Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica

Ilustraciones y tablas

Autores:
Dussán Cuenca, Anderson
Quiroz Gaitán, Heiddy Paola
Calderón Cómbita, Jorge Arturo
Tipo de recurso:
Book
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79954
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79954
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
Espintrónica
Electrónica molecular
Microelectrónica
Nanomateriales
Electrones
Materiales espintrónicos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_521cee41d3acb20c8c913adc21192792
oai_identifier_str oai:repositorio.unal.edu.co:unal/79954
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
title Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
spellingShingle Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
620 - Ingeniería y operaciones afines::621 - Física aplicada
Espintrónica
Electrónica molecular
Microelectrónica
Nanomateriales
Electrones
Materiales espintrónicos
title_short Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
title_full Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
title_fullStr Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
title_full_unstemmed Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
title_sort Nanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónica
dc.creator.fl_str_mv Dussán Cuenca, Anderson
Quiroz Gaitán, Heiddy Paola
Calderón Cómbita, Jorge Arturo
dc.contributor.author.none.fl_str_mv Dussán Cuenca, Anderson
Quiroz Gaitán, Heiddy Paola
Calderón Cómbita, Jorge Arturo
dc.contributor.editor.none.fl_str_mv Olaya Murillo, Angélica María
dc.contributor.other.none.fl_str_mv Rojas Rodríguez, Hernán
Fernández Suárez, Leonardo
Cubides, Camilo
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
Espintrónica
Electrónica molecular
Microelectrónica
Nanomateriales
Electrones
Materiales espintrónicos
dc.subject.lemb.spa.fl_str_mv Espintrónica
Electrónica molecular
Microelectrónica
dc.subject.proposal.spa.fl_str_mv Nanomateriales
Electrones
Materiales espintrónicos
description Ilustraciones y tablas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-17T15:17:45Z
dc.date.available.none.fl_str_mv 2021-08-17T15:17:45Z
dc.type.spa.fl_str_mv Libro
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/book
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/LIB
format http://purl.org/coar/resource_type/c_2f33
status_str acceptedVersion
dc.identifier.isbn.spa.fl_str_mv 9789587941616
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79954
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
identifier_str_mv 9789587941616
Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
url https://repositorio.unal.edu.co/handle/unal/79954
https://repositorio.unal.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationedition.spa.fl_str_mv Primera edición
dc.relation.references.spa.fl_str_mv A Dussan, HP Quiroz, JG Martínez A. Nano-columnar grain growth structure of boron-compensated silicon thin. Solar Energy Materials & Solar Cells. 2012; 100:53-56.
F BenyeTtou, A Aissat, MA Benamar, JP Vilcot. Modeling and Simulation of GaSb/GaAs Quantum Dot for Solar Cell. Energy Procedia. 2015; 74:139-147.
M Fitra, I Daut, M Irwanto, N Gomesh, YM Irwan. Effect of Thickness Dye Solar Cell on Charge Generation. Energy Procedia. 2013; 36:278-286.
A del Río-De Santiago et al. Nanostructure formation during relatively high temperature growth of Mn-doped GaAs by molecular beam epitaxy. Applied Surface Science. 2015; 333:92-95.
Y Sbai, A Ait Raiss, L Bahmad, A Benyoussef. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation. Superlattices and Microstructures. 2017; 106:163-169.
W Han, RK Kawakami, M Gmitra, J Fabian. Graphene Spintronics. Nature Nanotechnology, 2014;9:794-807.
Z Mo et al. Growth of ZnO nanowires and their applications for CdS quantum dots sensitized solar cells. Optik–International Journal for Light and Electron Optics. 2017; 149:63-68.
Y Zhang, Z-X Xie, Y-X Deng, X Yu. Impurity distribution and ferromagnetism in Mn-doped GaAs nanowires: A first-principle study. Physics Letters A. 2015;379(42):2745-2749.
F Brieler. Nanostructured Diluted Magnetic Semiconductors within Mesoporous Silica. Alemania: Giessen; 2005.
M Furis, N Rawat, JG Cherian, A Wetherby, R Waterman, S McGill. Organic analogues of diluted magnetic semiconductors: bridging quantum chemistry to condensed matter physics. Proc. SPIE 9551. 2015; Spintronics VIII:95512.
JA Calderón. Estudio de las propiedades ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica [Tesis de Maestría]. Bogotá D. C.: Universidad Nacional de Colombia; 2016.
T Shinjo. Nanomagnetism and Spintronics. Oxford: Elsevier; 2009.
JP Liu, E Fullerton, O Gutfleisch, DJ Sellmyer. Nanoscale Magnetic Materials and applications. New York, USA: Springer; 2009.
K Sato, E Saitoh. Spintronics for Next Generation Innovative Devices. 1. a ed. United Kingdom: John Wiley & Sons; 2015.
MN Baibich et al. Giant Magnetoresistance of (001) Fe/ (001) Cr Magnetic Superlattices. Physical Review Letters. 1988 nov;61(21):2472-2475.
G Binasch, P Grünberg, F Saurenbach, W Zinn. Enhanced Magnetoresistance in Layered Magnetic Structures with antiferromagnetic interlayer exchange. Physical Review B. 1989 marzo;39(7):4828-4830.
ibm Reaserch. ibm Reaserch [Online]. Disponible en http://www.research.ibm. com/research/gmr.html (12 de marzo de 2020).
T Matsuno, S Sugahara, M Tanaka. Novel Reconfigurable Logic Gates Using Spin Metal–Oxide–Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics. 2004 sep;34(9A):6032-6037.
V Dediu, M Murgia, MC Matacotta, C Taliani, S Barbanera. Room Temperature spin polarized injection in organic semiconductor. Solid State Communications. 2002; 122:181-184.
M Ouyang, DD Awschalom. Coherent Spin Transfer Between Molecularly Bridged Quantum Dots. Science. 2003 ago; 301:1074-1078.
FJ Wang, ZH Xiong, D Wu, J Shi, ZV Vardeny. Organic spintronics: The case of Fe/Alq3/Co spin-valve devices. Synthetic Metals. 2005; 155:172-175.
JK Furdyna. Diluted Magnetic Semiconductors. Journal of Applied Physics. 1998 mar;64(4):29-54.
T Dietl. Transport properties of ii-vi semimagnetic semiconductors. Journal of Crystal Growth. 1990;101(1-4):808-817.
