Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida

ilustraciones, digramas

Autores:
Vargas Clavijo, Johanna
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80298
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80298
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
690 - Construcción de edificios::691 - Materiales de construcción
Coloides de polímeros
Polymer colloids
Colloidal Stability
Interparticle Forces
Drilling fluid
Filter Cake
Filtration
Nanoparticles
Estabilidad Coloidal
Fuerzas entre partículas
Daño de formación
Fluido de perforación
Filtración
Nanopartícula
Reología
Revoque
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_50f21badc0ab4041a1000e6dd4da8777
oai_identifier_str oai:repositorio.unal.edu.co:unal/80298
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida
dc.title.translated.spa.fl_str_mv Study of Nanoparticle/Polymer/CaCO3 Interactions to Optimize the Colloidal Suspension Stability and the Solids Packing
title Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida
spellingShingle Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida
660 - Ingeniería química
690 - Construcción de edificios::691 - Materiales de construcción
Coloides de polímeros
Polymer colloids
Colloidal Stability
Interparticle Forces
Drilling fluid
Filter Cake
Filtration
Nanoparticles
Estabilidad Coloidal
Fuerzas entre partículas
Daño de formación
Fluido de perforación
Filtración
Nanopartícula
Reología
Revoque
title_short Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida
title_full Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida
title_fullStr Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida
title_full_unstemmed Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida
title_sort Aplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadida
dc.creator.fl_str_mv Vargas Clavijo, Johanna
dc.contributor.advisor.none.fl_str_mv Lopera Castro, Sergio H.
Cortés Correa, Farid Bernardo
dc.contributor.author.none.fl_str_mv Vargas Clavijo, Johanna
dc.contributor.researchgroup.spa.fl_str_mv Yacimientos de Hidrocarburos
Fenómenos de Superficie - Michael Polanyi
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
690 - Construcción de edificios::691 - Materiales de construcción
topic 660 - Ingeniería química
690 - Construcción de edificios::691 - Materiales de construcción
Coloides de polímeros
Polymer colloids
Colloidal Stability
Interparticle Forces
Drilling fluid
Filter Cake
Filtration
Nanoparticles
Estabilidad Coloidal
Fuerzas entre partículas
Daño de formación
Fluido de perforación
Filtración
Nanopartícula
Reología
Revoque
dc.subject.armarc.none.fl_str_mv Coloides de polímeros
dc.subject.lemb.none.fl_str_mv Polymer colloids
dc.subject.proposal.eng.fl_str_mv Colloidal Stability
Interparticle Forces
Drilling fluid
Filter Cake
Filtration
Nanoparticles
dc.subject.proposal.spa.fl_str_mv Estabilidad Coloidal
Fuerzas entre partículas
Daño de formación
Fluido de perforación
Filtración
Nanopartícula
Reología
Revoque
description ilustraciones, digramas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-24T17:24:14Z
dc.date.available.none.fl_str_mv 2021-09-24T17:24:14Z
dc.date.issued.none.fl_str_mv 2021-09
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80298
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80298
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] A. Koohestanian, M. Hosseini, and Z. Abbasian, "The separation method for removing of colloidal particles from raw water," American-Eurasian J. Agric. & Environ. Sci, vol. 4, pp. 266-273, 2008. [2] V. Gitis, C. Dlugy, J. Gun, and O. Lev, "Studies of inactivation, retardation and accumulation of viruses in porous media by a combination of dye labeled and native bacteriophage probes," Journal of contaminant hydrology, vol. 124, pp. 43-49, 2011. [3] L. M. Vane and G. M. Zang, "Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes," Journal of Hazardous Materials, vol. 55, pp. 1-22, 1997. [4] D. Arab, P. Pourafshary, S. Ayatollahi, and A. Habibi, "Remediation of colloid-facilitated contaminant transport in saturated porous media treated by nanoparticles," International Journal of Environmental Science