Comportamiento mecánico de puentes esviados tipo viga-losa de concreto

ilustraciones

Autores:
Beleño Hernández, Andrés Alejandro Santander
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79738
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79738
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Puentes esviados
Modelación numérica
MEF 3D
MEF 2D
Método simplificado
Skewed bridges
Numerical models
FEM 3D
FEM 2D
Simplified method
Elemento estructural (construcción)
Infraestructura de transportes
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_51637b4ca60d6d05070001a77319b2df
oai_identifier_str oai:repositorio.unal.edu.co:unal/79738
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Comportamiento mecánico de puentes esviados tipo viga-losa de concreto
dc.title.translated.eng.fl_str_mv Mechanical behavior of concrete beam-slab skewed bridges
title Comportamiento mecánico de puentes esviados tipo viga-losa de concreto
spellingShingle Comportamiento mecánico de puentes esviados tipo viga-losa de concreto
620 - Ingeniería y operaciones afines
Puentes esviados
Modelación numérica
MEF 3D
MEF 2D
Método simplificado
Skewed bridges
Numerical models
FEM 3D
FEM 2D
Simplified method
Elemento estructural (construcción)
Infraestructura de transportes
title_short Comportamiento mecánico de puentes esviados tipo viga-losa de concreto
title_full Comportamiento mecánico de puentes esviados tipo viga-losa de concreto
title_fullStr Comportamiento mecánico de puentes esviados tipo viga-losa de concreto
title_full_unstemmed Comportamiento mecánico de puentes esviados tipo viga-losa de concreto
title_sort Comportamiento mecánico de puentes esviados tipo viga-losa de concreto
dc.creator.fl_str_mv Beleño Hernández, Andrés Alejandro Santander
dc.contributor.advisor.none.fl_str_mv Molina Herrera, Maritzabel
Dueñas Puentes, Diego Ernesto
dc.contributor.author.none.fl_str_mv Beleño Hernández, Andrés Alejandro Santander
dc.contributor.researchgroup.spa.fl_str_mv Análisis, diseño y materiales - GIES
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Puentes esviados
Modelación numérica
MEF 3D
MEF 2D
Método simplificado
Skewed bridges
Numerical models
FEM 3D
FEM 2D
Simplified method
Elemento estructural (construcción)
Infraestructura de transportes
dc.subject.proposal.spa.fl_str_mv Puentes esviados
Modelación numérica
MEF 3D
MEF 2D
Método simplificado
dc.subject.proposal.eng.fl_str_mv Skewed bridges
Numerical models
FEM 3D
FEM 2D
Simplified method
dc.subject.unesco.spa.fl_str_mv Elemento estructural (construcción)
Infraestructura de transportes
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-29T19:19:18Z
dc.date.available.none.fl_str_mv 2021-06-29T19:19:18Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Image
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79738
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79738
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv AASHTO. (2012). AASHTO LRFD Bridge design specifications (6th ed.). AASHTO. www.transportation.org
AIS. (2014). SECCION 4 - ANALISIS Y EVALUACION ESTRUCTURAL. In Norma Colombiana de Diseño de Puentes LRFD CCP-14 (p. 88). AIS.
C.S Surana, & Agrawal, R. (1998). Grillage Analogy in Bridge Deck Analysis - C. S. Surana, Ramji Agrawal - Google Libros (Narosa (ed.); Ilustrada). https://books.google.com.co/books/about/Grillage_Analogy_in_Bridge_Deck_Analysis.html?id=oXUH54dbZKcC&redir_esc=y
Childs, D. (2013). Grillage Analysis of Bridge Decks. http://www.bridgedesign.org.uk/tutorial/grillage.html
CSI KNOWLEDGE BASE. (2013). Home - CSiBridge - Computers and Structures, Inc. - Technical Knowledge Base. https://wiki.csiamerica.com/display/CSiBridge/Home
E C Hambly. (1991). Bridge Deck Behaviour, Second Edition - E C Hambly - Google Libros (CRC Press (ed.); 2nd, revisada ed.). https://books.google.com.co/books/about/Bridge_Deck_Behaviour_Second_Edition.html?id=Yu8BMi80VW8C&redir_esc=y
E Lightfoot, & F Sawko. (1959). Structural frame analysis by electronic computer: grid frameworks resolved by generalized slope deflection. Engineering, 187(1), 18–20. https://scholar.google.com/scholar_lookup?title=Structural frame analysis by electronic computer: grid frameworks resolved by generalized slope deflection&author=E. Lightfoot &author=F. Sawko&publication_year=1959
Fu, G., & Chun, P. (2013). Skewed Highway Bridges.
Harba, I. S. I. (2011). Effect of skew angle on behavior of simply supported R. C. T-beam bridge decks. Journal of Engineering and Applied Sciences, 6(8), 1–14.
Khatri, V., Maiti, P. R., & Singh, P. K. (2012). Study on effect of skew angle in skew bridges. International Journal of Engineering Research and Development, 2(12), 13–18.
Kothari, V., & Murnal, P. (2015). Seismic Analysis of Skew Bridges. Journal of Civil Engineering and Enviromental Technology, 2(10), 71–76. http://www.krishisanskriti.org/jceet.html
Minalu, K. K. (2010). FINITE ELEMENT MODELLING OF SKEW SLAB-GIRDER BRIDGES. TUDElft.
Nastran. (2015). Shell Element Forces and Moments - Nastran - Eng-Tips. https://www.eng-tips.com/viewthread.cfm?qid=391116
Parke, & Hewson. (2008). ICE manual of bridge engineering (Thomas Telford (ed.)). Thomas Telford Limited. https://www.academia.edu/4978701/ICE_manual_of_bridge_engineering_SECOND_EDITION
Petersen-gauthier, J. A., & Hueste, M. B. (2013). Application of the Grillage Methodology To Determine Load Distribution Factors for Spread Slab Beam Bridges. August.
Sanchez Grunauer, T. A. (2011). Influence of Bracing Systems on the Behavior of Curved and Skewed Steel I-Girder Bridges During Construction (Issue December). Georgia Institute of Tecnology.
Vallecilla Baena, C. R. (2018). Fundamentos De Diseño De Puentes, Ejemplos Resueltos (primera). Editorial Colombiana.
Velhal, O., & Patankar, J. P. (2016). Study of R . C . C . T-Beam Bridge with Skew. IJIRSET, 5(6), 9316–9321. https://doi.org/10.15680/IJIRSET.2016.0506090
What When How. (n.d.). FEM for Frames (Finite Element Method) Part 1. Retrieved September 14, 2020, from http://what-when-how.com/the-finite-element-method/fem-for-frames-finite-element-method-part-1/
Wilson, T. (2013). Seismic Performance of Skewed and Curved RC Bridges. In Master of Science. Colorado State University.
Zokaie, T., Osterkamp, T. A., & Imbsen, R. A. (1991). Distribution of Wheel Loads of Highway Bridges : NCHRP12-26/1 Final Report.