J Kossut, JA Gaj. Basic Consequences of sp-d and d-d interactions in dms. J Kossut (ed.). Introduction to the Physics of Diluted Magnetic Semiconductors. New York, usa: Springer; 2010. ch. 1. Pp. 1-17.
H Ohno et al. (GaMn)As: A New Diluted Magnetic Semiconductor Based on GaAs. Applied Physics Letters. 1996;69(3):363-365.
H Ohno. Preparation and Properties of iii–v based New Diluted Magnetic Semiconductors. Advances in colloid and Interface Science. 1997;71-72:61-75.
T Dielt, H Ohno, F Matsukura, J Cibert, D Ferrand. Zener Model Description of Ferromagnetism in Zinc-blende magnetic semiconductors. Science. 2000;287(5455):1019-1022.
K Sato et al. First-principles Theory of Dilute Magnetic Semiconductors. Reviews of Modern Physics. 2010 may; 82:1633-1690.
T Dietl, H Ohno. Diluted Ferromagnetic Semiconductors: Physics and Spintronics Structures. Reviews of Modern Physics. 2014; 86:187-251.
H Wang, L Chen, J Zhao. Enhancement of the Curie temperature of ferromagnetic Semiconductor (Ga,Mn)As. Science China Physics, Mechanics and Astronomy. 2013 ene;56(1):99-110.
WZ Wang et al. Influence of Si doping on magnetic properties of (Ga,Mn)As. Physica E. 2008 jun;41:84-87.
YJ Cho, KM Yu, X Liu, W Walukiewicz, JK Furdyna. Effects of donor doping on Ga1−xMnxAs. Applied Physics Letters. 2008 dic; 93:262505-1-262505-3.
GM Schott et al. Doping of low-temperature GaAs and GaMnAs with carbon. Applied Physics Letters. 2008 nov;85(20):4678-4680.
T Dietl, H Ohno, F Matsukura, J Cibert, D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2000 feb 11;287(5455):1019-1022.
T Dietl, H Ohno, F Matsukura. Hole-mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors. Physical Review B. 2001 abr; 63:195205-1-195205-21.
YD Park et al. Carrier-mediated ferromagnetic ordering in Mn ion-implanted p+GaAs:C. Physical Review B. 2003;68:085210-1-085210-5.
KY Wang et al. (Ga,Mn)As Grown on (311) GaAs Substrates: Modified Mn Incorporation and Magnetic Anisotropies. Physical Review B. 2005 sep; 72:115207-1-115207-6.
U. Wurstbauer et al. Ferromagnetic GaMnAs grown on (110) faced GaAs. Applied Physics Letters. 2008 mar;92(102506):102506-1-102506-3.
KY Wang et al. Magnetism in (Ga,Mn)As Thin Films With TC Up To 173K. aip Conference Proceedings. 2005; 772:333-334.
K Khazen, HJ von Bardeleben, JL Cantin. Intrinsically limited critical temperatures of highly doped Ga1−xMnxAs thin films. Physical Review B. 2010 jun;81(235201):235201-1-235201-6.
S Fukami and H Ohno. Magnetization switching schemes for nanoscale three-terminal spintronics devices. Japanese Journal of Applied Physics. 2017 jun;56(08002A1):0802A1-1-0802A1-12.
S Ikeda et al. Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters. 2008;93(082508):082508-1-082508-3.
JM Albella. Láminas delgadas y recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid: Editorial csic; 2003.
Y Pauleau. Chemical Physics of Thin Film Deposition Processes for Micro- and Nano- Technologies. Lithuania: Springer; 2001.
H Singh Nalwa. Deposition and Processing. San Diego Ca.: Academic Press, 2002.
DM Mattox. Handbook of Physical Vapor Deposition (pvd) Processing. usa: William Andrew; 2010.
JA Calderón, F Mesa, A Dussan. Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys. Applied Surface Science. 2017; 396:1113-1118.
A Fert. Espintrónica: Electrones, espines, ordenadores y teléfonos. Acto de Investidura del Grado de Doctor Honoris Causa. Zaragoza, España: Prensas Universitarias de Zaragosas; 2009. Pp. 31-49.
K Takanashi, S Mizukami. Spintronic Properties and Advanced Materials. Spintronic Properties and Advanced Materials. New York, usa: Springer; 2013. ch. 5.
Z Wilamowski, AM Werpachowska. Spintronics in semiconductors. Materials Science-Poland. 2006;24(3):1-5.
N Badera et al. Photoconductivity of cobalt doped CdS thin films. Physics Procedia. 2013; 49:190-198.
J Ling, Y Shengjiao, J Yimin, W Chunming. Electrochemical Deposition of Diluted Magnetic Semiconductor ZnMnSe2 On Reduced Graphene Oxide polyimide Substrate and its Properties. Journal of Alloys and Compounds. 2014; 609:233-238.
S Güner et al. The structural and magnetic properties of Co+ implanted ZnO films. Applied Surface Science. 2014;310:235-241.
A Chtchelkanova, S Wolf, Y Idzerda. Magnetic Interactions and Spin Transport. New York: Springer; 2003. Pp. 343-348.
NA Sobolev et al. Ferromagnetic Resonance and Hall Effect Characterization of GaMnSb Layers. Journal of Superconductivity and Novel Magnetism. 2007; 20:399-403.
VR Singh et al. Bulk and surface magnetization of Co atoms in rutile Ti1−xCoxO2−δ thin films revealed by x-ray magnetic circular dichroism. Journal of Physics: Condensed Matter. 2011; 23:176001-176005.
P Misra. Spintronics. Physics of Condensed Matter. 1ra ed. Londres: Elsevier; 2012, pp. 339-366.
[58] L Sheng. Semiconductor Physical Electronics. New York: Springer; 2006.
J Singleton. Band Theory and Electronic Properties of Solids. Londres: Oxford University Press; 2012.
PS Dutta, HL Bhat, V Kumar. The physics and technology of gallium antimonide: An emerging optoelectronic material. Applied Physics Review. 1997;81(9):5821-5870.
P Klipstein. Physics and technology of antimonide heterostructure devices at scd: Proceedings of spie. The International Society for Optical Engineering. 2015; 9370:937020-1-937020-8.
JM Albella, JM Martínez-Duart, JJ Jiménez Lidón. Optoelectrónica y comunicación óptica. Madrid: Consejo Superior de Investigaciones Científicas; 1988.
LE Orgel. Introducción a la Química de los Metales de Transición: Teoría de Campo Ligando. Madrid: Editorial Reverté; 2003.
H Munekata et al. Diluted magnetic iii-v semiconductors. Physical Review Letters. 1989;63(17):1849-1852.
