 89,121-124.EPA Method 415.1. Determination of Total Organic Carbon in Water using Combustion or Oxidation.ASTM C136 / C136M – 19. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.ASTM C128/C128M-15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.ASTM C29/C29M-17. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate.ASTM C40/C40M-20. Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.ASTM C117-17. Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.INV E-235-13. Valor de azul de metileno en agregados finos.Wang, X ., Wang, H. (2021). Structural Analysis of Interstratified Illite-Smectite by the Rietveld Method. Crystals, 11, 244.Chipera, S., Bish, D. (2001). Baseline studies of the clay mineral society source clays: Powder X-ray diffraction analyses. Clay and Clay minerals, Vol 49 (5),398-409.Vaculíková , l., Plevová, E, Vallová, S. Koutník, I .(2011).characterization and differentiation of kaolinites from selected czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geomater., Vol. 8, No. 1 (161), 59–67.Wilson, M., Wilson, L., Patey, I. (2014). The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay minerals, 49, 147-164.Weibel, R., Nielsen, M., Therkelsen, J., Jakobsen, F., Bjerager, M., Mørk, F., Mathiesen, A., Hovikoski, J., Pedersen, S., Johannessen, P., Dybkjær, K. (2020). Illite distribution and morphology explaining basinal variations in reservoir properties of Upper Jurassic sandstones, Danish North Sea, Marine and Petroleum Geology,116, 104290.Giles, C., Smith, D., Huitson, A. (1974). General Treatment and Classification of the Solute Adsorption Isotherm. Journal of Colloid and Interface Science, 47 (3).Giles, C., MacEwan, T., Nakhwa, S., Smith, D. (1960). Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. Journal of Chemical Society,3973-3993.Ait-Akbour, R., Boustingorry, P., Leroux., F., Taviot-Guého, C. (2015). Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters on Montmorillonite (Mmt): Effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure. Journal of Colloid and Interface Science, 437,227–234.Chalghaf, R., Oueslatin, W., Ammar, M., Ben Rhaiem, H., Haj Amara, A. (2013). Effect of temperature and pH value on cation exchange performance of a natural clay for selective (Cu2þ, Co2þ) removal: Equilibrium, sorption and kinetics. Progress in Natural Science: Materials International, 23-35Caglar, B., Afsin, A., Tabak, A., Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal. 149,242–248.Cheng, T., Yang, Y., Zhao, Y., Rao, F., Song, S. (2018). Evaluation of exfoliation degree of montmorillonite in aqueous dispersions through turbidity measurement. RSC Adv., 8, 40823-40828.Li, Z., Jiang, W., Hong, H. (2008). An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite. Spectrochimica Acta Part A 71, 1525–1534.EstudiantesInvestigadoresORIGINAL1037583382.2021.pdf1037583382.2021.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf3218028https://repositorio.unal.edu.co/bitstream/unal/81248/3/1037583382.2021.pdf6026ceef752261a9391dd3085eda83bbMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81248/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1037583382.2021.pdf.jpg1037583382.2021.pdf.jpgGenerated Thumbnailimage/jpeg4495https://repositorio.unal.edu.co/bitstream/unal/81248/5/1037583382.2021.pdf.jpg057634009424138d66b3bcc979f39ed7MD55unal/81248oai:repositorio.unal.edu.co:unal/812482023-10-20 20:59:07.191Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK