Biomechanical factors associated with glaucomatous optic neuropathy

ilustraciones, diagramas

Autores:
Muñoz Sarmiento, Diana Marcela
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86971
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86971
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
Enfermedades del Nervio Óptico
Hipertensión Ocular
Presión del Líquido Cefalorraquídeo
Movimientos Oculares
Disco Óptico
Optic Nerve Diseases
Ocular Hypertension
Cerebrospinal Fluid Pressure
Eye Movements
Optic Disk
Glaucoma
Presión intraocular
Presión de líquido cefalorraquídeo
Espacio subaracnoideo
Movimientos oculares horizontales
Cabeza del nervio óptico
Biomecánica
Glaucoma
Intraocular pressure
Cerebrospinal fluid pressure
Subarachnoid space
Horizontal eye movements
Optic nerve head
Biomechanics
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_52c5ec830d10a4073541e8b56b5d065d
oai_identifier_str oai:repositorio.unal.edu.co:unal/86971
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Biomechanical factors associated with glaucomatous optic neuropathy
dc.title.translated.spa.fl_str_mv Factores biomecánicos asociados a la neuropatía óptica glaucomatosa
title Biomechanical factors associated with glaucomatous optic neuropathy
spellingShingle Biomechanical factors associated with glaucomatous optic neuropathy
610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
Enfermedades del Nervio Óptico
Hipertensión Ocular
Presión del Líquido Cefalorraquídeo
Movimientos Oculares
Disco Óptico
Optic Nerve Diseases
Ocular Hypertension
Cerebrospinal Fluid Pressure
Eye Movements
Optic Disk
Glaucoma
Presión intraocular
Presión de líquido cefalorraquídeo
Espacio subaracnoideo
Movimientos oculares horizontales
Cabeza del nervio óptico
Biomecánica
Glaucoma
Intraocular pressure
Cerebrospinal fluid pressure
Subarachnoid space
Horizontal eye movements
Optic nerve head
Biomechanics
title_short Biomechanical factors associated with glaucomatous optic neuropathy
title_full Biomechanical factors associated with glaucomatous optic neuropathy
title_fullStr Biomechanical factors associated with glaucomatous optic neuropathy
title_full_unstemmed Biomechanical factors associated with glaucomatous optic neuropathy
title_sort Biomechanical factors associated with glaucomatous optic neuropathy
dc.creator.fl_str_mv Muñoz Sarmiento, Diana Marcela
dc.contributor.advisor.spa.fl_str_mv Cortés Rodríguez, Carlos Julio
Rodríguez Montaño, Óscar Libardo
dc.contributor.author.spa.fl_str_mv Muñoz Sarmiento, Diana Marcela
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb
dc.contributor.orcid.spa.fl_str_mv Muñoz Sarmiento, Diana Marcela [0000000150620257]
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001354493
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
topic 610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
Enfermedades del Nervio Óptico
Hipertensión Ocular
Presión del Líquido Cefalorraquídeo
Movimientos Oculares
Disco Óptico
Optic Nerve Diseases
Ocular Hypertension
Cerebrospinal Fluid Pressure
Eye Movements
Optic Disk
Glaucoma
Presión intraocular
Presión de líquido cefalorraquídeo
Espacio subaracnoideo
Movimientos oculares horizontales
Cabeza del nervio óptico
Biomecánica
Glaucoma
Intraocular pressure
Cerebrospinal fluid pressure
Subarachnoid space
Horizontal eye movements
Optic nerve head
Biomechanics
dc.subject.decs.spa.fl_str_mv Enfermedades del Nervio Óptico
Hipertensión Ocular
Presión del Líquido Cefalorraquídeo
Movimientos Oculares
Disco Óptico
dc.subject.decs.eng.fl_str_mv Optic Nerve Diseases
Ocular Hypertension
Cerebrospinal Fluid Pressure
Eye Movements
Optic Disk
dc.subject.proposal.spa.fl_str_mv Glaucoma
Presión intraocular
Presión de líquido cefalorraquídeo
Espacio subaracnoideo
Movimientos oculares horizontales
Cabeza del nervio óptico
Biomecánica
dc.subject.proposal.eng.fl_str_mv Glaucoma
Intraocular pressure
Cerebrospinal fluid pressure
Subarachnoid space
Horizontal eye movements
Optic nerve head
Biomechanics
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-16T13:31:06Z
dc.date.available.none.fl_str_mv 2024-10-16T13:31:06Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86971
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86971
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–8.
2. Nakazawa T, Fukuchi T. What is glaucomatous optic neuropathy? Jpn J Ophthalmol. 2020;64(3):243–9.
3. Cesareo M, Ciuffoletti E, Ricci F, Missiroli F, Giuliano MA, Mancino R, et al. Visual disability and quality of life in glaucoma patients. Prog Brain Res. 2015;221:359–74.
4. Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N. The diagnosis and treatment of glaucoma. Dtsch Arztebl Int. 2020 Mar 27;117(13):225–34.
5. Lin Y, Jiang B, Cai Y, Luo W, Zhu X, Lin Q, et al. The Global Burden of Glaucoma: Findings from the Global Burden of Disease 2019 Study and Predictions by Bayesian Age–Period–Cohort Analysis. J Clin Med. 2023 Mar 1;12(5):1323. doi:10.3390/jcm12051323.
6. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014 Nov 1;121(11):2081–90.
7. McMonnies CW. Glaucoma history and risk factors. J Optom. 2017 Apr;10(2):71–8. doi: 10.1016/j.optom.2016.12.003.
8. Arenas-Archila E, Arellano K, Muñoz-Sarmiento D. Intra-lesional injection of betamethasone for the treatment of symptomatic pinguecula. Arch Soc Esp Oftalmol. 2014;89(10):408–10. doi: 10.1016/j.oftal.2014.07.002.
9. Arenas E, Muñoz D. A new surgical approach for the treatment of conjunctivochalasis: reduction of the conjunctival fold with bipolar electrocautery forceps. Sci World J. 2016;2016:1–6. doi:10.1155/2016/8435910.
10. Arenas-Archila E, Alvizu F, Muñoz-Sarmiento D. Preauricular injection of betamethasone depot and acyclovir for the treatment of acute herpes zoster ophthalmicus. Arch Soc Esp Oftalmol. 2015;90(4):195–7. doi:10.1016/j.oftal.2014.10.011.
11. Arenas E, Muñoz D, Matheus E, Morales D. Nasopupillary asymmetry. ScientificWorldJournal. 2014;2014:347826. doi:10.1155/2014/347826. Epub 2014 Dec 4. PMID: 25544953; PMCID: PMC4269086.
12. Arenas E, Mieth A, Muñoz D. Combined intrastromal injection of ganciclovir and depot betamethasone for the management of nummular keratitis: Case series. Arch Soc Esp Oftalmol. 2019;94(1):45–9. doi: 10.1016/j.oftal.2018.09.009.
13. Kim YW, Girard MJ, Mari JM, Jeoung JW. Anterior displacement of lamina cribrosa during Valsalva maneuver in young healthy eyes. PLoS One. 2016;11(7). doi:10.1371/journal.pone.0159663.
14. Ma Y, Pavlatos E, Clayson K, Pan X, Kwok S, Sandwisch T, Liu J. Mechanical deformation of human optic nerve head and peripapillary tissue in response to acute IOP elevation. Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):913-920. doi:10.1167/iovs.18-26071. PMID: 30835783; PMCID: PMC6402264.
15. Reis AS, O'Leary N, Stanfield MJ, Shuba LM, Nicolela MT, Chauhan BC. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(9):5819-5826. doi:10.1167/iovs.12-9924.
16. Wang X, Rumpe H, Lim WEH, Baskaran M, Perera SA, Nongpiur ME, et al. Finite element analysis predicts large optic nerve head strains during horizontal eye movements. Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2452–62.
17. Uzun C, Atman ED, Ustuner E, Mirjalili SA, Oztuna D, Esmer TS. Surface anatomy and anatomical planes in the adult Turkish population. Clin Anat. 2016;29(2):183-190. doi:10.1002/ca.22634.
18. Muñoz-Sarmiento DM, Rodríguez-Montaño ÓL, Alarcón-Castiblanco JD, Gamboa-Márquez MA, Corredor-Gómez JP, Cortés-Rodríguez CJ. A finite element study of posterior eye biomechanics: The influence of intraocular and cerebrospinal pressure on the optic nerve head, peripapillary region, subarachnoid space, and meninges. Inform Med Unlocked. 2019 Jan;15:100185. doi: 10.1016/j.imu.2018.100185.
19. Issarti I, Koppen C, Rozema JJ. Influence of the eye globe design on biomechanical analysis. Comput Biol Med. 2021 Aug 1;135.
20. Niemeyer F, Wilke HJ, Schmidt H. Geometry strongly influences the response of numerical models of the lumbar spine-A probabilistic finite element analysis. J Biomech. 2012 May 11;45(8):1414–23.
21. Haider IT, Schneider P, Michalski A, Edwards WB. Influence of geometry on proximal femoral shaft strains: Implications for atypical femoral fracture. Bone. 2018;110:295-303. doi:10.1016/j.bone.2018.02.015.
22. Shafique S, Rayi A. Anatomy, Head and Neck, Subarachnoid Space. StatPearls [Internet]. 2022 [cited 2022 Sep 30]; Available from: https://pubmed.ncbi.nlm.nih.gov/32491453/
23. Muñoz Sarmiento DM, Rodríguez Montaño ÓL, Alarcón Castiblancoa JD, Cortés Rodríguez CJ. The impact of horizontal eye movements versus intraocular pressure on optic nerve head biomechanics: A tridimensional finite element analysis study. Heliyon. 2023;9(2). doi:10.1016/j.heliyon.2023.e13634.
24. Chen K, Rowley AP, Weiland JD, Humayun MS. Elastic properties of human posterior eye. J Biomed Mater Res A. 2014;102(6):2001-2007. doi:10.1002/jbm.a.34858.
25. MacManus DB, Pierrat B, Murphy JG, Gilchrist MD. Region and species dependent mechanical properties of adolescent and young adult brain tissue. Sci Rep. 2017;7(1):13729. doi:10.1038/s41598-017-13727-z.
26. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189–99. doi: 10.1167/iovs.04-0700. 27.
27. Hua Y, Voorhees AP, Sigal IA. Cerebrospinal fluid pressure: Revisiting factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):154–65.
28. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004;45(12):4378-4387. doi:10.1167/iovs.04-0133.
29. Tripathi RC, Tripathi BJ, Haggerty C. Drug-Induced Glaucomas Mechanism and Management. Vol. 26, Drug Safety. 2003.
30. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Vol. 390, The Lancet. Lancet Publishing Group; 2017. p. 2183–93.
31. Wax MB, Tezel G, Edward PD. Clinical and ocular histopathological findings in a patient with normal-pressure glaucoma. Arch Ophthalmol. 1998;116(8):993-1001. doi:10.1001/archopht.116.8.993.
32. Guo L, Normando EM, Nizari S, Lara D, Francesca Cordeiro M. Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6504–13.
33. Lei Y, Garrahan N, Hermann B, Becker DL, Hernandez MR, Boulton ME, et al. Quantification of retinal transneuronal degeneration in human glaucoma: A novel multiphoton-DAPI approach. Invest Ophthalmol Vis Sci. 2008 Apr;49(5):1940–5.
34. Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res. 2007;26(1):38-56. doi:10.1016/j.preteyeres.2006.10.001
35. Michelson G, Wärntges S, Engelhorn T, El-Rafei A, Hornegger J, Dörfler A. Integrität/Demyelinisierung der Radiatio optica, Morphologie der Papille und Kontrastsensitivität bei Glaukompatienten. Klin Monbl Augenheilkd. 2012;229(2):143–8.
36. Haykal S, Invernizzi A, Carvalho J, Jansonius NM, Cornelissen FW. Microstructural Visual Pathway White Matter Alterations in Primary Open-Angle Glaucoma: A Neurite Orientation Dispersion and Density Imaging Study. American Journal of Neuroradiology. 2022 May 1;43(5):756–63.
37. Colbert MK, Ho LC, van der Merwe Y, Yang X, McLellan GJ, Hurley SA, et al. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Invest Ophthalmol Vis Sci. 2021;62(10):21. doi:10.1167/iovs.62.10.21.
38. Flammer J, Ul SO, Costa VP, Orzalesi N, Unter G, Krieglstein K, et al. The impact of ocular blood flow in glaucoma. Vol. 21, Progress in Retinal and Eye Research. 2002.
39. Fahy ET, Chrysostomou V, Crowston JG. Impaired axonal transport and glaucoma. Curr Eye Res. 2015;40(9):933–42. doi:10.3109/02713683.2015.1003082.
40. Strouthidis NG, Girard MJA. Altering the way the optic nerve head responds to intraocular pressure - A potential approach to glaucoma therapy. Vol. 13, Current Opinion in Pharmacology. Elsevier Ltd; 2013. p. 83–9.
41. McMonnies C. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J Optom. 2018 Jan;11(1):3–9. doi: 10.1016/j.optom.2017.10.002.
42. Leske MC. Ocular perfusion pressure and glaucoma: Clinical trial and epidemiologic findings. Vol. 20, Current Opinion in Ophthalmology. 2009. p. 73–8.
43. Portmann N, Gugleta K, Kochkorov A, Polunina A, Flammer J, Orgul S. Choroidal blood flow response to isometric exercise in glaucoma patients and patients with ocular hypertension. Invest Ophthalmol Vis Sci. 2011 Sep;52(10):7068–73.
44. Fan N, Wang P, Tang L, Liu X. Ocular blood flow and normal tension glaucoma. Biomed Res Int. 2015;2015:508792. doi: 10.1155/2015/508792.
45. Harris A, Sergott RC, Spaeth GL, Katz JL, Shoemaker JA, Martin BJ. Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol. 1994;118(5):642–9.
46. Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16(2):79–83. doi:10.1097/01.icu.0000156134.38495.0b.
47. Song X, Li P, Li Y, Yan X, Yuan L, Zhao C, et al. Strong association of glaucoma with atherosclerosis. Sci Rep. 2021 Dec 1;11(1).
48. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107(7):1287-1293. doi:10.1016/s0161-6420(00)00138-x.
49. Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. 2020 Nov 24;12(11):e11686. doi: 10.7759/cureus.11686. PMID: 33391921; PMCID: PMC7769798.
50. Schuster AK, Wagner FM, Pfeiffer N, Hoffmann EM. Risk factors for open-angle glaucoma and recommendations for glaucoma screening. Vol. 118, Ophthalmologe. Springer Medizin; 2021. p. 145–52.
51. Crabb DP, Smith ND, Glen FC, Burton R, Garway-Heath DF. How does glaucoma look?: Patient perception of visual field loss. Ophthalmology. 2013 Jun;120(6):1120–6.
52. Hoste AM. New insights into the subjective perception of visual field defects. Bull Soc Belge Ophtalmol. 2003;(287):65-71.
53. Bertaud S, Aragno V, Baudouin C, Labbé A. Primary open-angle glaucoma. Vol. 40, Revue de Medecine Interne. Elsevier Masson SAS; 2019. p. 445–52.
54. Patel K, Patel S. Angle-closure glaucoma. Vol. 60, Disease-a-Month. Mosby Inc.; 2014. p. 254–62.
55. Flores-Sánchez BC, Tatham AJ. Acute angle closure glaucoma. Br J Hosp Med (Lond). 2019;80(12):C174-C179. doi:10.12968/hmed.2019.80.12.C174
56. Goldmann H, Graefe V. Albrecht yon Graefe und das Glaukom. Vol. 181, Graefes Arch. klin. exp. Ophthal. Springer Verlag; 1971.
57. Esporcatte BLB, Tavares IM. Normal-tension glaucoma: An update. Vol. 79, Arquivos Brasileiros de Oftalmologia. Conselho Brasileiro De Oftalmologia; 2016. p. 270–6.
58. Zhang HJ, Mi XS, So KF. Normal tension glaucoma: From the brain to the eye or the inverse? Vol. 14, Neural Regeneration Research. Wolters Kluwer Medknow Publications; 2019. p. 1845–50.
59. Killer HE, Pircher A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye (Basingstoke). 2018;32(6):924–30. doi: 10.1038/s41433-018-0049-y.
60. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal Fluid Pressure in Glaucoma. A Prospective Study. Ophthalmology. 2010 Feb;117(2):259–66.
61. Boye D, Montali M, Miller NR, Pircher A, Gruber P, Killer HE, et al. Flow dynamics of cerebrospinal fluid between the intracranial cavity and the subarachnoid space of the optic nerve measured with a diffusion magnetic resonance imaging sequence in patients with normal tension glaucoma. Clin Exp Ophthalmol. 2018 Jul 1;46(5):511–8.
62. Wang N, Yang D, Jonas JB. Low cerebrospinal fluid pressure in the pathogenesis of primary open-angle glaucoma: epiphenomenon or causal relationship? The Beijing Intracranial and Intraocular Pressure (iCOP) study. J Glaucoma. 2013;22 Suppl 5. doi:10.1097/IJG.0b013e31829349a2.
63. Shields MB. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol. 2008;19(2):85-88. doi:10.1097/ICU.0b013e3282f3919b.
64. Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126(4):498–505. doi:10.1016/S0002-9394(98)00272-4.
65. Danias J, Podos SM, Anderson DR, Drance SM, Schulzer M, Leske MC, et al. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1999;127(5):623–5.
66. McMonnies CW. History of glaucoma and risk factors. J Optom. 2017;10(2):71–8.
67. Ocular Hypertension Treatment Study Group; European Glaucoma Prevention Study Group, Gordon MO, et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114(1):10-19. doi:10.1016/j.ophtha.2006.08.031.
68. Song BJ, Aiello LP, Pasquale LR. Presence and risk factors for glaucoma in patients with diabetes. Curr Diab Rep. 2016;16(9):79.
69. Musch DC, Gillespie BW, Niziol LM, Lichter PR, Varma R. Intraocular pressure control and long-term visual field loss in the collaborative initial glaucoma treatment study. Ophthalmology. 2011 Sep;118(9):1766–73.
70. Guo ZZ, Chang K, Wei X. Intraocular pressure fluctuation and the risk of glaucomatous damage deterioration: A meta-analysis. Int J Ophthalmol. 2019 Jan 1;12(1):123–8.
71. Caprioli J, Coleman AL. Intraocular Pressure Fluctuation. A Risk Factor for Visual Field Progression at Low Intraocular Pressures in the Advanced Glaucoma Intervention Study. Ophthalmology. 2008;115(7).
72. Kim JH, Caprioli J. Intraocular pressure fluctuation: Is it important? Vol. 13, Journal of Ophthalmic and Vision Research. Wolters Kluwer Medknow Publications; 2018. p. 170–4.
73. Crawford Downs J, Burgoyne CF, Seigfreid WP, Reynaud JF, Strouthidis NG, Sallee V. 24-hour IOP telemetry in the nonhuman primate: Implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci. 2011 Sep;52(10):7365–75.
74. Burgoyne CF, Crawford Downs J, Bellezza AJ, Francis Suh JK, Hart RT. The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Vol. 24, Progress in Retinal and Eye Research. 2005. p. 39–73.
75. Medical Advisory Secretariat. Diurnal tension curves for assessing the development or progression of glaucoma: an evidence-based analysis. Ont Health Technol Assess Ser. 2011;11(2):1-40. Epub 2011 Jun 1. PMID: 23074414; PMCID: PMC3377558.
76. Tojo N, Abe S, Miyakoshi M, Hayashi A. Correlation between short-term and long-term intraocular pressure fluctuation in glaucoma patients. Clin Ophthalmol. 2016;10:1713–7.
77. Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004 Sep;111(9):1627–35.
78. Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK. Visual Field Progression in the Collaborative Initial Glaucoma Treatment Study. The Impact of Treatment and Other Baseline Factors. Ophthalmology. 2009;116(2).
79. Musch DC, Gillespie BW, Palmberg PF, Spaeth G, Niziol LM, Lichter PR. Visual field improvement in the Collaborative Initial Glaucoma Treatment Study. Am J Ophthalmol. 2014;158(1):96-104.e2. doi:10.1016/j.ajo.2014.04.003.
80. Knier CG, Fleischman D, Hodge DO, Berdahl JP, Fautsch MP. Three-Decade Evaluation of Cerebrospinal Fluid Pressure in Open-Angle Glaucoma at a Tertiary Care Center. J Ophthalmol. 2020;2020.
81. Siaudvytyte L, Januleviciene I, Ragauskas A, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360. doi:10.1155/2014/937360.
82. Fleischman D, Berdahl JP, Zaydlarova J, Stinnett S, Fautsch MP, Allingham RR. Cerebrospinal Fluid Pressure Decreases with Older Age. PLoS One. 2012 Dec 29;7(12).
83. Jonas JB, Wang NL, Wang YX, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma: The Beijing Eye Study 2011. Acta Ophthalmol. 2015;93(1). doi:10.1111/aos.12480.
84. Berdahl JP, Ferguson TJ, Samuelson TW. Periodic normalization of the translaminar pressure gradient prevents glaucomatous damage. Med Hypotheses. 2020;144:109935.
85. Skrzypecki J, Ufnal M. The Upright Body Position Increases Translaminar Pressure Gradient in Normotensive and Hypertensive Rats. Curr Eye Res. 2017 Dec 2;42(12):1634–7.
86. Jasien J V., Samuels BC, Johnston JM, Downs JC. Effect of body position on intraocular pressure (IOP), intracranial pressure (ICP), and translaminar pressure (TLP) via continuous wireless telemetry in nonhuman primates (NHPs). Invest Ophthalmol Vis Sci. 2020 Oct 1;61(12).
87. Siaudvytyte L, Januleviciene I, Daveckaite A, Ragauskas A, Bartusis L, Kucinoviene J, et al. Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma. Eye (Basingstoke). 2015 Oct 1;29(10):1242–50.
88. Jonas JB, Wang NL, Wang YX, You QS, Xie X Bin, Yang DY, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmol. 2015 Feb 1;93(1):e7–13.
89. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259-266. doi:10.1016/j.ophtha.2009.06.058.
90. Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The Central India Eye and Medical Study. PLoS One. 2013 Dec 6;8(12).
91. Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493–510.