H Ohno. Preparation and properties of iii-v based new diluted magnetic semiconductors. Advances in Colloid and Interface Science. 1997;71-72:61-75.
——. Preparation and properties of iii-v based new diluted magnetic semiconductor. Advances in Colloid and Interface Science, 1997.
F Matsukura, E Abe, H Ohno. Magnetotransport properties of (GaMn)Sb. Journal of Applied Physics. 2000;87(9):6442-6444.
S Yanagi, K Kuga, T Slupinski, H Munekata. Carrier-induced ferromagnetic order in the narrow gap iii–v magnetic alloy semiconductor (In,Mn)Sb. Physica E. 2004;20:333-337.
T Adhikari, S Basu. Electrical properties of Gallium Manganese Antimonide: a New Diluted Magnetic Semiconductor. Japan Journal Applied Physics. 1994;33:4581-4582.
M-Y Zhu et al. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline film. Acta Physica Sinica. 2015;64(7):077501.
A Talantsev, O Koplak, R Morgunov. Effect of MnSb clusters recharge on ferromagnetism in GaSb-MnSb thin films. Superlattices and Microstructures. 2016;95:14-23.
J Kossut, JA Gaj. Introduction to the Physics of Diluted Magnetic Semiconductors. New York: Springer; 2010.
S Basu, T Adhikari. Variation of band gap with Mn concentration in Ga1-xMnx Sb a new iii-v Diluted Magnetic Semiconductor. Solid State Comunications. 1995; 95(1):53-55.
PK Sharma, RK Dutta, AC Pan. Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles. Journal of Magnetism and Magnetic Materials.2009;321:3457-3461.
SK Kamilla, BK Samantaray, S Basu. Effect of Ni concentrations on the microhardness of GaNiSb ternary alloys. Journal of Alloys and Compounds. 2006; 414:235-239.
ML Ferreira Nascimento. Brief history of X-ray tube patents. World Patent Information. 2014; 37:48-53.
H Alloul. Introduction to the Physics of Electrons in Solids. New York: Springer; 2010.
AH Compton, SK Allison. X-rays in Theory and Experiment. New York: D. Van Nostrand Company; 1935.
Y Waseda, E Matsubara, K Shinoda. X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems. New York: Springer; 2011.
HP Quiroz, JA Calderón, A Dussan. Estructura cristalina del compuesto Cu2 ZnSnSe4 depositado por co-evaporación: análisis comparativo estannitakesterita. Universitas Scientiarum. 2014;19(2):115-121.
JA Pinilla Arismendy. Implementación de los métodos rir y Rietveld para análisis cuantitativo de fases cristalinas con y sin presencia de material amorfo por difracción de rayos-X de muestras policristalinas[Tesis de maestría]. Bucaramanga: Universidad Industrial de Santander; 2005.
RA Young. Introduction to the Rietveld Method. Oxford: Oxford University Press; 1993.
V Pecharsky, P Zavalij. Fundamentals of Powder Diffraction and Structural Characterization of Materials. New York: Springer; 2009.
HP Quiroz. Preparación y estudio de las propiedades estructurales, ópticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos [Tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia; 2014.
VJ Esteve Cano. El método de Rietveld. España: Universitat Jaume I; 2006.
HP Quiroz, A Dussan. Synthesis of self-organized TiO2 nanotube arrays: Microstructural, stereoscopic, and topographic studies. Journal of Applied Physics. 2016; 120:051703.
HP Quiroz, A Dussan. Nanocrystalline Cu2 ZnSnSe4 thin films for solar cells application: Microdiffraction and structural characterization. Journal of Applied Physics. 2016; 120:051705.
A Dussan, HP Quiroz, NJ Seña Gaibao. Identificación de una Nueva Fase en la Estructura Cristalina del Compuesto Cuaternario Cu2 ZnSnSe4 Durante la Etapa Incorporación del ZnSe. Revista EIA. 2014;11(1): E25-E29.
N Seña, A Dussan, F Mesa, E Castaño, R González-Hernández. “Electronic Structure and Magnetism of Mn-Doped GaSb for Spintronic Applications: A dft Study. Journal Applied Physics. 2016; 120:051704.
JA Calderón, HP Quiroz, A Dussan. Optical and Structural Properties of GaSbDoped Mn Based Diluted Magnetic Semiconductor Thin Films Grown via dc Magnetron Sputtering. Advanced Materials Letters. 2017;8(5):650-655.
KV Shalímova. Física de los Semiconductores. Moscú: Mir; 1975.
C Kittel. Introducción a la Física del Estado Sólido. Madrid: Editorial Reverté; 2003.
CP Pool Jr., FJ Owens. Introducción a la Nanotecnología. Madrid: Editorial Reverté; 2007.
PM Amirthara, DG Seiler. Optical and Physical Properties of Materials. New York: McGraw Hil; 2009.
SR Bhattacharyya, RN Gayen, R Paul, AK Pal. Determination of optical constants of thin films from transmittance trace. Thin Solid Films. 2009; 517:5530–5536.
R Swanepoel. Determination of the Thickness and Optical Constants of Amorphous Silicon. Journal of Physics E: Scientific Instruments. 1983; 16:1214-1222.
A Dussan, HP Quiroz. Optical and Morphological Properties of TiO2 Nanotubes for Sensor Applications. Advanced Materials Research. 2015; 1119:121-125.
S Blundell. Magnetism in Condensed Matter. Londres: Oxford University Press; 2001.
RA Salas Merino. Modelado Avanzado de Núcleos de Ferritas Comerciales en Simuladores de Circuitos [Tesis doctoral]. Madrid: Universidad Carlos iii de Madrid Escuela Politécnica Superior; 2011.
Paul Hlawiczka. Introducción a la electrónica cuántica. New York: Editorial Reverté; 1977.
N Nagaosa, J Sinova, S Onoda, AH MacDonald, NP Ong. Anomalous Hall Effect. Reviews of Modern Physics. 2010; 82:1540-1589.
X Guo. Size dependent grain-boundary conductivity in doped zirconia. Computational Materials Science. 2001; 20:168-176.
JJ Van Hapert. Hopping Conduction and Chemical Structure. Alemania: Faculteit Natuur- en Sterrenkunde Universiteit Utrecht; 1973.
A Dussan, RH Buitrago. Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films. Journal of Applied Physics. 2005;97(043711):043711-1-043711-5.