and Technology, vol. 11, pp. 207-216, 2014. [5] D. B. Genovese, J. E. Lozano, and M. A. Rao, "The rheology of colloidal and noncolloidal food dispersions," Journal of Food Science, vol. 72, pp. R11-R20, 2007. [6] I. J. Joye, V. A. Nelis, and D. J. McClements, "Gliadin-based nanoparticles: Fabrication and stability of food-grade colloidal delivery systems," Food Hydrocolloids, vol. 44, pp. 86-93, 2015. [7] D. Çiftçi, T. Kahyaoglu, S. Kapucu, and S. Kaya, "Colloidal stability and rheological properties of sesame paste," Journal of Food Engineering, vol. 87, pp. 428-435, 2008. [8] A. Kohut, S. Ranjan, A. Voronov, W. Peukert, V. Tokarev, O. Bednarska, et al., "Design of a new invertible polymer coating on a solid surface and its effect on dispersion colloidal stability," Langmuir, vol. 22, pp. 6498-6506, 2006. [9] D. Yang, G. Liao, and S. Huang, "Hand Painting of Noniridescent Structural Multicolor through the Self-Assembly of YOHCO3 Colloids and Its Application for Anti-Counterfeiting," Langmuir, vol. 35, pp. 8428-8435, 2019. [10] K. Kolman, O. Nechyporchuk, M. Persson, K. Holmberg, and R. Bordes, "Preparation of silica/polyelectrolyte complexes for textile strengthening applied to painting canvas restoration," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 532, pp. 420-427, 2017. [11] J. Dorman, I. Lakatos, G. Szentes, and A. Meidl, "Mitigation of formation damage and wellbore instability in unconventional reservoirs using improved particle size analysis and design of drilling fluids," in SPE European Formation Damage Conference and Exhibition, 2015. [12] A. Wojtanowicz, Z. Krilov, and J. Langlinais, "Study on the effect of pore blocking mechanisms on formation damage," in SPE Production Operations Symposium, 1987. [13] A. Wojtanowicz, Z. Krilov, and J. Langlinais, "Experimental determination of formation damage pore blocking mechanisms," 1988. [14] D. Jiao and M. M. Sharma, "Mechanism of cake buildup in crossflow filtration of colloidal suspensions," Journal of Colloid and Interface Science, vol. 162, pp. 454-462, 1994. [15] A. Kalantariasl, A. Zeinijahromi, and P. Bedrikovetsky, "External filter cake buildup in dynamic filtration: mechanisms and key factors," in SPE International Symposium and Exhibition on Formation Damage Control, 2014. [16] J. Eastman, "Colloid stability," Colloid science, pp. 36-49, 2005. [17] Y.-J. Yang, "Experimental and Modeling Studies of Colloidal Suspension Stability of High-Density Particles in Aqueous Solutions," 2016. [18] G. Trefalt and M. Borkovec, "Overview of DLVO theory," Laboratory of Colloid and Surface Chemistry, University of Geneva, Switzerland, pp. 1-10, 2014. [19] D. Napper and A. Netschey, "Studies of the steric stabilization of colloidal particles," Journal of Colloid and Interface Science, vol. 37, pp. 528-535, 1971. [20] C. H. Chin, A. Muchtar, C. H. Azhari, M. Razali, and M. Aboras, "Optimization of pH and dispersant amount of Y-TZP suspension for colloidal stability," Ceramics International, vol. 41, pp. 9939-9946, 2015. [21] R. López-Esparza, B. Altamirano, E. Pérez, and A. Gama Goicochea, "Importance of molecular interactions in colloidal dispersions," Advances in Condensed Matter Physics, vol. 2015, 2015. [22] J. van Duijneveldt, "Effect of polymers on colloid stability," Colloid Science, pp. 143-157, 2005. [23] P. Bedrikovetsky, "Upscaling of stochastic micro model for suspension transport in porous media," Transport in Porous Media, vol. 75, pp. 335-369, 2008. [24] L. Chequer, P. Bedrikovetsky, A. Badalyan, and V. Gitis, "Water level and mobilisation of colloids in porous media," Advances in Water Resources, vol. 143, p. 103670, 2020. [25] S. Torkzaban, S. A. Bradford, M. T. van Genuchten, and S. L. Walker, "Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining," Journal of contaminant hydrology, vol. 96, pp. 113-127, 2008. [26] A. Kalantariasl and P. Bedrikovetsky, "Stabilization of external filter cake by colloidal forces in a “well–reservoir” system," Industrial & Engineering Chemistry Research, vol. 53, pp. 930-944, 2014. [27] C. Parsons, "Characteristics of Drilling Fluids," Transactions of the AIME, vol. 92, pp. 227-233, 