92. Heijl A, Bengtsson B, Oskarsdottir SE. Prevalence and severity of undetected manifest glaucoma: Results from the early manifest glaucoma trial screening. Ophthalmology. 2013 Aug;120(8):1541–5.
93. Boodhna T, Crabb DP. Disease severity in newly diagnosed glaucoma patients with visual field loss: Trends from more than a decade of data. Ophthalmic and Physiological Optics. 2015 Mar 1;35(2):225–30.
94. Hu CX, Zangalli C, Hsieh M, Gupta L, Williams AL, Richman J, et al. What Do Patients With Glaucoma See? Visual Symptoms Reported by Patients With Glaucoma. Am J Med Sci. 2014;348(5):403-409. doi:10.1097/MAJ.0000000000000319.
95. Niwa Y, Muraki S, Naito F, Minamikawa T, Ohji M. Evaluation of acquired color vision deficiency in glaucoma using the Rabin cone contrast test. Invest Ophthalmol Vis Sci. 2014;55(10):6686–90.
96. Sample PA, Weinreb RN. Color perimetry for assessment of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1990;31(9):1869–75.
97. Hagiwara Y, Koh JEW, Tan JH, et al. Computer-aided diagnosis of glaucoma using fundus images: A review. Comput Methods Programs Biomed. 2018;165:1-12. doi:10.1016/j.cmpb.2018.07.012.
98. Jayaram H. Intraocular pressure reduction in glaucoma: Does every mmHg count?. Taiwan J Ophthalmol. 2020;10(4):255-258. Published 2020 Oct 21. doi:10.4103/tjo.tjo_63_20.
99. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429-440. doi:10.1016/s0002-9394(00)00538-9.
100. Peeters A, Webers CA, Prins MH, Zeegers MP, Hendrikse F, Schouten JS. Quantifying the effect of intraocular pressure reduction on the occurrence of glaucoma. Acta Ophthalmol. 2010;88(1):5-11. doi:10.1111/j.1755-3768.2008.01452.x.
101. Daugeliene L, Yamamoto T, Kitazawa Y. Effect of trabeculectomy on visual field in progressive normal-tension glaucoma. Jpn J Ophthalmol. 1998;42(4):286-292. doi:10.1016/s0021-5155(98)00013-6.
102. Aoyama A, Ishida K, Sawada A, Yamamoto T. Target intraocular pressure for stability of visual field loss progression in normal-tension glaucoma. Jpn J Ophthalmol. 2010;54(2):117–23. doi:10.1007/s10384-010-0910-2.
103. Chen PP, Cady RS, Mudumbai RC, Ngan R. Continued visual field progression in eyes with prior visual field progression in patients with open-angle glaucoma. J Glaucoma. 2010 Dec;19(9):598–603.
104. Oliver JE, Hattenhauer MG, Herman D, et al. Blindness and glaucoma: a comparison of patients progressing to blindness from glaucoma with patients maintaining vision. Am J Ophthalmol. 2002;133(6):764-772. doi:10.1016/s0002-9394(02)01403-4.
105. Beer F, Johnston R, Dewolf J. Mecánica de materiales. 3ma ed. México: McGraw-Hill;2018.
106. Juan H. Cadavid R. Mecánica del medio continuo: una iniciación. Primera edición. Medellín: Universidad EAFIT; 2009.
107. Carlos Humberto Galeano Urueña, Juan Miguel Mantilla, Juan Carlos Galvis. El método de los elementos finitos, Un enfoque teórico práctico. Primera edición. Bogotá: Universidad Nacional de Colombia; 2016.
108. Shetty P, Hegde A, Rai K. Finite element method--an effective research tool for dentistry. J Clin Pediatr Dent. 2010;34(3):281–5. doi:10.17796/jcpd.34.3.87664h3005n66301.
109. Begum MS, Dinesh MR, Tan KF, Jairaj V, Md Khalid K, Singh VP. Construction of a three-dimensional finite element model of maxillary first molar and its supporting structures. J Pharm Bioallied Sci. 2015 Aug;7(Suppl 2). doi:10.4103/0975-7406.163496.
110. Vurgese S, Panda-Jonas S, Jonas JB. Scleral thickness in human eyes. PLoS One. 2012;7(1). doi:10.1371/journal.pone.0029692.
111. Jonas JB, Holbach L. Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci. 2005;46(4):1275-1279. doi:10.1167/iovs.04-0851.
112. Hayreh SS. Anterior Ischemic Optic Neuropathy. Berlin, Heidelberg: Springer; 1975. doi:10.1007/978-3-642-65957-7.
113. Scott CEH, Simpson AHRW, Pankaj P. Distinguishing fact from fiction in finite element analysis. Bone Joint J. 2020;102-B(10):1271–3. doi:10.1302/0301-620X.102B10.BJJ-2020-0405.R1.
114. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780-1785. doi:10.1016/s0886-3350(03)00407-3.
115. Jafari S, Lu Y, Park J, Demer JL. Finite Element Model of Ocular Adduction by Active Extraocular Muscle Contraction. Invest Ophthalmol Vis Sci. 2021;62(1):7. doi:10.1167/iovs.62.1.7.
116. Feola AJ, Myers JG, Raykin J, Mulugeta L, Nelson ES, Samuels BC, et al. Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure. Invest Ophthalmol Vis Sci. 2016;57(4):1901–11. doi:10.1167/iovs.15-18106.
117. Spoerl E, Boehm AG, Pillunat LE. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci. 2005;46(4):1286-1290. doi:10.1167/iovs.04-0978.
118. MacManus DB, Murphy JG, Gilchrist MD. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus. J Mech Behav Biomed Mater. 2018 Nov 1;87:256–66.
119. Du Z, Li Z, Wang P, Zhuang Z, Liu Z. Revealing the nonlinear mechanical behavior of white matter brain tissue by analyzing the asynchronous deformation and damage of matrix and axonal fibers. Int J Solids Struct. 2022 May 1;242.
120. Zhang L, Beotra MR, Baskaran M, Tun TA, Wang X, Perera SA, et al. In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans. Invest Ophthalmol Vis Sci. 2020;61(3):27. doi:10.1167/iovs.61.3.27.
121. Dechow PC, Nail GA, Schwartz-Dabney CL, Ashman RB. Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol. 1993;90(3):291-306. doi:10.1002/ajpa.1330900304.
122. Zmuda Trzebiatowski MA, Kłosowski P, Skorek A, Żerdzicki K, Lemski P, Koberda M. Nonlinear dynamic analysis of the pure "buckling" mechanism during blow-out trauma of the human orbit. Sci Rep. 2020;10(1):15275. doi:10.1038/s41598-020-72186-1.
123. Chen K, Weiland JD. Mechanical properties of orbital fat and its encapsulating connective tissue. J Biomech Eng. 2011;133(6):061009. doi:10.1115/1.4003390.
124. Downs JC, Suh JKF, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT. Viscoelastic characterization of peripapillary sclera: Material properties by quadrant in rabbit and monkey eyes. J Biomech Eng. 2003 Feb;125(1):124–31.
125. Saboori P, Sadegh A. On the properties of brain subarachnoid space and biomechanics of head impacts leading to traumatic brain injury. Advances in Biomechanics and Applications. 2014;1(4):253–67. doi:10.1515/9783110424004-036.
126. Saboori P, Sadegh A. Material modeling of the head’s subarachnoid space. Scientia Iranica. 2011;18(6):1492–9.
127. Karimi A, Grytz R, Rahmati SM, Girkin CA, Downs JC. Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole. Comput Methods Programs Biomed. 2021;198:105843. doi:10.1016/j.cmpb.2020.105843.
128. Shin A, Yoo L, Park J, Demer JL. Finite element biomechanics of optic nerve sheath traction in adduction. J Biomech Eng. 2017;139(10):1010101-10101010. doi:10.1115/1.4037562.
129. Woo SL, Kobayashi AS, Lawrence C, Schlegel WA. Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Ann Biomed Eng. 1972;1(1):87-98. doi:10.1007/BF02363420.
130. Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci. 2000;41(10):2991-3000.
131. Abe RY, Silva LNP, Silva DM, Vasconcellos JPC, Costa VP. Prevalence of depressive and anxiety disorders in patients with glaucoma: a cross-sectional study. Arq Bras Oftalmol. 2021;84(1):31-36. doi:10.5935/0004-2749.20210006.
132. Zi Z. Sensitivity analysis approaches applied to systems biology models. IET Syst Biol. 2011 Nov;5(6):336–46.
133. Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974;13(10):771-83.
134. Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol. 1976;15(8):606-16.
135. Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16(5):426-41.
136. Tong J, Ghate D, Kedar S, Gu L. Relative contributions of intracranial pressure and intraocular pressure on lamina cribrosa behavior. J Ophthalmol. 2019 Mar 17;2019:3064949. doi: 10.1155/2019/3064949. PMID: 31007950; PMCID: PMC6441528.
137. Dai P, Zhao Y, Sheng H, Li L, Wu J, Han H. Simulating the effects of elevated intraocular pressure on ocular structures using a global finite element model of the human eye. J Mech Med Biol. 2017 Mar 1;17(2).
138. Leidl MC, Choi CJ, Syed ZA, Melki SA. Intraocular pressure fluctuation and glaucoma progression: what do we know?. Br J Ophthalmol. 2014;98(10):1315-1319. doi:10.1136/bjophthalmol-2013-303980.
139. Wang X, Beotra MR, Tun TA, et al. In vivo 3-dimensional strain mapping confirms large optic nerve head deformations following horizontal eye movements. Invest Ophthalmol Vis Sci. 2016;57(13):5825-5833. doi:10.1167/iovs.16-20560.
140. Fortune B, Choe TE, Reynaud J, Hardin C, Cull GA, Burgoyne CF, et al. Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 2011 Aug;52(9):6651–61.
141. Lee EJ, Kim TW, Weinreb RN. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology. 2012 Jul;119(7):1359–66.
142. Fazio MA, Johnstone JK, Smith B, Wang L, Girkin CA. Displacement of the lamina cribrosa in response to acute intraocular pressure elevation in normal individuals of African and European descent. Invest Ophthalmol Vis Sci. 2016;57(7):3331-3339. doi:10.1167/iovs.15-17940.
143. Agoumi Y, Sharpe GP, Hutchison DM, Nicolela MT, Artes PH, Chauhan BC. Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls. Ophthalmology. 2011;118(1):52-59. doi:10.1016/j.ophtha.2010.05.016.
144. Wang L, Cull GA, Piper C, Burgoyne CF, Fortune B. Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method. Invest Ophthalmol Vis Sci. 2012;53(13):8303-9. doi:10.1167/iovs.12-10911.
145. Beotra MR, Wang X, Tun TA, et al. In vivo three-dimensional lamina cribrosa strains in healthy, ocular hypertensive, and glaucoma eyes following acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 2018;59(1):260-272. doi:10.1167/iovs.17-21982.
146. Midgett DE, Pease ME, Jefferys JL, Patel M, Franck C, Quigley HA, Nguyen TD. The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Acta Biomater. 2017 Apr 15;53:123-139. doi:10.1016/j.actbio.2016.12.054. Epub 2017 Jan 17. PMID: 28108378; PMCID: PMC6053916.
147. Lee DS, Lee EJ, Kim TW, Park YH, Kim J, Lee JW, et al. Influence of translaminar pressure dynamics on the position of the anterior lamina cribrosa surface. Invest Ophthalmol Vis Sci. 2015;56(5):2833–41.