M Thamilselvan, K Premnazeer, SK Narayandass, Field and temperaturedependent electronic transport parameters of amorphous and polycrystalline GaSe thin films. Physica B. 2003; 337:404–412.
PP Freitas et al. Spin Valves Sensor. Sensor and Actuartos. 2000; 81:2-8.
C Hordequin, JP Nozieres, J Pierre. Half metallic NiMnSb-based spin-valve structures. Journal of Magnetism and Magnetic Materials. 1998; 183:225-231.
Z Michael, JT Martin. Spin Electronics: Lecture Notes in Physics. Berlin: Springer; 2001.
R Ferreira et al. Tuning of MgO barrier magnetic tunnel junction bias current for picotesla magnetic field detection,” Journal Applied Physics, vol. 99, pp. 08K706:1- 08K706:3, 2006.
AN Slavin, V Tiberkevich, ieee Trans. Magnetism. 2009; 45:1875.
E Monteblanco, C Ortiz Pauyac, W Savero, JC Rojas Sánchez. Espintrónica: la Electrónica del Espín. Spintronics: Spin Electronics. Revista Tecnifica (Tecnia), 2017:5-16.
RB Morgunov, GL L’vova, AD Talantsev, Y Lu, S Mangin. Ferromagnetic resonance of CoFeB/Ta/CoFeB spin valves versus CoFeB film. Thin Solid Films. 2017; 640:8-13.
AV Svalovab, VO Vaskovskiy, I Orue, GV Kurlyandska. Tailoring of switching field in GdCo-based spin valves by inserting Co layer. Journal of Magnetism and Magnetic Materials. 2017; 441:795-798.
K Tarawneh, N Al-Aqtash, R Sabiria. Large magnetoresistance of MnBi/Bi/MnBi spin valve. Journal of Magnetism and Magnetic Materials. 2014; 363:43-48.
ME Bernal, A Dussan, F Mesa. Structural, optical and morphological properties of Ga1−xMnx As thin films deposited by magnetron sputtering for spintronic device applications. Physica B: Condensed Matter. 2012;407(16):3210-3213.
M Gryglas-Borysiewicz et al. Magnetotransport investigations of (Ga,Mn) As/GaAs Esaki diodes under hydrostatic pressure. Applied Surface Science. 2017; 396:1875-1879.
SD Birajdar, RC Alange, SD More, VD Murumkar, KM Jadhav. Sol-gel Auto Combustion Synthesis, Structural and Magnetic Properties of Mn doped ZnO Nanoparticles. Procedia Manufacturing. 2018; 20:174-180.
SA Ahmed. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics. 2017; 7:604-610.
AA Raiss, Y Sbai, L Bahmad, A Benyoussef. Magnetic and magneto-optical properties of doped and co-doped CdTe with (Mn, Fe): Ab-initio study. Journal of Magnetism and Magnetic Materials. 2015; 385:295-301.
SP Nehra, MK Jangid, S Sri. Role of hydrogen in electrical and structural characteristics of bilayer CdTe/Mn diluted magnetic semiconductor thin films. International Journal of Hydrogen Energy. 2009;34(17):7306-7310.
A Dussan, A Bohórquez, HP Quiroz. Effect of annealing process in TiO2 thin films: Structural, morphological, and optical properties. Applied Surface Science. 2017; 424:111-114.
L Wang et al. Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process. Journal of Hazardous Materials. 2018; 342:579-588.
AD Talantsev, OV Koplak, RB Morgunov. Ferromagnetism and microwave magnetoresistance of GaMnSb films. Physics of the Solid State. 2015;57(2):322-330.
VA Elyukhin. Self-assembling of 1Sb4Mn magnetic clusters in GaAs:(Mn, Sb). Superlattices and Microstructures. 2014; 70:7-12.
U Ilyas et al. Enhanced ferromagnetic response in ZnO:Mn thin films by tailoring composition and defect concentration. Journal of Magnetism and Magnetic Materials. 2013; 344:171-175.
C Ding, S Wu, L Wu, Y Xu, L Zhang. The investigation of the defect structures for Co2+ in ZnO microwires, thin films and bulks. Journal of Physics and Chemistry of Solids. 2017; 106:94-98.
BK Meyer, H Alves, DM Hofmann, W Kriegseis, et al. Physica Status Solidi B. 2004;241(2): 231-260.
O Madelung. Data in Science and Technology: Semiconductors. Berlín: Spring; 1992.
HP Quiroz. Preparación y Estudio de las Propiedades Estructurales, Ópticas y Morfológicas de Nanotubos de TiO2 para su Aplicación en Sensores Ópticos [Tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia, 2014.
I Tatlıdil, E Bacaksız, C Kurtuluş Buruk, C Breen, M Sökmen. A Short Literature Survey on Iron and Cobalt Ion Doped TiO2 Thin Films and Photocatalytic Activity of these Films Against Fungi. Journal of Alloys and Compounds. 2017; 517:80-86.
D Sarkar, CK Ghosh, UN Maiti, KK Chattopadhyay. Effect of Spin Polarization on the Optical Properties of Co-doped TiO2 Thin Films. Physica B. 2011; 406:1429–1435.
I Ganesh et al. Preparation and Characterization of Co-doped TiO2 Materials for Solar Light Induced Current and Photocatalytic Applications. Materials Chemistry and Physics. 2012; 135:220-234.
Y Matsumoto, M Murakami, T Shono, T Hasegawa, T Fukumura, M Kawasaki, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science. 2001; 291:854-856.
AJ Bohórquez, HP Quiroz, A Dussan. Growth and Crystallization of Cobaltdoped TiO2 Alloys: Effect of Substrate and Annealing Temperature. Applied Surface Science. 2019; 474:97-101.
HP Quiroz. Estudio de las Propiedades Físicas del TiO2:Co como un Semiconductor Magnético Diluido para Aplicaciones en Espintrónica [Tesis de doctorado]. Bogotá D.C.: Universidad Nacional de Colombia, 2019.