1931. [28] A. Suri and M. M. Sharma, "Strategies for sizing particles in drilling and completion fluids," SPE Journal, vol. 9, pp. 13-23, 2004. [29] S. Cobianco, M. Bartosek, A. Lezzi, and A. Guarneri, "How to manage drill-in fluid composition to minimize fluid losses during drilling operations," SPE Drilling & Completion, vol. 16, pp. 154-158, 2001. [30] N. C. Mahajan and B. M. Barron, "Bridging particle size distribution: A key factor in the designing of non-damaging completion fluids," in SPE Formation Damage Symposium, 1980. [31] A. Abrams, "Mud design to minimize rock impairment due to particle invasion," Journal of petroleum technology, vol. 29, pp. 586-592, 1977. [32] M. Khalil and B. Mohamed Jan, "Viscoplastic modeling of a novel lightweight biopolymer drilling fluid for underbalanced drilling," Industrial & engineering chemistry research, vol. 51, pp. 4056-4068, 2012. [33] S. B. Hamed and M. Belhadri, "Rheological properties of biopolymers drilling fluids," Journal of Petroleum Science and Engineering, vol. 67, pp. 84-90, 2009. [34] R. Caenn, H. C. H. Darley, and G. R. Gray, "Chapter 13 - Drilling Fluid Components," in Composition and Properties of Drilling and Completion Fluids (Seventh Edition), R. Caenn, H. C. H. Darley, and G. R. Gray, Eds., ed Boston: Gulf Professional Publishing, 2017, pp. 537-595. [35] I. Ershaghi, "Modeling of Filter Cake Buildup Under Dynamic-Static Conditions," in SPE California Regional Meeting, 1980. [36] A. G. Iscan, F. Civan, and M. V. Kok, "Alteration of permeability by drilling fluid invasion and flow reversal," Journal of Petroleum Science and Engineering, vol. 58, pp. 227-244, 2007. [37] M. M. Barry, Y. Jung, J.-K. Lee, T. X. Phuoc, and M. K. Chyu, "Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids," Journal of Petroleum Science and Engineering, vol. 127, pp. 338-346, 2015. [38] Z. Vryzas, O. Mahmoud, H. A. Nasr-El-din, and V. C. Kelessidis, "Development and testing of novel drilling fluids using Fe2O3 and SiO2 nanoparticles for enhanced drilling operations," in International Petroleum Technology Conference, IPTC 2015, 2015. [39] M.-C. Li, Q. Wu, K. Song, Y. Qing, and Y. Wu, "Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids," ACS applied materials & interfaces, vol. 7, pp. 5006-5016, 2015. [40] O. Mahmoud, H. A. Nasr-El-Din, Z. Vryzas, and V. C. Kelessidis, "Nanoparticle-based drilling fluids for minimizing formation damage in HP/HT applications," in SPE International Conference and Exhibition on Formation Damage Control, 2016. [41] J. Aramendiz and A. Imqam, "Silica and graphene oxide nanoparticle formulation to improve thermal stability and inhibition capabilities of water-based drilling fluid applied to Woodford shale," SPE Drilling & Completion, vol. 35, pp. 164-179, 2020. [42] J. V. Clavijo, L. J. Roldán, L. Valencia, S. H. Lopera, R. D. Zabala, J. C. Cárdenas, et al., "Influence of size and surface acidity of silica nanoparticles on inhibition of the formation damage by bentonite-free water-based drilling fluids. Part I: nanofluid design based on fluid-nanoparticle interaction," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 10, p. 045020, 2019. [43] M. Sedaghatzadeh and A. Khodadadi, "An improvement in thermal and rheological properties of water-based drilling fluids using multiwall carbon nanotube (MWCNT)," Iranian Journal of Oil & Gas Science and Technology, vol. 1, pp. 55-65, 2012. [44] Z. Wang, Y. Wu, P. Luo, Y. Tian, Y. Lin, and Q. Guo, "Poly (sodium p-styrene sulfonate) modified Fe3O4 nanoparticles as effective additives in water-based drilling fluids," Journal of Petroleum Science and Engineering, vol. 165, pp. 786-797, 2018. [45] M.-C. Li, Q. Wu, K. Song, C. F. De Hoop, S. Lee, Y. Qing, et al., "Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: Rheological modeling and filtration mechanisms," Industrial & Engineering Chemistry Research, vol. 55, pp. 133-143, 2015. [46] Y. Wu, Z. Wang, Z. Yan, T. Zhang, Y. Bai, P. Wang, et al., "Poly (2-acrylamide-2-methylpropanesulfonic acid)-modified SiO2 nanoparticles for water-based muds," Industrial & Engineering Chemistry Research, vol. 56, pp. 168-174, 2016. [47] O. Contreras, G. Hareland, M. Husein, R. Nygaard, and M. Al-Saba, "Application of in-house prepared nanoparticles as filtration control additive to reduce formation damage," in SPE International Symposium and Exhibition on Formation Damage Control, 2014. [48] J. T. Srivatsa and M. B. Ziaja, "An experimental investigation on use of nanoparticles as fluid loss additives in a surfactant - Polymer based drilling fluid," in Society of Petroleum Engineers - International Petroleum Technology Conference 2012, IPTC 2012, 2012, pp. 2436-2454