148. Furlanetto RL, Park SC, Damle UJ, et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Invest Ophthalmol Vis Sci. 2013;54(7):4836-4842. Published 2013 Jul 18. doi:10.1167/iovs.12-11530.
149. Marek B, Harris A, Kanakamedala P, Lee E, Amireskandari A, Carichino L, et al. Cerebrospinal fluid pressure and glaucoma: Regulation of trans-lamina cribrosa pressure. Br J Ophthalmol. 2014;98(5):721–5. doi:10.1136/bjophthalmol-2013-303354.
150. Jonas JB, Ritch R, Panda-Jonas S. Cerebrospinal fluid pressure in the pathogenesis of glaucoma. In: Progress in Brain Research. Elsevier; 2015;221:33–47. doi:10.1016/bs.pbr.2015.06.001.
151. Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014 May 13;55(5):3067–73.
152. García-Montesinos J, Muñoz-Negrete FJ, de Juan V, Rebolleda G. Relationship between lamina cribrosa displacement and trans-laminar pressure difference in papilledema. Graefes Arch Clin Exp Ophthalmol. 2017;255(6):1237-1243. doi:10.1007/s00417-017-3661-6.
153. Xie JS, Donaldson L, Margolin E. Papilledema: A review of etiology, pathophysiology, diagnosis, and management. Surv Ophthalmol. 2022 Jul 1;67(4):1135–59.
154. Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol. 1997;115(3):423-426. doi:10.1001/archopht.1997.01100150425022.
155. Faingold D, Francis CJ, Buys YM. Hypotony maculopathy and papilledema after trabeculectomy in a patient with pseudotumor cerebri. J Glaucoma. 2003;12(4):374-378. doi:10.1097/00061198-200308000-00014.
156. Lee WJ, Kim YJ, Kim JH, Hwang S, Shin SH, Lim HW. Changes in the optic nerve head induced by horizontal eye movements. PLoS One. 2018;13(9). doi: 10.1371/journal.pone.0204069. Erratum in: PLoS One. 2019;14(5). PMID: 30226883; PMCID: PMC6143247.
157. Sibony PA, Wei J, Sigal IA. Gaze-Evoked Deformations in Optic Nerve Head Drusen: Repetitive Shearing as a Potential Factor in the Visual and Vascular Complications. Ophthalmology. 2018 Jun 1;125(6):929–37.
158. Shin YU, Lim HW, Kim JH. Changes of optic nerve head induced by eye movement. Neurology. 2016;87(23):2490–1.
159. Demer JL. Optic nerve sheath as a novel mechanical load on the globe in ocular duction. Invest Ophthalmol Vis Sci. 2016;57(4):1826–38. doi:10.1167/iovs.15-18718.
160. Suh SY, Le A, Shin A, Park J, Demer JL. Progressive deformation of the optic nerve head and peripapillary structures by graded horizontal duction. Invest Ophthalmol Vis Sci. 2017;58(12):5015-5021. doi:10.1167/iovs.17-22596.
161. Schiller PH, Tehovnik EJ. Neural mechanisms underlying target selection with saccadic eye movements. Prog Brain Res. 2005;149:157-171. doi:10.1016/S0079-6123(05)49012-3.
162. Chuangsuwanich T, Tun TA, Braeu FA, et al. Adduction induces large optic nerve head deformations in subjects with normal-tension glaucoma. Br J Ophthalmol. 2024;108(4):522-529. Published 2024 Mar 20. doi:10.1136/bjo-2022-322461.
163. Hoang Q V, Chuangsuwanich T, Yu DJG, Tun TA, Wong CW, Wang X, et al. Differing Optic Nerve Head Strains Comparing Low, High and Pathologic Myopia Eyes. Invest Ophthalmol Vis Sci. 2020 Jun 10;61(7):2679–2679.
164. Worley A, Grimmer-Somers K. Risk factors for glaucoma: what do they really mean? Aust J Prim Health. 2011;17(3):233-239. doi:10.1071/PY10042.
165. McDonald MA, Stevenson CH, Kersten HM, Danesh-Meyer HV. Eye movement abnormalities in glaucoma patients: A review. Eye Brain. 2022;14:83-114. doi:10.2147/EB.S361946.
166. Lee SSY, Black AA, Wood JM. Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability. PLoS One. 2017 Jun 1;12(6).
167. Sibony PA. Gaze evoked deformations of the peripapillary retina in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4979–87.
168. Liu H, Yang D, Ma T, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol. 2018;186:128-137. doi:10.1016/j.ajo.2017.11.024.
169. Cennamo G, Montorio D, Breve MA, Brescia Morra V, Menna F, Cennamo G. Evaluation of optic nerve subarachnoid space in primary open angle glaucoma using ultrasound examination. PLoS One. 2018;13(11). doi:10.1371/journal.pone.0208064.
170. Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology. 2012;119(10):2065-2073.e1. doi:10.1016/j.ophtha.2012.03.054.
171. Nguyen BN, Cleary JO, Glarin R, et al. Ultra-High Field Magnetic Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space, and Optic Nerve Sheath in Emmetropic and Myopic Eyes. Transl Vis Sci Technol. 2021;10(2):8. doi:10.1167/tvst.10.2.8.
172. Stojanov O, Sad N, Stoki E, Šveljo O, Naumovi N. The influence of retrobulbar adipose tissue volume upon intraocular pressure in obesity Uticaj retrobulbarnog masnog tkiva na intraokularni pritisak kod gojaznih osoba. Vojnosanit Pregl. 2013;70(5):469–76.
173. Mori K, Ando F, Nomura H, Sato Y, Shimokata H. Relationship between intraocular pressure and obesity in Japan. Int J Epidemiol. 2000;29:661–6.
174. Coster D, Rafie A, Savion-Gaiger N, et al. The effect of body mass index reduction on intraocular pressure in a large prospective cohort of apparently healthy individuals in Israel. PLoS One. 2023;18(5). doi:10.1371/journal.pone.0285759.
175. Lee GA, Ritch R, Liang SYW, Liebmann JM, Dubois P, Bastian-Jordan M, et al. Tight orbit syndrome: A previously unrecognized cause of open-angle glaucoma. Acta Ophthalmol. 2010 Feb;88(1):120–4.
176. Liu B, McNally S, Kilpatrick JI, Jarvis SP, O'Brien CJ. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol. 2018;63(1):56-74. doi:10.1016/j.survophthal.2017.06.007.
177. Selman M, Pardo A. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev. 2021 Sep 1;70:101393.
178. Azuara-Blanco A, Harris A, Cantor LB, Abreu MM, Weinland M. Effects of short term increase of intraocular pressure on optic disc cupping. Br J Ophthalmol. 1998;82(8):880-883. doi:10.1136/bjo.82.8.880.
179. Piette S, Liebmann JM, Ishikawa H, Gürses-Ozden R, Buxton D, Ritch R. Acute conformational changes in the optic nerve head with rapid intraocular pressure elevation: implications for LASIK surgery. Ophthalmic Surg Lasers Imaging. 2003;34(4):334-341.
180. Chuangsuwanich T, Wang X, Tun TA, Devalla SK, Milea D, Hoang Q V, et al. Adduction Induces Abnormally Large Optic Nerve Head Strains in Normal Tension Glaucoma Subjects. Invest Ophthalmol Vis Sci. 2020 Jun 10;61(7):1005–1005.
181. Liu H, Yang D, Ma T, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol. 2018;186:128-137. doi:10.1016/j.ajo.2017.11.024.
182. Wang X, Rumpel H, Baskaran M, et al. Optic nerve tortuosity and globe proptosis in normal and glaucoma subjects. J Glaucoma. 2019;28(8):691-696. doi:10.1097/IJG.0000000000001270.
183. Stojanov O, Stokić E, Sveljo O, Naumović N. The influence of retrobulbar adipose tissue volume upon intraocular pressure in obesity. Vojnosanit Pregl. 2013;70(5):469-476. doi:10.2298/vsp1305469s.
184. Waspodo N, Giffari Makkaraka MA, Nislawati R, Ismail A, Taufik Fadillah Zainal A, Lolok GB. Role of excessive weight in intraocular pressure: a systematic review and meta-analysis. BMJ Open Ophthalmol. 2023 Nov;8(1). doi:10.1136/bmjophth-2023-001355.
185. Trobe JD. Papilledema: the vexing issues. J Neuroophthalmol. 2011;31(2):175-186. doi:10.1097/WNO.0b013e31821a8b0b.
186. Schirmer CM, Hedges TR. Mechanisms of visual loss in papilledema. Vol. 23, Neurosurgical focus. 2007.
187. Lawlor M, Zhang MG, Virgo J, Plant GT. Asymmetrical intraocular pressures and asymmetrical papilloedema in pseudotumor cerebri syndrome. Neuroophthalmology. 2016;40(6):292-296. doi:10.1080/01658107.2016.1226344.
188. Wang D, Xiao H, Lin S, et al. Comparison of the choroid in primary open angle and angle closure glaucoma using optical coherence tomography. J Glaucoma. 2023;32(11). doi:10.1097/IJG.0000000000002303.
189. Wang YX, Jiang R, Ren XL, et al. Intraocular pressure elevation and choroidal thinning. Br J Ophthalmol. 2016;100(12):1676-1681. doi:10.1136/bjophthalmol-2015-308062.
190. Fortune B, Yang H, Strouthidis NG, Cull GA, Grimm JL, Downs JC, Burgoyne CF. The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance. Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4719-26. doi:10.1167/iovs.08-3289.
191. Powell S, Irnaten M, O'Brien C. Glaucoma - 'A Stiff Eye in a Stiff Body'. Curr Eye Res. 2023;48(2):152-160. doi:10.1080/02713683.2022.2039204.
192. Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus M V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Vol. 27, Cell Metabolism. Cell Press; 2018. p. 68–83.
193. Watts SW, Flood ED, Garver H, Fink GD, Roccabianca S. A New Function for Perivascular Adipose Tissue (PVAT): Assistance of Arterial Stress Relaxation. Sci Rep. 2020 Dec 1;10(1).
194. Liu W, Ling J, Chen Y, Wu Y, Lu P. The Association between Adiposity and the Risk of Glaucoma: A Meta-Analysis. Vol. 2017, Journal of Ophthalmology. Hindawi Limited; 2017.
195. Norris JH, Ross JJ, Kazim M, Selva D, Malhotra R. The effect of orbital decompression surgery on refraction and intraocular pressure in patients with thyroid orbitopathy. Vol. 26, Eye. Nature Publishing Group; 2012. p. 535–43.