MV Kamalakar, C Groenveld, A Dankert, SP Dash. Long distance spin communication in chemical Vapor Deposited Graphene. Nature Communications [Internet]. 2015: 1-8. www.nature.com/naturecommunications
AF Vincent et al. Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse for Neuromorphic Systems. ieee Transactions on Biomedical Circuits and Systems. 2015 abr;9(2):166-174.
dc.rights.spa.fl_str_mv Derechos Reservados al Autor, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos Reservados al Autor, 2020
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 108 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.department.spa.fl_str_mv Sede Bogotá
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79954/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79954/2/Nanomateriales%20que%20revolucionan%20la%20tecnolog%c3%ada.pdf
https://repositorio.unal.edu.co/bitstream/unal/79954/3/Nanomateriales%20que%20revolucionan%20la%20tecnolog%c3%ada.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
380c44d716ba5caffd3c1598d5c52e5f
80a5867e3c3e1fcbfcc8be0f3a281647
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886549224161280
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2020http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dussán Cuenca, Anderson393dbd423635d474564f566b8ee5f549Quiroz Gaitán, Heiddy Paola7042278b0083cfb6c64b445f0bf71b66Calderón Cómbita, Jorge Arturocf0804d5f93317f8eba6c3b4430c4decOlaya Murillo, Angélica MaríaRojas Rodríguez, HernánFernández Suárez, LeonardoCubides, Camilo2021-08-17T15:17:45Z2021-08-17T15:17:45Z20209789587941616https://repositorio.unal.edu.co/handle/unal/79954Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones y tablasEste libro contiene fundamentos importantes desarrollados en trabajos de investigación, análisis y documentación, que permiten conocer la incidencia positiva de nuevos materiales basados en nanoestructuras semiconductoras y sus potenciales aplicaciones en sistemas de resguardo de la información y en la revolución tecnológica marcada por la espintrónica. (Texto tomado de la fuente).Incluye apéndices, índice análitico y glosarioISBN de la versión impresa 9789587941609Primera ediciónxviii, 108 páginasapplication/pdfspaUniversidad Nacional de ColombiaSede BogotáBogotá, Colombia620 - Ingeniería y operaciones afines::621 - Física aplicadaEspintrónicaElectrónica molecularMicroelectrónicaNanomaterialesElectronesMateriales espintrónicosNanomateriales que revolucionan la tecnología : perspectivas y aplicaciones en espintrónicaLibroinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_2f33Texthttp://purl.org/redcol/resource_type/LIBPrimera ediciónA Dussan, HP Quiroz, JG Martínez A. Nano-columnar grain growth structure of boron-compensated silicon thin. Solar Energy Materials & Solar Cells. 2012; 100:53-56.F BenyeTtou, A Aissat, MA Benamar, JP Vilcot. Modeling and Simulation of GaSb/GaAs Quantum Dot for Solar Cell. Energy Procedia. 2015; 74:139-147.M Fitra, I Daut, M Irwanto, N Gomesh, YM Irwan. Effect of Thickness Dye Solar Cell on Charge Generation. Energy Procedia. 2013; 36:278-286.A del Río-De Santiago et al. Nanostructure formation during relatively high temperature growth of Mn-doped GaAs by molecular beam epitaxy. Applied Surface Science. 2015; 333:92-95.Y Sbai, A Ait Raiss, L Bahmad, A Benyoussef. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation. Superlattices and Microstructures. 2017; 106:163-169.W Han, RK Kawakami, M Gmitra, J Fabian. Graphene Spintronics. Nature Nanotechnology, 2014;9:794-807.Z Mo et al. Growth of ZnO nanowires and their applications for CdS quantum dots sensitized solar cells. Optik–International Journal for Light and Electron Optics. 2017; 149:63-68.Y Zhang, Z-X Xie, Y-X Deng, X Yu. Impurity distribution and ferromagnetism in Mn-doped GaAs nanowires: A first-principle study. Physics Letters A. 2015;379(42):2745-2749.F Brieler. Nanostructured Diluted Magnetic Semiconductors within Mesoporous Silica. Alemania: Giessen; 2005.M Furis, N Rawat, JG Cherian, A Wetherby, R Waterman, S McGill. Organic analogues of diluted magnetic semiconductors: bridging quantum chemistry to condensed matter physics. Proc. SPIE 9551. 2015; Spintronics VIII:95512.JA Calderón. Estudio de las propiedades ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica [Tesis de Maestría]. Bogotá D. C.: Universidad Nacional de Colombia; 2016.T Shinjo. Nanomagnetism and Spintronics. Oxford: Elsevier; 2009.JP Liu, E Fullerton, O Gutfleisch, DJ Sellmyer. Nanoscale Magnetic Materials and applications. New York, USA: Springer; 2009.K Sato, E Saitoh. Spintronics for Next Generation Innovative Devices. 1. a ed. United Kingdom: John Wiley & Sons; 2015.MN Baibich et al. Giant Magnetoresistance of (001) Fe/ (001) Cr Magnetic Superlattices. Physical Review Letters. 1988 nov;61(21):2472-2475.G Binasch, P Grünberg, F Saurenbach, W Zinn. Enhanced Magnetoresistance in Layered Magnetic Structures with antiferromagnetic interlayer exchange. Physical Review B. 1989 marzo;39(7):4828-4830.ibm Reaserch. ibm Reaserch [Online]. Disponible en http://www.research.ibm. com/research/gmr.html (12 de marzo de 2020).T Matsuno, S Sugahara, M Tanaka. Novel Reconfigurable Logic Gates Using Spin Metal–Oxide–Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics. 2004 sep;34(9A):6032-6037.V Dediu, M Murgia, MC Matacotta, C Taliani, S Barbanera. Room Temperature spin polarized injection in organic semiconductor. Solid State Communications. 2002; 122:181-184.M Ouyang, DD Awschalom. Coherent Spin Transfer Between Molecularly Bridged Quantum Dots. Science. 2003 ago; 301:1074-1078.FJ Wang, ZH Xiong, D Wu, J Shi, ZV Vardeny. Organic spintronics: The case of Fe/Alq3/Co spin-valve devices. Synthetic Metals. 2005; 155:172-175.JK Furdyna. Diluted Magnetic Semiconductors. Journal of Applied Physics. 