Human Activity Recognition using deep learning techniques
Human activity recognition (HAR) is at the forefront of Pervasive Computing efforts, and deep learning techniques currently empower the most successful endeavors within the field. By using a publicly available dataset an exploratory analysis of feature learning is put forward in this work. The convo...
- Autores:
-
Gómez Meneses, Fabián Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/69588
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/69588
http://bdigital.unal.edu.co/71559/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
62 Ingeniería y operaciones afines / Engineering
Machine learning
Deep learning
Human behavior
Neural networks
Pervasive computing
Aprendizaje de máquina
Aprendizaje profundo
Comportamiento humano
Redes neuronales
Computación ubicua
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_52f3a8f7cb7b4b74aadb392a4901eb86 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/69588 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio AugustoGómez Meneses, Fabián Andrés0adba69c-1aeb-49ff-abed-1150431b77f43002019-07-03T10:29:57Z2019-07-03T10:29:57Z2018-10-10https://repositorio.unal.edu.co/handle/unal/69588http://bdigital.unal.edu.co/71559/Human activity recognition (HAR) is at the forefront of Pervasive Computing efforts, and deep learning techniques currently empower the most successful endeavors within the field. By using a publicly available dataset an exploratory analysis of feature learning is put forward in this work. The convolutional neural network deployed here highlights both the advantages and limitations of this class of models, while offering an overview of machine learning-aided human behavior analysis. Furthermore, the exploration includes an experimental comparison with a more traditional SVM model with feature engineering, over the same data.Resumen: El reconocimiento de la Actividad Humana (HAR) está a la vanguardia de los esfuerzos de computación, y las técnicas de aprendizaje profundo actualmente empoderan los esfuerzos más exitosos dentro del campo. Al utilizar un conjunto de datos disponible públicamente. En este trabajo se presenta un análisis exploratorio del aprendizaje de características de la red neuronal convolucional y se destaca tanto las ventajas como las limitaciones de esta clase de modelos, al tiempo que ofrece una visión general de aprendizaje asistido por máquina y análisis del comportamiento humano. Además, la exploración incluye una comparación experimental. con un modelo SVM más tradicional con ingeniería sobre los mismos datos.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasGómez Meneses, Fabián Andrés (2018) Human Activity Recognition using deep learning techniques. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.0 Generalidades / Computer science, information and general works62 Ingeniería y operaciones afines / EngineeringMachine learningDeep learningHuman behaviorNeural networksPervasive computingAprendizaje de máquinaAprendizaje profundoComportamiento humanoRedes neuronalesComputación ubicuaHuman Activity Recognition using deep learning techniquesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALFabianGomez.2018.pdfapplication/pdf792744https://repositorio.unal.edu.co/bitstream/unal/69588/1/FabianGomez.2018.pdf5f66d3861955846845cb774c5fdc1e81MD51THUMBNAILFabianGomez.2018.pdf.jpgFabianGomez.2018.pdf.jpgGenerated Thumbnailimage/jpeg2580https://repositorio.unal.edu.co/bitstream/unal/69588/2/FabianGomez.2018.pdf.jpg595bc0f299371c7a4ed679cdcae7c3fdMD52unal/69588oai:repositorio.unal.edu.co:unal/695882023-06-09 23:03:22.951Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Human Activity Recognition using deep learning techniques |
title |
Human Activity Recognition using deep learning techniques |
spellingShingle |
Human Activity Recognition using deep learning techniques 0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering Machine learning Deep learning Human behavior Neural networks Pervasive computing Aprendizaje de máquina Aprendizaje profundo Comportamiento humano Redes neuronales Computación ubicua |
title_short |
Human Activity Recognition using deep learning techniques |
title_full |
Human Activity Recognition using deep learning techniques |
title_fullStr |
Human Activity Recognition using deep learning techniques |
title_full_unstemmed |
Human Activity Recognition using deep learning techniques |
title_sort |
Human Activity Recognition using deep learning techniques |
dc.creator.fl_str_mv |
Gómez Meneses, Fabián Andrés |
dc.contributor.author.spa.fl_str_mv |
Gómez Meneses, Fabián Andrés |
dc.contributor.spa.fl_str_mv |
González Osorio, Fabio Augusto |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering |
topic |
0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering Machine learning Deep learning Human behavior Neural networks Pervasive computing Aprendizaje de máquina Aprendizaje profundo Comportamiento humano Redes neuronales Computación ubicua |
dc.subject.proposal.spa.fl_str_mv |
Machine learning Deep learning Human behavior Neural networks Pervasive computing Aprendizaje de máquina Aprendizaje profundo Comportamiento humano Redes neuronales Computación ubicua |
description |
Human activity recognition (HAR) is at the forefront of Pervasive Computing efforts, and deep learning techniques currently empower the most successful endeavors within the field. By using a publicly available dataset an exploratory analysis of feature learning is put forward in this work. The convolutional neural network deployed here highlights both the advantages and limitations of this class of models, while offering an overview of machine learning-aided human behavior analysis. Furthermore, the exploration includes an experimental comparison with a more traditional SVM model with feature engineering, over the same data. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-10-10 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T10:29:57Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T10:29:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/69588 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/71559/ |
url |
https://repositorio.unal.edu.co/handle/unal/69588 http://bdigital.unal.edu.co/71559/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Gómez Meneses, Fabián Andrés (2018) Human Activity Recognition using deep learning techniques. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/69588/1/FabianGomez.2018.pdf https://repositorio.unal.edu.co/bitstream/unal/69588/2/FabianGomez.2018.pdf.jpg |
bitstream.checksum.fl_str_mv |
5f66d3861955846845cb774c5fdc1e81 595bc0f299371c7a4ed679cdcae7c3fd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089968835887104 |