196. Lee GA, Ritch R, Liang SYW, Liebmann JM, Dubois P, Bastian-Jordan M, et al. Tight orbit syndrome: A previously unrecognized cause of open-angle glaucoma. Acta Ophthalmol. 2010 Feb;88(1):120–4.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 210 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86971/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86971/2/1020733165.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86971/3/1020733165.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
1bf14343d875842818613797b372a880
e151f8bcb9d1606be233c8489e23d4df
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089211618263040
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Rodríguez, Carlos Julio48fe60e7734d42e4e2cd46b83acff1c3Rodríguez Montaño, Óscar Libardo13e0b7f9a0997f10e330bb17f53f987bMuñoz Sarmiento, Diana Marcelafe40ea23a4fdfa4f52201e089b5345f6Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-UncbMuñoz Sarmiento, Diana Marcela [0000000150620257]https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00013544932024-10-16T13:31:06Z2024-10-16T13:31:06Z2024https://repositorio.unal.edu.co/handle/unal/86971Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasAntecedentes: El glaucoma se ha asociado a diversos factores biomecánicos, tales como la presión intraocular (PIO), la presión del líquido cefalorraquídeo (PLCR), los movimientos oculares horizontales, la rigidez de los tejidos, entre otras. Esta tesis tiene como objetivo analizar la influencia de estos factores en la cabeza del nervio óptico (CNO). Además, debido a la alta variabilidad en las reconstrucciones anatómicas propuestas históricamente, se evalúa el impacto de incluir y excluir diferentes regiones anatómicas. Métodos: Se desarrolló un modelo computacional tridimensional del ojo y la órbita usando el método de los elementos finitos, documentando las deformaciones promedio a lo largo de los ejes anatómicos y en las direcciones principales en la CNO. Asimismo, se creó un modelo axisimétrico del ojo, a partir del cual se generaron 17 casos anatómicos. Resultados: La inclusión y exclusión de las regiones anatómicas afectó significativamente las deformaciones obtenidas. Por otro lado, se obtuvo una alta dispersión de las deformaciones debida a los movimientos oculares laterales, que no se observó con la variación de la PIO y la PLCR. Desde una perspectiva anatómica, una PIO alta y una PLCR baja generaron un efecto mecánico sinérgico sobre la CNO. Finalmente, los factores más influyentes fueron la PIO, la PLCR, la rigidez del espacio subaracnoideo (ESA), y la rigidez del tejido adiposo (TA). Conclusión: Los factores biomecánicos más importantes para el desarrollo del glaucoma son una PIO alta, una PLCR baja, y una rigidez elevada del ESA y del TA (Texto tomado de la fuente).Background: Glaucoma has been associated with various biomechanical factors, such as intraocular pressure (IOP), cerebrospinal fluid pressure (CSFP), horizontal eye movements, and tissue stiffness, among others. This thesis aims to analyze the influence of these factors on the optic nerve head (ONH). Furthermore, due to the high variability in historically proposed anatomical reconstructions, the impact of including and excluding different anatomical regions is examined. Methods: A three-dimensional computational model of the eye and orbit was developed using the finite element method, and the mean strains along the anatomical axes and in the principal directions in the ONH were documented. Likewise, an axisymmetric model of the eye was created, from which 17 anatomical cases were generated. Results: The inclusion and exclusion of the anatomical regions significantly affected the obtained strains. On the other hand, there was a high strain dispersion due to lateral eye movements, which was not observed with IOP and CSFP variations. From an anatomical perspective, high IOP and low CSFP generated a synergistic mechanical effect on the ONH. Finally, the most influential factors were IOP, CSFP, the subarachnoid space (SAS) stiffness, and adipose tissue (ADT) stiffness. Conclusion: The most important biomechanical factors for the development of glaucoma are high IOP, low CSFP, high SAS stiffness, and high ADT stiffness.DoctoradoDoctor en IngenieríaSe desarrolló un modelo computacional tridimensional del ojo y la órbita usando el método de los elementos finitos, documentando las deformaciones promedio a lo largo de los ejes anatómicos y en las direcciones principales en la CNO. Asimismo, se creó un modelo axisimétrico del ojo, a partir del cual se generaron 17 casos anatómicos. A three-dimensional computational model of the eye and orbit was developed using the finite element method, and the mean strains along the anatomical axes and in the principal directions in the ONH were documented. Likewise, an axisymmetric model of the eye was created, from which 17 anatomical cases were generated.Biomecánica ocular210 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::612 - Fisiología humana610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiologíaEnfermedades del Nervio ÓpticoHipertensión OcularPresión del Líquido CefalorraquídeoMovimientos OcularesDisco ÓpticoOptic Nerve DiseasesOcular HypertensionCerebrospinal Fluid PressureEye MovementsOptic DiskGlaucomaPresión intraocularPresión de líquido cefalorraquídeoEspacio subaracnoideoMovimientos oculares horizontalesCabeza del nervio ópticoBiomecánicaGlaucomaIntraocular pressureCerebrospinal fluid pressureSubarachnoid spaceHorizontal eye movementsOptic nerve headBiomechanicsBiomechanical factors associated with glaucomatous optic neuropathyFactores biomecánicos asociados a la neuropatía óptica glaucomatosaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–8.2. Nakazawa T, Fukuchi T. What is glaucomatous optic neuropathy? Jpn J Ophthalmol. 2020;64(3):243–9.3. Cesareo M, Ciuffoletti E, Ricci F, Missiroli F, Giuliano MA, Mancino R, et al. Visual disability and quality of life in glaucoma patients. Prog Brain Res. 2015;221:359–74.4. Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N. The diagnosis and treatment of glaucoma. Dtsch Arztebl Int. 2020 Mar 27;117(13):225–34.5. Lin Y, Jiang B, Cai Y, Luo W, Zhu X, Lin Q, et al. The Global Burden of Glaucoma: Findings from the Global Burden of Disease 2019 Study and Predictions by Bayesian Age–Period–Cohort Analysis. J Clin Med. 2023 Mar 1;12(5):1323. doi:10.3390/jcm12051323.6. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014 Nov 1;121(11):2081–90.7. McMonnies CW. Glaucoma history and risk factors. J Optom. 2017 Apr;10(2):71–8. doi: 10.1016/j.optom.2016.12.003.8. Arenas-Archila E, Arellano K, Muñoz-Sarmiento D. Intra-lesional injection of betamethasone for the treatment of symptomatic pinguecula. Arch Soc Esp Oftalmol. 2014;89(10):408–10. doi: 10.1016/j.oftal.2014.07.002.9. Arenas E, Muñoz D. A new surgical approach for the treatment of conjunctivochalasis: reduction of the conjunctival fold with bipolar electrocautery forceps. Sci World J. 2016;2016:1–6. doi:10.1155/2016/8435910.10. Arenas-Archila E, Alvizu F, Muñoz-Sarmiento D. Preauricular injection of betamethasone depot and acyclovir for the treatment of acute herpes zoster ophthalmicus. Arch Soc Esp Oftalmol. 2015;90(4):195–7. doi:10.1016/j.oftal.2014.10.011.11. Arenas E, Muñoz D, Matheus E, Morales D. Nasopupillary asymmetry. ScientificWorldJournal. 2014;2014:347826. doi:10.1155/2014/347826. Epub 2014 Dec 4. PMID: 25544953; PMCID: PMC4269086.12. Arenas E, Mieth A, Muñoz D. Combined intrastromal injection of ganciclovir and depot betamethasone for the management of nummular keratitis: Case series. Arch Soc Esp Oftalmol. 2019;94(1):45–9. doi: 10.1016/j.oftal.2018.09.009.13. Kim YW, Girard MJ, Mari JM, Jeoung JW. Anterior displacement of lamina cribrosa during Valsalva maneuver in young healthy eyes. PLoS One. 2016;11(7). doi:10.1371/journal.pone.0159663.14. Ma Y, Pavlatos E, Clayson K, Pan X, Kwok S, Sandwisch T, Liu J. Mechanical deformation of human optic nerve head and peripapillary tissue in response to acute IOP elevation. Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):913-920. doi:10.1167/iovs.18-26071. PMID: 30835783; PMCID: PMC6402264.15. Reis AS, O'Leary N, Stanfield MJ, Shuba LM, Nicolela MT, Chauhan BC. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(9):5819-5826. doi:10.1167/iovs.12-9924.16. Wang X, Rumpe H, Lim WEH, Baskaran M, Perera SA, Nongpiur ME, et al. Finite element analysis predicts large optic nerve head strains during horizontal eye movements. Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2452–62.17. Uzun C, Atman ED, Ustuner E, Mirjalili SA, Oztuna D, Esmer TS. Surface anatomy and anatomical planes in the adult Turkish population. Clin Anat. 2016;29(2):183-190. doi:10.1002/ca.22634.18. Muñoz-Sarmiento DM, Rodríguez-Montaño ÓL, Alarcón-Castiblanco JD, Gamboa-Márquez MA, Corredor-Gómez JP, Cortés-Rodríguez CJ. A finite element study of posterior eye biomechanics: The influence of intraocular and cerebrospinal pressure on the optic nerve head, peripapillary region, subarachnoid space, and meninges. Inform Med Unlocked. 2019 Jan;15:100185. doi: 10.1016/j.imu.2018.100185.19. Issarti I, Koppen C, Rozema JJ. Influence of the eye globe design on biomechanical analysis. Comput Biol Med. 2021 Aug 1;135.20. Niemeyer F, Wilke HJ, Schmidt H. Geometry strongly influences the response of numerical models of the lumbar spine-A probabilistic finite element analysis. J Biomech. 2012 May 11;45(8):1414–23.21. Haider IT, Schneider P, Michalski A, Edwards WB. Influence of geometry on proximal femoral shaft strains: Implications for atypical femoral fracture. Bone. 2018;110:295-303. doi:10.1016/j.bone.2018.02.015.22. Shafique S, Rayi A. Anatomy, Head and Neck, Subarachnoid Space. StatPearls [Internet]. 2022 [cited 2022 Sep 30]; Available from: https://pubmed.ncbi.nlm.nih.gov/32491453/23. Muñoz Sarmiento DM, Rodríguez Montaño ÓL, Alarcón Castiblancoa JD, Cortés Rodríguez CJ. The impact of horizontal eye movements versus intraocular pressure on optic nerve head biomechanics: A tridimensional finite element analysis study. Heliyon. 