1998 mar;64(4):29-54.T Dietl. Transport properties of ii-vi semimagnetic semiconductors. Journal of Crystal Growth. 1990;101(1-4):808-817.J Kossut, JA Gaj. Basic Consequences of sp-d and d-d interactions in dms. J Kossut (ed.). Introduction to the Physics of Diluted Magnetic Semiconductors. New York, usa: Springer; 2010. ch. 1. Pp. 1-17.H Ohno et al. (GaMn)As: A New Diluted Magnetic Semiconductor Based on GaAs. Applied Physics Letters. 1996;69(3):363-365.H Ohno. Preparation and Properties of iii–v based New Diluted Magnetic Semiconductors. Advances in colloid and Interface Science. 1997;71-72:61-75.T Dielt, H Ohno, F Matsukura, J Cibert, D Ferrand. Zener Model Description of Ferromagnetism in Zinc-blende magnetic semiconductors. Science. 2000;287(5455):1019-1022.K Sato et al. First-principles Theory of Dilute Magnetic Semiconductors. Reviews of Modern Physics. 2010 may; 82:1633-1690.T Dietl, H Ohno. Diluted Ferromagnetic Semiconductors: Physics and Spintronics Structures. Reviews of Modern Physics. 2014; 86:187-251.H Wang, L Chen, J Zhao. Enhancement of the Curie temperature of ferromagnetic Semiconductor (Ga,Mn)As. Science China Physics, Mechanics and Astronomy. 2013 ene;56(1):99-110.WZ Wang et al. Influence of Si doping on magnetic properties of (Ga,Mn)As. Physica E. 2008 jun;41:84-87.YJ Cho, KM Yu, X Liu, W Walukiewicz, JK Furdyna. Effects of donor doping on Ga1−xMnxAs. Applied Physics Letters. 2008 dic; 93:262505-1-262505-3.GM Schott et al. Doping of low-temperature GaAs and GaMnAs with carbon. Applied Physics Letters. 2008 nov;85(20):4678-4680.T Dietl, H Ohno, F Matsukura, J Cibert, D. Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2000 feb 11;287(5455):1019-1022.T Dietl, H Ohno, F Matsukura. Hole-mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors. Physical Review B. 2001 abr; 63:195205-1-195205-21.YD Park et al. Carrier-mediated ferromagnetic ordering in Mn ion-implanted p+GaAs:C. Physical Review B. 2003;68:085210-1-085210-5.KY Wang et al. (Ga,Mn)As Grown on (311) GaAs Substrates: Modified Mn Incorporation and Magnetic Anisotropies. Physical Review B. 2005 sep; 72:115207-1-115207-6.U. Wurstbauer et al. Ferromagnetic GaMnAs grown on (110) faced GaAs. Applied Physics Letters. 2008 mar;92(102506):102506-1-102506-3.KY Wang et al. Magnetism in (Ga,Mn)As Thin Films With TC Up To 173K. aip Conference Proceedings. 2005; 772:333-334.K Khazen, HJ von Bardeleben, JL Cantin. Intrinsically limited critical temperatures of highly doped Ga1−xMnxAs thin films. Physical Review B. 2010 jun;81(235201):235201-1-235201-6.S Fukami and H Ohno. Magnetization switching schemes for nanoscale three-terminal spintronics devices. Japanese Journal of Applied Physics. 2017 jun;56(08002A1):0802A1-1-0802A1-12.S Ikeda et al. Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters. 2008;93(082508):082508-1-082508-3.JM Albella. Láminas delgadas y recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid: Editorial csic; 2003.Y Pauleau. Chemical Physics of Thin Film Deposition Processes for Micro- and Nano- Technologies. Lithuania: Springer; 2001.H Singh Nalwa. Deposition and Processing. San Diego Ca.: Academic Press, 2002.DM Mattox. Handbook of Physical Vapor Deposition (pvd) Processing. usa: William Andrew; 2010.JA Calderón, F Mesa, A Dussan. Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys. Applied Surface Science. 2017; 396:1113-1118.A Fert. Espintrónica: Electrones, espines, ordenadores y teléfonos. Acto de Investidura del Grado de Doctor Honoris Causa. Zaragoza, España: Prensas Universitarias de Zaragosas; 2009. Pp. 31-49.K Takanashi, S Mizukami. Spintronic Properties and Advanced Materials. Spintronic Properties and Advanced Materials. New York, usa: Springer; 2013. ch. 5.Z Wilamowski, AM Werpachowska. Spintronics in semiconductors. Materials Science-Poland. 2006;24(3):1-5.N Badera et al. Photoconductivity of cobalt doped CdS thin films. Physics Procedia. 2013; 49:190-198.J Ling, Y Shengjiao, J Yimin, W Chunming. Electrochemical Deposition of Diluted Magnetic Semiconductor ZnMnSe2 On Reduced Graphene Oxide polyimide Substrate and its Properties. Journal of Alloys and Compounds. 2014; 609:233-238.S Güner et al. The structural and magnetic properties of Co+ implanted ZnO films. Applied Surface Science. 2014;310:235-241.A Chtchelkanova, S Wolf, Y Idzerda. Magnetic Interactions and Spin Transport. New York: Springer; 2003. Pp. 343-348.NA Sobolev et al. Ferromagnetic Resonance and Hall Effect Characterization of GaMnSb Layers. Journal of Superconductivity and Novel Magnetism. 2007; 20:399-403.VR Singh et al. Bulk and surface magnetization of Co atoms in rutile Ti1−xCoxO2−δ thin films revealed by x-ray magnetic circular dichroism. Journal of Physics: Condensed Matter. 2011; 23:176001-176005.P Misra. Spintronics. Physics of Condensed Matter. 1ra ed. Londres: Elsevier; 2012, pp. 339-366.[58] L Sheng. Semiconductor Physical Electronics. New York: Springer; 2006.J Singleton. Band Theory and Electronic Properties of Solids. Londres: Oxford University Press; 2012.PS Dutta, HL Bhat, V Kumar. The physics and technology of gallium antimonide: An emerging optoelectronic material. Applied Physics Review. 1997;81(9):5821-5870.P Klipstein. Physics and technology of antimonide heterostructure devices at scd: Proceedings of spie. The International Society for Optical Engineering. 2015; 9370:937020-1-937020-8.JM Albella, JM Martínez-Duart, JJ Jiménez Lidón. Optoelectrónica y comunicación óptica. Madrid: Consejo Superior de Investigaciones Científicas; 1988.LE Orgel. Introducción a la Química de los Metales de Transición: Teoría de Campo Ligando. Madrid: Editorial Reverté; 2003.H Munekata et al. Diluted magnetic iii-v semiconductors. Physical Review Letters. 1989;63(17):1849-1852.H Ohno. Preparation and properties of iii-v based new diluted magnetic semiconductors. Advances in Colloid and Interface Science. 