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 152 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80298/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80298/4/1152688360.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80298/5/1152688360.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
b9d980f2acb24290c2e3bf3c61655945
49557785ce4ce10f57d62119442f3a02
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089620745355264
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lopera Castro, Sergio H.44b4649b98ca2ee86dc3ec2981a632c6Cortés Correa, Farid Bernardo5b805ef6ba1d55c3c02e79d8b96a27f9600Vargas Clavijo, Johanna9958a74065d8bfe12d28ea07b42e6914600Yacimientos de HidrocarburosFenómenos de Superficie - Michael Polanyi2021-09-24T17:24:14Z2021-09-24T17:24:14Z2021-09https://repositorio.unal.edu.co/handle/unal/80298Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, digramasColloidal suspension agglomeration and filtration occur in many natural phenomena and engineering applications. The most common colloidal theory problem is stabilizing a colloidal dispersion. Agglomeration reduction through interparticle force control. If the particles agglomerate, the agglomerated sizes increase, randomly increasing the sedimentation (or deposition) rate. Drilling fluids are composed of a base fluid, water, and solid particles suspended, calcium carbonate - CaCO3.In most cases, polymers are used to disperse the solid material. However, factors such as mud contamination, size, solid concentration solids, changes in pH, etc., can alter the surface charge, affect the colloidal stability, and alter the drilling fluid properties. An alternative to the current improves the drilling fluids properties is the potential employment of nanoparticle technology. However, few fundamental studies are available in the literature or omit the interactions between particles for colloidal suspensions. Thus, the thesis focuses principally on the colloidal stability in the polymer-CaCO3 system and the solid packing in the filtration process in the presence of nanoparticles (NPs). SiO2 NPs are a common material widely used in drilling fluid improvement. The colloidal stability of the water-based drilling muds (WBM) in the presence of SiO2 NPs was evaluated by monitoring rheological and filtration properties varying the particle size, concentration, and charge surface NPs. The NPs with the smallest size, highest total acidity, and the most negative value of zeta potential had the highest capacities of filtration volume and filter cake thickness reduction. These factors favor the dispersion forces, allowing the reduction of aggregates, favoring an ordered particle deposition with superior coverage. Once they have formed the filter cake, the attractive forces predominate the system, reducing the empty spaces between particles. Also, NPs are retained in the porous surface due to the affinity between the rock silica groups and the SiO2 NPs active sites. Hence, the SiO2 NPs could interact in the following order with each item evaluated: Polymer < CaCO3 < rock. In the case of the polymer, it interacts the most with the rock, followed by NPs and then CaCO3. NPs do not generate significant changes in the rheological profiles of the WBM. However, the yield point and gel strength, which are strengthened at low shear rates, were improved with the presence of NPs, the attractive forces predominate. The lower the distance between SiO2 NPs-polymer, the greater the force of attraction between the molecules. This study provides a broader landscape of the role of SiO2 NPs in the improvement and design