2023;9(2). doi:10.1016/j.heliyon.2023.e13634.24. Chen K, Rowley AP, Weiland JD, Humayun MS. Elastic properties of human posterior eye. J Biomed Mater Res A. 2014;102(6):2001-2007. doi:10.1002/jbm.a.34858.25. MacManus DB, Pierrat B, Murphy JG, Gilchrist MD. Region and species dependent mechanical properties of adolescent and young adult brain tissue. Sci Rep. 2017;7(1):13729. doi:10.1038/s41598-017-13727-z.26. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189–99. doi: 10.1167/iovs.04-0700. 27.27. Hua Y, Voorhees AP, Sigal IA. Cerebrospinal fluid pressure: Revisiting factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):154–65.28. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004;45(12):4378-4387. doi:10.1167/iovs.04-0133.29. Tripathi RC, Tripathi BJ, Haggerty C. Drug-Induced Glaucomas Mechanism and Management. Vol. 26, Drug Safety. 2003.30. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Vol. 390, The Lancet. Lancet Publishing Group; 2017. p. 2183–93.31. Wax MB, Tezel G, Edward PD. Clinical and ocular histopathological findings in a patient with normal-pressure glaucoma. Arch Ophthalmol. 1998;116(8):993-1001. doi:10.1001/archopht.116.8.993.32. Guo L, Normando EM, Nizari S, Lara D, Francesca Cordeiro M. Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6504–13.33. Lei Y, Garrahan N, Hermann B, Becker DL, Hernandez MR, Boulton ME, et al. Quantification of retinal transneuronal degeneration in human glaucoma: A novel multiphoton-DAPI approach. Invest Ophthalmol Vis Sci. 2008 Apr;49(5):1940–5.34. Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res. 2007;26(1):38-56. doi:10.1016/j.preteyeres.2006.10.00135. Michelson G, Wärntges S, Engelhorn T, El-Rafei A, Hornegger J, Dörfler A. Integrität/Demyelinisierung der Radiatio optica, Morphologie der Papille und Kontrastsensitivität bei Glaukompatienten. Klin Monbl Augenheilkd. 2012;229(2):143–8.36. Haykal S, Invernizzi A, Carvalho J, Jansonius NM, Cornelissen FW. Microstructural Visual Pathway White Matter Alterations in Primary Open-Angle Glaucoma: A Neurite Orientation Dispersion and Density Imaging Study. American Journal of Neuroradiology. 2022 May 1;43(5):756–63.37. Colbert MK, Ho LC, van der Merwe Y, Yang X, McLellan GJ, Hurley SA, et al. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Invest Ophthalmol Vis Sci. 2021;62(10):21. doi:10.1167/iovs.62.10.21.38. Flammer J, Ul SO, Costa VP, Orzalesi N, Unter G, Krieglstein K, et al. The impact of ocular blood flow in glaucoma. Vol. 21, Progress in Retinal and Eye Research. 2002.39. Fahy ET, Chrysostomou V, Crowston JG. Impaired axonal transport and glaucoma. Curr Eye Res. 2015;40(9):933–42. doi:10.3109/02713683.2015.1003082.40. Strouthidis NG, Girard MJA. Altering the way the optic nerve head responds to intraocular pressure - A potential approach to glaucoma therapy. Vol. 13, Current Opinion in Pharmacology. Elsevier Ltd; 2013. p. 83–9.41. McMonnies C. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J Optom. 2018 Jan;11(1):3–9. doi: 10.1016/j.optom.2017.10.002.42. Leske MC. Ocular perfusion pressure and glaucoma: Clinical trial and epidemiologic findings. Vol. 20, Current Opinion in Ophthalmology. 2009. p. 73–8.43. Portmann N, Gugleta K, Kochkorov A, Polunina A, Flammer J, Orgul S. Choroidal blood flow response to isometric exercise in glaucoma patients and patients with ocular hypertension. Invest Ophthalmol Vis Sci. 2011 Sep;52(10):7068–73.44. Fan N, Wang P, Tang L, Liu X. Ocular blood flow and normal tension glaucoma. Biomed Res Int. 2015;2015:508792. doi: 10.1155/2015/508792.45. Harris A, Sergott RC, Spaeth GL, Katz JL, Shoemaker JA, Martin BJ. Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol. 1994;118(5):642–9.46. Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16(2):79–83. doi:10.1097/01.icu.0000156134.38495.0b.47. Song X, Li P, Li Y, Yan X, Yuan L, Zhao C, et al. Strong association of glaucoma with atherosclerosis. Sci Rep. 2021 Dec 1;11(1).48. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107(7):1287-1293. doi:10.1016/s0161-6420(00)00138-x.49. Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. 2020 Nov 24;12(11):e11686. doi: 10.7759/cureus.11686. PMID: 33391921; PMCID: PMC7769798.50. Schuster AK, Wagner FM, Pfeiffer N, Hoffmann EM. Risk factors for open-angle glaucoma and recommendations for glaucoma screening. Vol. 118, Ophthalmologe. Springer Medizin; 2021. p. 145–52.51. Crabb DP, Smith ND, Glen FC, Burton R, Garway-Heath DF. How does glaucoma look?: Patient perception of visual field loss. Ophthalmology. 2013 Jun;120(6):1120–6.52. Hoste AM. New insights into the subjective perception of visual field defects. Bull Soc Belge Ophtalmol. 2003;(287):65-71.53. Bertaud S, Aragno V, Baudouin C, Labbé A. Primary open-angle glaucoma. Vol. 40, Revue de Medecine Interne. Elsevier Masson SAS; 2019. p. 445–52.54. Patel K, Patel S. Angle-closure glaucoma. Vol. 60, Disease-a-Month. Mosby Inc.; 2014. p. 254–62.55. Flores-Sánchez BC, Tatham AJ. Acute angle closure glaucoma. Br J Hosp Med (Lond). 2019;80(12):C174-C179. doi:10.12968/hmed.2019.80.12.C17456. Goldmann H, Graefe V. Albrecht yon Graefe und das Glaukom. Vol. 181, Graefes Arch. klin. exp. Ophthal. Springer Verlag; 1971.57. Esporcatte BLB, Tavares IM. Normal-tension glaucoma: An update. Vol. 79, Arquivos Brasileiros de Oftalmologia. Conselho Brasileiro De Oftalmologia; 2016. p. 270–6.58. Zhang HJ, Mi XS, So KF. Normal tension glaucoma: From the brain to the eye or the inverse? Vol. 14, Neural Regeneration Research. Wolters Kluwer Medknow Publications; 2019. p. 1845–50.59. Killer HE, Pircher A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye (Basingstoke). 2018;32(6):924–30. doi: 10.1038/s41433-018-0049-y.60. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal Fluid Pressure in Glaucoma. A Prospective Study. Ophthalmology. 2010 Feb;117(2):259–66.61. Boye D, Montali M, Miller NR, Pircher A, Gruber P, Killer HE, et al. Flow dynamics of cerebrospinal fluid between the intracranial cavity and the subarachnoid space of the optic nerve measured with a diffusion magnetic resonance imaging sequence in patients with normal tension glaucoma. Clin Exp Ophthalmol. 2018 Jul 1;46(5):511–8.62. Wang N, Yang D, Jonas JB. Low cerebrospinal fluid pressure in the pathogenesis of primary open-angle glaucoma: epiphenomenon or causal relationship? The Beijing Intracranial and Intraocular Pressure (iCOP) study. J Glaucoma. 2013;22 Suppl 5. doi:10.1097/IJG.0b013e31829349a2.63. Shields MB. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol. 2008;19(2):85-88. doi:10.1097/ICU.0b013e3282f3919b.64. Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126(4):498–505. doi:10.1016/S0002-9394(98)00272-4.65. Danias J, Podos SM, Anderson DR, Drance SM, Schulzer M, Leske MC, et al. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1999;127(5):623–5.66. McMonnies CW. History of glaucoma and risk factors. J Optom. 2017;10(2):71–8.67. Ocular Hypertension Treatment Study Group; European Glaucoma Prevention Study Group, Gordon MO, et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114(1):10-19. doi:10.1016/j.ophtha.2006.08.031.68. Song BJ, Aiello LP, Pasquale LR. Presence and risk factors for glaucoma in patients with diabetes. Curr Diab Rep. 2016;16(9):79.69. Musch DC, Gillespie BW, Niziol LM, Lichter PR, Varma R. Intraocular pressure control and long-term visual field loss in the collaborative initial glaucoma treatment study. Ophthalmology. 2011 Sep;118(9):1766–73.70. Guo ZZ, Chang K, Wei X. Intraocular pressure fluctuation and the risk of glaucomatous damage deterioration: A meta-analysis. Int J Ophthalmol. 2019 Jan 1;12(1):123–8.71. Caprioli J, Coleman AL. Intraocular Pressure Fluctuation. A Risk Factor for Visual Field Progression at Low Intraocular Pressures in the Advanced Glaucoma Intervention Study. Ophthalmology. 2008;115(7).72. Kim JH, Caprioli J. Intraocular pressure fluctuation: Is it important? Vol. 13, Journal of Ophthalmic and Vision Research. Wolters Kluwer Medknow Publications; 2018. p. 170–4.73. Crawford Downs J, Burgoyne CF, Seigfreid WP, Reynaud JF, Strouthidis NG, Sallee V. 24-hour IOP telemetry in the nonhuman primate: Implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci. 2011 Sep;52(10):7365–75.74. Burgoyne CF, Crawford Downs J, Bellezza AJ, Francis Suh JK, Hart RT. The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Vol. 24, Progress in Retinal and Eye Research. 2005. p. 39–73.75. Medical Advisory Secretariat. Diurnal tension curves for assessing the development or progression of glaucoma: an evidence-based analysis. Ont Health Technol Assess Ser. 2011;11(2):1-40. Epub 2011 Jun 1. PMID: 23074414; PMCID: PMC3377558.76. Tojo N, Abe S, Miyakoshi M, Hayashi A. Correlation between short-term and long-term intraocular pressure fluctuation in glaucoma patients. Clin Ophthalmol. 2016;10:1713–7.77. Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004 Sep;111(9):1627–35.78. Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK. Visual Field Progression in the Collaborative Initial Glaucoma Treatment Study. The Impact of Treatment and Other Baseline Factors. Ophthalmology. 2009;116(2).79. Musch DC, Gillespie BW, Palmberg PF, Spaeth G, Niziol LM, Lichter PR. Visual field improvement in the Collaborative Initial Glaucoma Treatment Study. Am J Ophthalmol. 2014;158(1):96-104.e2. doi:10.1016/j.ajo.2014.04.003.80. Knier CG, Fleischman D, Hodge DO, Berdahl JP, Fautsch MP. Three-Decade Evaluation of Cerebrospinal Fluid Pressure in Open-Angle Glaucoma at a Tertiary Care Center. J Ophthalmol. 2020;2020.81. Siaudvytyte L, Januleviciene I, Ragauskas A, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360. doi:10.1155/2014/937360.82. Fleischman D, Berdahl JP, Zaydlarova J, Stinnett S, Fautsch MP, Allingham RR. Cerebrospinal Fluid Pressure Decreases with Older Age. PLoS One. 2012 Dec 29;7(12).83. Jonas JB, Wang NL, Wang YX, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma: The Beijing Eye Study 2011. Acta Ophthalmol. 2015;93(1). doi:10.1111/aos.12480.84. Berdahl JP, Ferguson TJ, Samuelson TW. Periodic normalization of the translaminar pressure gradient prevents glaucomatous damage. Med Hypotheses. 