1997;71-72:61-75.——. Preparation and properties of iii-v based new diluted magnetic semiconductor. Advances in Colloid and Interface Science, 1997.F Matsukura, E Abe, H Ohno. Magnetotransport properties of (GaMn)Sb. Journal of Applied Physics. 2000;87(9):6442-6444.S Yanagi, K Kuga, T Slupinski, H Munekata. Carrier-induced ferromagnetic order in the narrow gap iii–v magnetic alloy semiconductor (In,Mn)Sb. Physica E. 2004;20:333-337.T Adhikari, S Basu. Electrical properties of Gallium Manganese Antimonide: a New Diluted Magnetic Semiconductor. Japan Journal Applied Physics. 1994;33:4581-4582.M-Y Zhu et al. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline film. Acta Physica Sinica. 2015;64(7):077501.A Talantsev, O Koplak, R Morgunov. Effect of MnSb clusters recharge on ferromagnetism in GaSb-MnSb thin films. Superlattices and Microstructures. 2016;95:14-23.J Kossut, JA Gaj. Introduction to the Physics of Diluted Magnetic Semiconductors. New York: Springer; 2010.S Basu, T Adhikari. Variation of band gap with Mn concentration in Ga1-xMnx Sb a new iii-v Diluted Magnetic Semiconductor. Solid State Comunications. 1995; 95(1):53-55.PK Sharma, RK Dutta, AC Pan. Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles. Journal of Magnetism and Magnetic Materials.2009;321:3457-3461.SK Kamilla, BK Samantaray, S Basu. Effect of Ni concentrations on the microhardness of GaNiSb ternary alloys. Journal of Alloys and Compounds. 2006; 414:235-239.ML Ferreira Nascimento. Brief history of X-ray tube patents. World Patent Information. 2014; 37:48-53.H Alloul. Introduction to the Physics of Electrons in Solids. New York: Springer; 2010.AH Compton, SK Allison. X-rays in Theory and Experiment. New York: D. Van Nostrand Company; 1935.Y Waseda, E Matsubara, K Shinoda. X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems. New York: Springer; 2011.HP Quiroz, JA Calderón, A Dussan. Estructura cristalina del compuesto Cu2 ZnSnSe4 depositado por co-evaporación: análisis comparativo estannitakesterita. Universitas Scientiarum. 2014;19(2):115-121.JA Pinilla Arismendy. Implementación de los métodos rir y Rietveld para análisis cuantitativo de fases cristalinas con y sin presencia de material amorfo por difracción de rayos-X de muestras policristalinas[Tesis de maestría]. Bucaramanga: Universidad Industrial de Santander; 2005.RA Young. Introduction to the Rietveld Method. Oxford: Oxford University Press; 1993.V Pecharsky, P Zavalij. Fundamentals of Powder Diffraction and Structural Characterization of Materials. New York: Springer; 2009.HP Quiroz. Preparación y estudio de las propiedades estructurales, ópticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos [Tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia; 2014.VJ Esteve Cano. El método de Rietveld. España: Universitat Jaume I; 2006.HP Quiroz, A Dussan. Synthesis of self-organized TiO2 nanotube arrays: Microstructural, stereoscopic, and topographic studies. Journal of Applied Physics. 2016; 120:051703.HP Quiroz, A Dussan. Nanocrystalline Cu2 ZnSnSe4 thin films for solar cells application: Microdiffraction and structural characterization. Journal of Applied Physics. 2016; 120:051705.A Dussan, HP Quiroz, NJ Seña Gaibao. Identificación de una Nueva Fase en la Estructura Cristalina del Compuesto Cuaternario Cu2 ZnSnSe4 Durante la Etapa Incorporación del ZnSe. Revista EIA. 2014;11(1): E25-E29.N Seña, A Dussan, F Mesa, E Castaño, R González-Hernández. “Electronic Structure and Magnetism of Mn-Doped GaSb for Spintronic Applications: A dft Study. Journal Applied Physics. 2016; 120:051704.JA Calderón, HP Quiroz, A Dussan. Optical and Structural Properties of GaSbDoped Mn Based Diluted Magnetic Semiconductor Thin Films Grown via dc Magnetron Sputtering. Advanced Materials Letters. 2017;8(5):650-655.KV Shalímova. Física de los Semiconductores. Moscú: Mir; 1975.C Kittel. Introducción a la Física del Estado Sólido. Madrid: Editorial Reverté; 2003.CP Pool Jr., FJ Owens. Introducción a la Nanotecnología. Madrid: Editorial Reverté; 2007.PM Amirthara, DG Seiler. Optical and Physical Properties of Materials. New York: McGraw Hil; 2009.SR Bhattacharyya, RN Gayen, R Paul, AK Pal. Determination of optical constants of thin films from transmittance trace. Thin Solid Films. 2009; 517:5530–5536.R Swanepoel. Determination of the Thickness and Optical Constants of Amorphous Silicon. Journal of Physics E: Scientific Instruments. 1983; 16:1214-1222.A Dussan, HP Quiroz. Optical and Morphological Properties of TiO2 Nanotubes for Sensor Applications. Advanced Materials Research. 2015; 1119:121-125.S Blundell. Magnetism in Condensed Matter. Londres: Oxford University Press; 2001.RA Salas Merino. Modelado Avanzado de Núcleos de Ferritas Comerciales en Simuladores de Circuitos [Tesis doctoral]. Madrid: Universidad Carlos iii de Madrid Escuela Politécnica Superior; 2011.Paul Hlawiczka. Introducción a la electrónica cuántica. New York: Editorial Reverté; 1977.N Nagaosa, J Sinova, S Onoda, AH MacDonald, NP Ong. Anomalous Hall Effect. Reviews of Modern Physics. 2010; 82:1540-1589.X Guo. Size dependent grain-boundary conductivity in doped zirconia. Computational Materials Science. 2001; 20:168-176.JJ Van Hapert. Hopping Conduction and Chemical Structure. Alemania: Faculteit Natuur- en Sterrenkunde Universiteit Utrecht; 1973.A Dussan, RH Buitrago. Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films. Journal of Applied Physics. 2005;97(043711):043711-1-043711-5.M Thamilselvan, K Premnazeer, SK Narayandass, Field and temperaturedependent electronic transport parameters of amorphous and polycrystalline GaSe thin films. Physica B. 2003; 337:404–412.PP Freitas et al. Spin Valves Sensor. Sensor and Actuartos. 2000; 81:2-8.C Hordequin, JP Nozieres, J Pierre. Half metallic NiMnSb-based spin-valve structures. Journal of Magnetism and Magnetic Materials. 