dc.rights.none.fl_str_mv Derechos reservados del autor
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados del autor
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 244 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79738/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79738/2/1065633005.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79738/3/1065633005.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
024cde01ab39e84ac8d5a08956b12ea1
9262569ba65d9d77a8a9d7a470a18a47
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089253703909376
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados del autorhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Molina Herrera, Maritzabel14233208c489a98ba0f0225ef4ae6d9aDueñas Puentes, Diego Ernesto9d2d59aba92b268292971e319519895dBeleño Hernández, Andrés Alejandro Santander103255e449ef556c85759b0085d8f472Análisis, diseño y materiales - GIES2021-06-29T19:19:18Z2021-06-29T19:19:18Z2021https://repositorio.unal.edu.co/handle/unal/79738Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLos puentes esviados, en particular de tipo viga losa de concreto, son empleados en la infraestructura vial de Colombia por su versatilidad para ajustarse en topografías complejas. Sin embargo, parámetros como el esviaje, influyen en el comportamiento de su estructura. Este trabajo final se enfoca en el estudio del comportamiento mecánico de la superestructura de puentes esviados de concreto. Se analizaron 30 modelos por el método de elementos finitos, para puentes de 15, 25 y 35 metros con esviajes de 0,15, 30,45 y 60 grados, aplicando cargas vehiculares del CCP-14. Se compararon los resultados obtenidos de los modelos realizados con dos metodologías de simulación numérica, una en 3D donde las vigas y losas se simularon con elementos solids, y otra en 2D, donde las losas se modelaron con elementos shells y vigas como elementos frames. También se consideró el método analítico, en el cual se analiza una viga simplemente apoyada y se determinan las solicitaciones internas con base en las formulaciones presentadas en el CCP-14. Así mismo, se estudió la influencia en el comportamiento de los puentes esviados con riostras de extremo y de riostras intermedias, con el método 2D. En el caso particular de las riostras intermedias, se contemplaron dos orientaciones, una paralela al esviaje, y otra perpendicular al eje vial. En lo que corresponde a su cantidad de riostras intermedias, se compararon tres configuraciones de puentes: sin riostras, con una y con dos riostras intermedias. Finalmente se aplicó la metodología simplificada mediante la analogía de parrillas en donde se plantea su uso como alternativa para las metodologías de simulación numérica, en particular con los métodos tradicionales 3D y 2D.Skewed bridges, particularly of the concrete slab beam type, are used in Colombia's road infrastructure due to their versatility to fit complex topographies. However, parameters such as skew influence the behavior of its structure. This final work focuses on the study of the mechanical behavior of the superstructure of concrete skew bridges. 30 models were analyzed by the finite element method, for bridges of 15, 25 and 35 meters with skewness of 0, 15, 30, 45 and 60 degrees, applying vehicular loads of the CCP-14. The results obtained from the models made with two numerical simulation methodologies were compared, one in 3D where the beams and slabs were simulated with solid elements, and the other in 2D, where the slabs were modeled with shells and beams as frame elements. The analytical method was also considered, in which a simply supported beam is analyzed and internal stresses are determined based on the formulations presented at CCP-14. Likewise, the influence on the behavior of skewed bridges with end braces and intermediate braces was studied with the 2D method. In the particular case of the intermediate braces, two orientations were considered, one parallel to the skew, and the other perpendicular to the road axis. Regarding their number of intermediate braces, three bridge configurations were compared: without braces, with one and with two intermediate braces. Finally, the simplified methodology was applied through the grillage analogy where its use as an alternative for numerical simulation methodologies is proposed, in particular with traditional 3D and 2D methods.MaestríaMagíster en Ingeniería - EstructurasAnálisis estructural244 