2020;144:109935.85. Skrzypecki J, Ufnal M. The Upright Body Position Increases Translaminar Pressure Gradient in Normotensive and Hypertensive Rats. Curr Eye Res. 2017 Dec 2;42(12):1634–7.86. Jasien J V., Samuels BC, Johnston JM, Downs JC. Effect of body position on intraocular pressure (IOP), intracranial pressure (ICP), and translaminar pressure (TLP) via continuous wireless telemetry in nonhuman primates (NHPs). Invest Ophthalmol Vis Sci. 2020 Oct 1;61(12).87. Siaudvytyte L, Januleviciene I, Daveckaite A, Ragauskas A, Bartusis L, Kucinoviene J, et al. Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma. Eye (Basingstoke). 2015 Oct 1;29(10):1242–50.88. Jonas JB, Wang NL, Wang YX, You QS, Xie X Bin, Yang DY, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmol. 2015 Feb 1;93(1):e7–13.89. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259-266. doi:10.1016/j.ophtha.2009.06.058.90. Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The Central India Eye and Medical Study. PLoS One. 2013 Dec 6;8(12).91. Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493–510.92. Heijl A, Bengtsson B, Oskarsdottir SE. Prevalence and severity of undetected manifest glaucoma: Results from the early manifest glaucoma trial screening. Ophthalmology. 2013 Aug;120(8):1541–5.93. Boodhna T, Crabb DP. Disease severity in newly diagnosed glaucoma patients with visual field loss: Trends from more than a decade of data. Ophthalmic and Physiological Optics. 2015 Mar 1;35(2):225–30.94. Hu CX, Zangalli C, Hsieh M, Gupta L, Williams AL, Richman J, et al. What Do Patients With Glaucoma See? Visual Symptoms Reported by Patients With Glaucoma. Am J Med Sci. 2014;348(5):403-409. doi:10.1097/MAJ.0000000000000319.95. Niwa Y, Muraki S, Naito F, Minamikawa T, Ohji M. Evaluation of acquired color vision deficiency in glaucoma using the Rabin cone contrast test. Invest Ophthalmol Vis Sci. 2014;55(10):6686–90.96. Sample PA, Weinreb RN. Color perimetry for assessment of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1990;31(9):1869–75.97. Hagiwara Y, Koh JEW, Tan JH, et al. Computer-aided diagnosis of glaucoma using fundus images: A review. Comput Methods Programs Biomed. 2018;165:1-12. doi:10.1016/j.cmpb.2018.07.012.98. Jayaram H. Intraocular pressure reduction in glaucoma: Does every mmHg count?. Taiwan J Ophthalmol. 2020;10(4):255-258. Published 2020 Oct 21. doi:10.4103/tjo.tjo_63_20.99. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429-440. doi:10.1016/s0002-9394(00)00538-9.100. Peeters A, Webers CA, Prins MH, Zeegers MP, Hendrikse F, Schouten JS. Quantifying the effect of intraocular pressure reduction on the occurrence of glaucoma. Acta Ophthalmol. 2010;88(1):5-11. doi:10.1111/j.1755-3768.2008.01452.x.101. Daugeliene L, Yamamoto T, Kitazawa Y. Effect of trabeculectomy on visual field in progressive normal-tension glaucoma. Jpn J Ophthalmol. 1998;42(4):286-292. doi:10.1016/s0021-5155(98)00013-6.102. Aoyama A, Ishida K, Sawada A, Yamamoto T. Target intraocular pressure for stability of visual field loss progression in normal-tension glaucoma. Jpn J Ophthalmol. 2010;54(2):117–23. doi:10.1007/s10384-010-0910-2.103. Chen PP, Cady RS, Mudumbai RC, Ngan R. Continued visual field progression in eyes with prior visual field progression in patients with open-angle glaucoma. J Glaucoma. 2010 Dec;19(9):598–603.104. Oliver JE, Hattenhauer MG, Herman D, et al. Blindness and glaucoma: a comparison of patients progressing to blindness from glaucoma with patients maintaining vision. Am J Ophthalmol. 2002;133(6):764-772. doi:10.1016/s0002-9394(02)01403-4.105. Beer F, Johnston R, Dewolf J. Mecánica de materiales. 3ma ed. México: McGraw-Hill;2018.106. Juan H. Cadavid R. Mecánica del medio continuo: una iniciación. Primera edición. Medellín: Universidad EAFIT; 2009.107. Carlos Humberto Galeano Urueña, Juan Miguel Mantilla, Juan Carlos Galvis. El método de los elementos finitos, Un enfoque teórico práctico. Primera edición. Bogotá: Universidad Nacional de Colombia; 2016.108. Shetty P, Hegde A, Rai K. Finite element method--an effective research tool for dentistry. J Clin Pediatr Dent. 2010;34(3):281–5. doi:10.17796/jcpd.34.3.87664h3005n66301.109. Begum MS, Dinesh MR, Tan KF, Jairaj V, Md Khalid K, Singh VP. Construction of a three-dimensional finite element model of maxillary first molar and its supporting structures. J Pharm Bioallied Sci. 2015 Aug;7(Suppl 2). doi:10.4103/0975-7406.163496.110. Vurgese S, Panda-Jonas S, Jonas JB. Scleral thickness in human eyes. PLoS One. 2012;7(1). doi:10.1371/journal.pone.0029692.111. Jonas JB, Holbach L. Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci. 2005;46(4):1275-1279. doi:10.1167/iovs.04-0851.112. Hayreh SS. Anterior Ischemic Optic Neuropathy. Berlin, Heidelberg: Springer; 1975. doi:10.1007/978-3-642-65957-7.113. Scott CEH, Simpson AHRW, Pankaj P. Distinguishing fact from fiction in finite element analysis. Bone Joint J. 2020;102-B(10):1271–3. doi:10.1302/0301-620X.102B10.BJJ-2020-0405.R1.114. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780-1785. doi:10.1016/s0886-3350(03)00407-3.115. Jafari S, Lu Y, Park J, Demer JL. Finite Element Model of Ocular Adduction by Active Extraocular Muscle Contraction. Invest Ophthalmol Vis Sci. 2021;62(1):7. doi:10.1167/iovs.62.1.7.116. Feola AJ, Myers JG, Raykin J, Mulugeta L, Nelson ES, Samuels BC, et al. Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure. Invest Ophthalmol Vis Sci. 2016;57(4):1901–11. doi:10.1167/iovs.15-18106.117. Spoerl E, Boehm AG, Pillunat LE. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci. 2005;46(4):1286-1290. doi:10.1167/iovs.04-0978.118. MacManus DB, Murphy JG, Gilchrist MD. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus. J Mech Behav Biomed Mater. 2018 Nov 1;87:256–66.119. Du Z, Li Z, Wang P, Zhuang Z, Liu Z. Revealing the nonlinear mechanical behavior of white matter brain tissue by analyzing the asynchronous deformation and damage of matrix and axonal fibers. Int J Solids Struct. 2022 May 1;242.120. Zhang L, Beotra MR, Baskaran M, Tun TA, Wang X, Perera SA, et al. In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans. Invest Ophthalmol Vis Sci. 2020;61(3):27. doi:10.1167/iovs.61.3.27.121. Dechow PC, Nail GA, Schwartz-Dabney CL, Ashman RB. Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol. 1993;90(3):291-306. doi:10.1002/ajpa.1330900304.122. Zmuda Trzebiatowski MA, Kłosowski P, Skorek A, Żerdzicki K, Lemski P, Koberda M. Nonlinear dynamic analysis of the pure "buckling" mechanism during blow-out trauma of the human orbit. Sci Rep. 2020;10(1):15275. doi:10.1038/s41598-020-72186-1.123. Chen K, Weiland JD. Mechanical properties of orbital fat and its encapsulating connective tissue. J Biomech Eng. 2011;133(6):061009. doi:10.1115/1.4003390.124. Downs JC, Suh JKF, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT. Viscoelastic characterization of peripapillary sclera: Material properties by quadrant in rabbit and monkey eyes. J Biomech Eng. 2003 Feb;125(1):124–31.125. Saboori P, Sadegh A. On the properties of brain subarachnoid space and biomechanics of head impacts leading to traumatic brain injury. Advances in Biomechanics and Applications. 2014;1(4):253–67. doi:10.1515/9783110424004-036.126. Saboori P, Sadegh A. Material modeling of the head’s subarachnoid space. Scientia Iranica. 2011;18(6):1492–9.127. Karimi A, Grytz R, Rahmati SM, Girkin CA, Downs JC. Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole. Comput Methods Programs Biomed. 2021;198:105843. doi:10.1016/j.cmpb.2020.105843.128. Shin A, Yoo L, Park J, Demer JL. Finite element biomechanics of optic nerve sheath traction in adduction. J Biomech Eng. 2017;139(10):1010101-10101010. doi:10.1115/1.4037562.129. Woo SL, Kobayashi AS, Lawrence C, Schlegel WA. Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Ann Biomed Eng. 1972;1(1):87-98. doi:10.1007/BF02363420.130. Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci. 2000;41(10):2991-3000.131. Abe RY, Silva LNP, Silva DM, Vasconcellos JPC, Costa VP. Prevalence of depressive and anxiety disorders in patients with glaucoma: a cross-sectional study. Arq Bras Oftalmol. 2021;84(1):31-36. doi:10.5935/0004-2749.20210006.132. Zi Z. Sensitivity analysis approaches applied to systems biology models. IET Syst Biol. 2011 Nov;5(6):336–46.133. Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974;13(10):771-83.134. Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol. 1976;15(8):606-16.135. Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16(5):426-41.136. Tong J, Ghate D, Kedar S, Gu L. Relative contributions of intracranial pressure and intraocular pressure on lamina cribrosa behavior. J Ophthalmol. 2019 Mar 17;2019:3064949. doi: 10.1155/2019/3064949. PMID: 31007950; PMCID: PMC6441528.137. Dai P, Zhao Y, Sheng H, Li L, Wu J, Han H. Simulating the effects of elevated intraocular pressure on ocular structures using a global finite element model of the human eye. J Mech Med Biol. 2017 Mar 1;17(2).138. Leidl MC, Choi CJ, Syed ZA, Melki SA. Intraocular pressure fluctuation and glaucoma progression: what do we know?. Br J Ophthalmol. 2014;98(10):1315-1319. doi:10.1136/bjophthalmol-2013-303980.139. Wang X, Beotra MR, Tun TA, et al. In vivo 3-dimensional strain mapping confirms large optic nerve head deformations following horizontal eye movements. Invest Ophthalmol Vis Sci. 2016;57(13):5825-5833. doi:10.1167/iovs.16-20560.140. Fortune B, Choe TE, Reynaud J, Hardin C, Cull GA, Burgoyne CF, et al. Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 2011 Aug;52(9):6651–61.141. Lee EJ, Kim TW, Weinreb RN. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology. 2012 Jul;119(7):1359–66.142. Fazio MA, Johnstone JK, Smith B, Wang L, Girkin CA. Displacement of the lamina cribrosa in response to acute intraocular pressure elevation in normal individuals of African and European descent. Invest Ophthalmol Vis Sci. 2016;57(7):3331-3339. doi:10.1167/iovs.15-17940.143. Agoumi Y, Sharpe GP, Hutchison DM, Nicolela MT, Artes PH, Chauhan BC. Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls. Ophthalmology. 2011;118(1):52-59. doi:10.1016/j.ophtha.2010.05.016.144. Wang L, Cull GA, Piper C, Burgoyne CF, Fortune B. Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method. Invest Ophthalmol Vis Sci. 2012;53(13):8303-9. doi:10.1167/iovs.12-10911.145. Beotra MR, Wang X, Tun TA, et al. In vivo three-dimensional lamina cribrosa strains in healthy, ocular hypertensive, and glaucoma eyes following acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 2018;59(1):260-272. doi:10.1167/iovs.17-21982.146. Midgett DE, Pease ME, Jefferys JL, Patel M, Franck C, Quigley HA, Nguyen TD. The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Acta Biomater. 