1998; 183:225-231.Z Michael, JT Martin. Spin Electronics: Lecture Notes in Physics. Berlin: Springer; 2001.R Ferreira et al. Tuning of MgO barrier magnetic tunnel junction bias current for picotesla magnetic field detection,” Journal Applied Physics, vol. 99, pp. 08K706:1- 08K706:3, 2006.AN Slavin, V Tiberkevich, ieee Trans. Magnetism. 2009; 45:1875.E Monteblanco, C Ortiz Pauyac, W Savero, JC Rojas Sánchez. Espintrónica: la Electrónica del Espín. Spintronics: Spin Electronics. Revista Tecnifica (Tecnia), 2017:5-16.RB Morgunov, GL L’vova, AD Talantsev, Y Lu, S Mangin. Ferromagnetic resonance of CoFeB/Ta/CoFeB spin valves versus CoFeB film. Thin Solid Films. 2017; 640:8-13.AV Svalovab, VO Vaskovskiy, I Orue, GV Kurlyandska. Tailoring of switching field in GdCo-based spin valves by inserting Co layer. Journal of Magnetism and Magnetic Materials. 2017; 441:795-798.K Tarawneh, N Al-Aqtash, R Sabiria. Large magnetoresistance of MnBi/Bi/MnBi spin valve. Journal of Magnetism and Magnetic Materials. 2014; 363:43-48.ME Bernal, A Dussan, F Mesa. Structural, optical and morphological properties of Ga1−xMnx As thin films deposited by magnetron sputtering for spintronic device applications. Physica B: Condensed Matter. 2012;407(16):3210-3213.M Gryglas-Borysiewicz et al. Magnetotransport investigations of (Ga,Mn) As/GaAs Esaki diodes under hydrostatic pressure. Applied Surface Science. 2017; 396:1875-1879.SD Birajdar, RC Alange, SD More, VD Murumkar, KM Jadhav. Sol-gel Auto Combustion Synthesis, Structural and Magnetic Properties of Mn doped ZnO Nanoparticles. Procedia Manufacturing. 2018; 20:174-180.SA Ahmed. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics. 2017; 7:604-610.AA Raiss, Y Sbai, L Bahmad, A Benyoussef. Magnetic and magneto-optical properties of doped and co-doped CdTe with (Mn, Fe): Ab-initio study. Journal of Magnetism and Magnetic Materials. 2015; 385:295-301.SP Nehra, MK Jangid, S Sri. Role of hydrogen in electrical and structural characteristics of bilayer CdTe/Mn diluted magnetic semiconductor thin films. International Journal of Hydrogen Energy. 2009;34(17):7306-7310.A Dussan, A Bohórquez, HP Quiroz. Effect of annealing process in TiO2 thin films: Structural, morphological, and optical properties. Applied Surface Science. 2017; 424:111-114.L Wang et al. Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process. Journal of Hazardous Materials. 2018; 342:579-588.AD Talantsev, OV Koplak, RB Morgunov. Ferromagnetism and microwave magnetoresistance of GaMnSb films. Physics of the Solid State. 2015;57(2):322-330.VA Elyukhin. Self-assembling of 1Sb4Mn magnetic clusters in GaAs:(Mn, Sb). Superlattices and Microstructures. 2014; 70:7-12.U Ilyas et al. Enhanced ferromagnetic response in ZnO:Mn thin films by tailoring composition and defect concentration. Journal of Magnetism and Magnetic Materials. 2013; 344:171-175.C Ding, S Wu, L Wu, Y Xu, L Zhang. The investigation of the defect structures for Co2+ in ZnO microwires, thin films and bulks. Journal of Physics and Chemistry of Solids. 2017; 106:94-98.BK Meyer, H Alves, DM Hofmann, W Kriegseis, et al. Physica Status Solidi B. 2004;241(2): 231-260.O Madelung. Data in Science and Technology: Semiconductors. Berlín: Spring; 1992.HP Quiroz. Preparación y Estudio de las Propiedades Estructurales, Ópticas y Morfológicas de Nanotubos de TiO2 para su Aplicación en Sensores Ópticos [Tesis de maestría]. Bogotá D.C.: Universidad Nacional de Colombia, 2014.I Tatlıdil, E Bacaksız, C Kurtuluş Buruk, C Breen, M Sökmen. A Short Literature Survey on Iron and Cobalt Ion Doped TiO2 Thin Films and Photocatalytic Activity of these Films Against Fungi. Journal of Alloys and Compounds. 2017; 517:80-86.D Sarkar, CK Ghosh, UN Maiti, KK Chattopadhyay. Effect of Spin Polarization on the Optical Properties of Co-doped TiO2 Thin Films. Physica B. 2011; 406:1429–1435.I Ganesh et al. Preparation and Characterization of Co-doped TiO2 Materials for Solar Light Induced Current and Photocatalytic Applications. Materials Chemistry and Physics. 2012; 135:220-234.Y Matsumoto, M Murakami, T Shono, T Hasegawa, T Fukumura, M Kawasaki, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science. 2001; 291:854-856.AJ Bohórquez, HP Quiroz, A Dussan. Growth and Crystallization of Cobaltdoped TiO2 Alloys: Effect of Substrate and Annealing Temperature. Applied Surface Science. 2019; 474:97-101.HP Quiroz. Estudio de las Propiedades Físicas del TiO2:Co como un Semiconductor Magnético Diluido para Aplicaciones en Espintrónica [Tesis de doctorado]. Bogotá D.C.: Universidad Nacional de Colombia, 2019.MV Kamalakar, C Groenveld, A Dankert, SP Dash. Long distance spin communication in chemical Vapor Deposited Graphene. Nature Communications [Internet]. 2015: 1-8. www.nature.com/naturecommunicationsAF Vincent et al. Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse for Neuromorphic Systems. ieee Transactions on Biomedical Circuits and Systems. 2015 abr;9(2):166-174.GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79954/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALNanomateriales que revolucionan la tecnología.pdfNanomateriales que revolucionan la tecnología.pdfLibro del Departamento de Físicaapplication/pdf11794862https://repositorio.unal.edu.co/bitstream/unal/79954/2/Nanomateriales%20que%20revolucionan%20la%20tecnolog%c3%ada.pdf380c44d716ba5caffd3c1598d5c52e5fMD52THUMBNAILNanomateriales que revolucionan la tecnología.pdf.jpgNanomateriales que revolucionan la tecnología.pdf.jpgGenerated Thumbnailimage/jpeg6150https://repositorio.unal.edu.co/bitstream/unal/79954/3/Nanomateriales%20que%20revolucionan%20la%20tecnolog%c3%ada.pdf.jpg80a5867e3c3e1fcbfcc8be0f3a281647MD53unal/79954oai:repositorio.unal.edu.co:unal/799542023-11-13 17:02:44.739Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==