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - EstructurasDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesPuentes esviadosModelación numéricaMEF 3DMEF 2DMétodo simplificadoSkewed bridgesNumerical modelsFEM 3DFEM 2DSimplified methodElemento estructural (construcción)Infraestructura de transportesComportamiento mecánico de puentes esviados tipo viga-losa de concretoMechanical behavior of concrete beam-slab skewed bridgesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionImageTexthttp://purl.org/redcol/resource_type/TMAASHTO. (2012). AASHTO LRFD Bridge design specifications (6th ed.). AASHTO. www.transportation.orgAIS. (2014). SECCION 4 - ANALISIS Y EVALUACION ESTRUCTURAL. In Norma Colombiana de Diseño de Puentes LRFD CCP-14 (p. 88). AIS.C.S Surana, & Agrawal, R. (1998). Grillage Analogy in Bridge Deck Analysis - C. S. Surana, Ramji Agrawal - Google Libros (Narosa (ed.); Ilustrada). https://books.google.com.co/books/about/Grillage_Analogy_in_Bridge_Deck_Analysis.html?id=oXUH54dbZKcC&redir_esc=yChilds, D. (2013). Grillage Analysis of Bridge Decks. http://www.bridgedesign.org.uk/tutorial/grillage.htmlCSI KNOWLEDGE BASE. (2013). Home - CSiBridge - Computers and Structures, Inc. - Technical Knowledge Base. https://wiki.csiamerica.com/display/CSiBridge/HomeE C Hambly. (1991). Bridge Deck Behaviour, Second Edition - E C Hambly - Google Libros (CRC Press (ed.); 2nd, revisada ed.). https://books.google.com.co/books/about/Bridge_Deck_Behaviour_Second_Edition.html?id=Yu8BMi80VW8C&redir_esc=yE Lightfoot, & F Sawko. (1959). Structural frame analysis by electronic computer: grid frameworks resolved by generalized slope deflection. Engineering, 187(1), 18–20. https://scholar.google.com/scholar_lookup?title=Structural frame analysis by electronic computer: grid frameworks resolved by generalized slope deflection&author=E. Lightfoot &author=F. Sawko&publication_year=1959Fu, G., & Chun, P. (2013). Skewed Highway Bridges.Harba, I. S. I. (2011). Effect of skew angle on behavior of simply supported R. C. T-beam bridge decks. Journal of Engineering and Applied Sciences, 6(8), 1–14.Khatri, V., Maiti, P. R., & Singh, P. K. (2012). Study on effect of skew angle in skew bridges. International Journal of Engineering Research and Development, 2(12), 13–18.Kothari, V., & Murnal, P. (2015). Seismic Analysis of Skew Bridges. Journal of Civil Engineering and Enviromental Technology, 2(10), 71–76. http://www.krishisanskriti.org/jceet.htmlMinalu, K. K. (2010). FINITE ELEMENT MODELLING OF SKEW SLAB-GIRDER BRIDGES. TUDElft.Nastran. (2015). Shell Element Forces and Moments - Nastran - Eng-Tips. https://www.eng-tips.com/viewthread.cfm?qid=391116Parke, & Hewson. (2008). ICE manual of bridge engineering (Thomas Telford (ed.)). Thomas Telford Limited. https://www.academia.edu/4978701/ICE_manual_of_bridge_engineering_SECOND_EDITIONPetersen-gauthier, J. A., & Hueste, M. B. (2013). Application of the Grillage Methodology To Determine Load Distribution Factors for Spread Slab Beam Bridges. August.Sanchez Grunauer, T. A. (2011). Influence of Bracing Systems on the Behavior of Curved and Skewed Steel I-Girder Bridges During Construction (Issue December). Georgia Institute of Tecnology.Vallecilla Baena, C. R. (2018). Fundamentos De Diseño De Puentes, Ejemplos Resueltos (primera). Editorial Colombiana.Velhal, O., & Patankar, J. P. (2016). Study of R . C . C . T-Beam Bridge with Skew. IJIRSET, 5(6), 9316–9321. https://doi.org/10.15680/IJIRSET.2016.0506090What When How. (n.d.). FEM for Frames (Finite Element Method) Part 1. Retrieved September 14, 2020, from http://what-when-how.com/the-finite-element-method/fem-for-frames-finite-element-method-part-1/Wilson, T. (2013). Seismic Performance of Skewed and Curved RC Bridges. In Master of Science. Colorado State University.Zokaie, T., Osterkamp, T. A., & Imbsen, R. A. (1991). Distribution of Wheel Loads of Highway Bridges : NCHRP12-26/1 Final Report.GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79738/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1065633005.2021.pdf1065633005.2021.pdfTesis de Maestría en Ingeniería - Estructurasapplication/pdf4998398https://repositorio.unal.edu.co/bitstream/unal/79738/2/1065633005.2021.pdf024cde01ab39e84ac8d5a08956b12ea1MD52THUMBNAIL1065633005.2021.pdf.jpg1065633005.2021.pdf.jpgGenerated Thumbnailimage/jpeg4813https://repositorio.unal.edu.co/bitstream/unal/79738/3/1065633005.2021.pdf.jpg9262569ba65d9d77a8a9d7a470a18a47MD53unal/79738oai:repositorio.unal.edu.co:unal/797382024-07-23 23:34:16.658Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==