2017 Apr 15;53:123-139. doi:10.1016/j.actbio.2016.12.054. Epub 2017 Jan 17. PMID: 28108378; PMCID: PMC6053916.147. Lee DS, Lee EJ, Kim TW, Park YH, Kim J, Lee JW, et al. Influence of translaminar pressure dynamics on the position of the anterior lamina cribrosa surface. Invest Ophthalmol Vis Sci. 2015;56(5):2833–41.148. Furlanetto RL, Park SC, Damle UJ, et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Invest Ophthalmol Vis Sci. 2013;54(7):4836-4842. Published 2013 Jul 18. doi:10.1167/iovs.12-11530.149. Marek B, Harris A, Kanakamedala P, Lee E, Amireskandari A, Carichino L, et al. Cerebrospinal fluid pressure and glaucoma: Regulation of trans-lamina cribrosa pressure. Br J Ophthalmol. 2014;98(5):721–5. doi:10.1136/bjophthalmol-2013-303354.150. Jonas JB, Ritch R, Panda-Jonas S. Cerebrospinal fluid pressure in the pathogenesis of glaucoma. In: Progress in Brain Research. Elsevier; 2015;221:33–47. doi:10.1016/bs.pbr.2015.06.001.151. Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014 May 13;55(5):3067–73.152. García-Montesinos J, Muñoz-Negrete FJ, de Juan V, Rebolleda G. Relationship between lamina cribrosa displacement and trans-laminar pressure difference in papilledema. Graefes Arch Clin Exp Ophthalmol. 2017;255(6):1237-1243. doi:10.1007/s00417-017-3661-6.153. Xie JS, Donaldson L, Margolin E. Papilledema: A review of etiology, pathophysiology, diagnosis, and management. Surv Ophthalmol. 2022 Jul 1;67(4):1135–59.154. Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol. 1997;115(3):423-426. doi:10.1001/archopht.1997.01100150425022.155. Faingold D, Francis CJ, Buys YM. Hypotony maculopathy and papilledema after trabeculectomy in a patient with pseudotumor cerebri. J Glaucoma. 2003;12(4):374-378. doi:10.1097/00061198-200308000-00014.156. Lee WJ, Kim YJ, Kim JH, Hwang S, Shin SH, Lim HW. Changes in the optic nerve head induced by horizontal eye movements. PLoS One. 2018;13(9). doi: 10.1371/journal.pone.0204069. Erratum in: PLoS One. 2019;14(5). PMID: 30226883; PMCID: PMC6143247.157. Sibony PA, Wei J, Sigal IA. Gaze-Evoked Deformations in Optic Nerve Head Drusen: Repetitive Shearing as a Potential Factor in the Visual and Vascular Complications. Ophthalmology. 2018 Jun 1;125(6):929–37.158. Shin YU, Lim HW, Kim JH. Changes of optic nerve head induced by eye movement. Neurology. 2016;87(23):2490–1.159. Demer JL. Optic nerve sheath as a novel mechanical load on the globe in ocular duction. Invest Ophthalmol Vis Sci. 2016;57(4):1826–38. doi:10.1167/iovs.15-18718.160. Suh SY, Le A, Shin A, Park J, Demer JL. Progressive deformation of the optic nerve head and peripapillary structures by graded horizontal duction. Invest Ophthalmol Vis Sci. 2017;58(12):5015-5021. doi:10.1167/iovs.17-22596.161. Schiller PH, Tehovnik EJ. Neural mechanisms underlying target selection with saccadic eye movements. Prog Brain Res. 2005;149:157-171. doi:10.1016/S0079-6123(05)49012-3.162. Chuangsuwanich T, Tun TA, Braeu FA, et al. Adduction induces large optic nerve head deformations in subjects with normal-tension glaucoma. Br J Ophthalmol. 2024;108(4):522-529. Published 2024 Mar 20. doi:10.1136/bjo-2022-322461.163. Hoang Q V, Chuangsuwanich T, Yu DJG, Tun TA, Wong CW, Wang X, et al. Differing Optic Nerve Head Strains Comparing Low, High and Pathologic Myopia Eyes. Invest Ophthalmol Vis Sci. 2020 Jun 10;61(7):2679–2679.164. Worley A, Grimmer-Somers K. Risk factors for glaucoma: what do they really mean? Aust J Prim Health. 2011;17(3):233-239. doi:10.1071/PY10042.165. McDonald MA, Stevenson CH, Kersten HM, Danesh-Meyer HV. Eye movement abnormalities in glaucoma patients: A review. Eye Brain. 2022;14:83-114. doi:10.2147/EB.S361946.166. Lee SSY, Black AA, Wood JM. Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability. PLoS One. 2017 Jun 1;12(6).167. Sibony PA. Gaze evoked deformations of the peripapillary retina in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4979–87.168. Liu H, Yang D, Ma T, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol. 2018;186:128-137. doi:10.1016/j.ajo.2017.11.024.169. Cennamo G, Montorio D, Breve MA, Brescia Morra V, Menna F, Cennamo G. Evaluation of optic nerve subarachnoid space in primary open angle glaucoma using ultrasound examination. PLoS One. 2018;13(11). doi:10.1371/journal.pone.0208064.170. Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology. 2012;119(10):2065-2073.e1. doi:10.1016/j.ophtha.2012.03.054.171. Nguyen BN, Cleary JO, Glarin R, et al. Ultra-High Field Magnetic Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space, and Optic Nerve Sheath in Emmetropic and Myopic Eyes. Transl Vis Sci Technol. 2021;10(2):8. doi:10.1167/tvst.10.2.8.172. Stojanov O, Sad N, Stoki E, Šveljo O, Naumovi N. The influence of retrobulbar adipose tissue volume upon intraocular pressure in obesity Uticaj retrobulbarnog masnog tkiva na intraokularni pritisak kod gojaznih osoba. Vojnosanit Pregl. 2013;70(5):469–76.173. Mori K, Ando F, Nomura H, Sato Y, Shimokata H. Relationship between intraocular pressure and obesity in Japan. Int J Epidemiol. 2000;29:661–6.174. Coster D, Rafie A, Savion-Gaiger N, et al. The effect of body mass index reduction on intraocular pressure in a large prospective cohort of apparently healthy individuals in Israel. PLoS One. 2023;18(5). doi:10.1371/journal.pone.0285759.175. Lee GA, Ritch R, Liang SYW, Liebmann JM, Dubois P, Bastian-Jordan M, et al. Tight orbit syndrome: A previously unrecognized cause of open-angle glaucoma. Acta Ophthalmol. 2010 Feb;88(1):120–4.176. Liu B, McNally S, Kilpatrick JI, Jarvis SP, O'Brien CJ. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol. 2018;63(1):56-74. doi:10.1016/j.survophthal.2017.06.007.177. Selman M, Pardo A. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev. 2021 Sep 1;70:101393.178. Azuara-Blanco A, Harris A, Cantor LB, Abreu MM, Weinland M. Effects of short term increase of intraocular pressure on optic disc cupping. Br J Ophthalmol. 1998;82(8):880-883. doi:10.1136/bjo.82.8.880.179. Piette S, Liebmann JM, Ishikawa H, Gürses-Ozden R, Buxton D, Ritch R. Acute conformational changes in the optic nerve head with rapid intraocular pressure elevation: implications for LASIK surgery. Ophthalmic Surg Lasers Imaging. 2003;34(4):334-341.180. Chuangsuwanich T, Wang X, Tun TA, Devalla SK, Milea D, Hoang Q V, et al. Adduction Induces Abnormally Large Optic Nerve Head Strains in Normal Tension Glaucoma Subjects. Invest Ophthalmol Vis Sci. 2020 Jun 10;61(7):1005–1005.181. Liu H, Yang D, Ma T, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol. 2018;186:128-137. doi:10.1016/j.ajo.2017.11.024.182. Wang X, Rumpel H, Baskaran M, et al. Optic nerve tortuosity and globe proptosis in normal and glaucoma subjects. J Glaucoma. 2019;28(8):691-696. doi:10.1097/IJG.0000000000001270.183. Stojanov O, Stokić E, Sveljo O, Naumović N. The influence of retrobulbar adipose tissue volume upon intraocular pressure in obesity. Vojnosanit Pregl. 2013;70(5):469-476. doi:10.2298/vsp1305469s.184. Waspodo N, Giffari Makkaraka MA, Nislawati R, Ismail A, Taufik Fadillah Zainal A, Lolok GB. Role of excessive weight in intraocular pressure: a systematic review and meta-analysis. BMJ Open Ophthalmol. 2023 Nov;8(1). doi:10.1136/bmjophth-2023-001355.185. Trobe JD. Papilledema: the vexing issues. J Neuroophthalmol. 2011;31(2):175-186. doi:10.1097/WNO.0b013e31821a8b0b.186. Schirmer CM, Hedges TR. Mechanisms of visual loss in papilledema. Vol. 23, Neurosurgical focus. 2007.187. Lawlor M, Zhang MG, Virgo J, Plant GT. Asymmetrical intraocular pressures and asymmetrical papilloedema in pseudotumor cerebri syndrome. Neuroophthalmology. 2016;40(6):292-296. doi:10.1080/01658107.2016.1226344.188. Wang D, Xiao H, Lin S, et al. Comparison of the choroid in primary open angle and angle closure glaucoma using optical coherence tomography. J Glaucoma. 2023;32(11). doi:10.1097/IJG.0000000000002303.189. Wang YX, Jiang R, Ren XL, et al. Intraocular pressure elevation and choroidal thinning. Br J Ophthalmol. 2016;100(12):1676-1681. doi:10.1136/bjophthalmol-2015-308062.190. Fortune B, Yang H, Strouthidis NG, Cull GA, Grimm JL, Downs JC, Burgoyne CF. The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance. Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4719-26. doi:10.1167/iovs.08-3289.191. Powell S, Irnaten M, O'Brien C. Glaucoma - 'A Stiff Eye in a Stiff Body'. Curr Eye Res. 2023;48(2):152-160. doi:10.1080/02713683.2022.2039204.192. Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus M V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Vol. 27, Cell Metabolism. Cell Press; 2018. p. 68–83.193. Watts SW, Flood ED, Garver H, Fink GD, Roccabianca S. A New Function for Perivascular Adipose Tissue (PVAT): Assistance of Arterial Stress Relaxation. Sci Rep. 2020 Dec 1;10(1).194. Liu W, Ling J, Chen Y, Wu Y, Lu P. The Association between Adiposity and the Risk of Glaucoma: A Meta-Analysis. Vol. 2017, Journal of Ophthalmology. Hindawi Limited; 2017.195. Norris JH, Ross JJ, Kazim M, Selva D, Malhotra R. The effect of orbital decompression surgery on refraction and intraocular pressure in patients with thyroid orbitopathy. Vol. 26, Eye. Nature Publishing Group; 2012. p. 535–43.196. Lee GA, Ritch R, Liang SYW, Liebmann JM, Dubois P, Bastian-Jordan M, et al. Tight orbit syndrome: A previously unrecognized cause of open-angle glaucoma. Acta Ophthalmol. 2010 Feb;88(1):120–4.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86971/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020733165.2024.pdf1020733165.2024.pdfTesis de Doctorado en Ingeniería - Biomecánicaapplication/pdf8143211https://repositorio.unal.edu.co/bitstream/unal/86971/2/1020733165.2024.pdf1bf14343d875842818613797b372a880MD52THUMBNAIL1020733165.2024.pdf.jpg1020733165.2024.pdf.jpgGenerated Thumbnailimage/jpeg4364https://repositorio.unal.edu.co/bitstream/unal/86971/3/1020733165.2024.pdf.jpge151f8bcb9d1606be233c8489e23d4dfMD53unal/86971oai:repositorio.unal.edu.co:unal/869712024-10-16 23:51:21.762Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=