of drilling fluids to a field application. Strategies and methodologies for application and scaling the WBM with NPs in the drilling are proposed.La aglomeración y el proceso de filtración en suspensiones coloidales ocurre en muchos fenómenos naturales y aplicaciones de ingeniería. El problema más común de la teoría coloidal es la estabilización de una dispersión; reducción de la aglomeración mediante el control de las fuerzas entre partículas. Si las partículas se aglomeran, los tamaños de aglomerados aumentan, aumentando la velocidad de sedimentación (o deposición) de forma aleatoria en la superficie. Los fluidos de perforación están compuestos por un fluido base, agua y partículas sólidas suspendidas, carbonato de calcio - CaCO3. En la mayoría de los casos, se utilizan polímeros para favorecer la dispersión del material sólido. Sin embargo, factores como la contaminación del lodo, el tamaño, la concentración de sólidos, los cambios de pH, etc., pueden alterar la carga superficial y afectar la estabilidad coloidal y alterar las propiedades del fluido de perforación. Una alternativa a la mejora actual de las propiedades de los fluidos de perforación es el uso de la nanotecnología. Sin embargo, pocos estudios teóricos están disponibles en la literatura u omiten las interacciones entre partículas para dichas suspensiones coloidales. De esta forma, la tesis se centra principalmente en la estabilidad coloidal en el sistema polímero-CaCO3 y el empaquetamiento sólido en el proceso de filtración en presencia de nanopartículas (NPs). Las NP de sílice (SiO2) son un material común y ampliamente utilizado en el mejoramiento de fluidos de perforación. La estabilidad coloidal de los lodos de perforación base de agua (WBM, por sus siglas en inglés) en presencia de NPs de SiO2 se evaluó mediante el seguimiento de las propiedades reológicas y de filtración variando el tamaño de partícula, la concentración y las NP de superficie de carga. Las NPs con el tamaño más pequeño, la acidez total más alta y el valor más negativo de potencial zeta tuvieron las capacidades más altas de reducción del volumen de filtración y del espesor del revoque. Estos factores favorecen las fuerzas de dispersión, permitiendo la reducción de agregados, favoreciendo Resumen y Abstract X una deposición ordenada de las partículas logrando una cobertura superior. Una vez formado el revoque, las fuerzas de atracción predominan en el sistema, reduciendo los espacios vacíos entre partículas. Además, las NPs se retienen en la superficie porosa debido a la afinidad entre los grupos de sílice de la roca y los sitios activos de las NPs de SiO2. Por lo tanto, las NPs de SiO2 podrían interactuar en el siguiente orden con cada elemento evaluado: Polímero <Roca. En el caso del polímero, interactúa más con la roca, seguido de las NP y luego el CaCO3. Las NPs no generan cambios significativos en los perfiles reológicos del WBM. Sin embargo, el punto de cedencia y la resistencia gel, que se refuerzan a bajas tasas de cizallamiento, se mejoraron con la presencia de NPs, las fuerzas de atracción predominan. Cuanto menor sea la distancia entre el polímero y las NP de SiO2, mayor será la fuerza de atracción entre las moléculas. Este estudio proporciona un panorama más amplio del rol de las NPs de SiO2 en el mejoramiento de sus propiedades y el diseño de fluidos de perforación para una aplicación de campo. Se proponen estrategias y metodologías para la aplicación y escalado del WBM con NPs en la perforación de pozos. (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaNanotecnología aplicada al mejoramiento de fluidos de perforaciónxxi, 152 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosDepartamento de Procesos y EnergíaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química690 - Construcción de edificios::691 - Materiales de construcciónColoides de polímerosPolymer colloidsColloidal StabilityInterparticle ForcesDrilling fluidFilter CakeFiltrationNanoparticlesEstabilidad ColoidalFuerzas entre partículasDaño de formaciónFluido de perforaciónFiltraciónNanopartículaReologíaRevoqueAplicación de nanopartículas para la reducción del daño de formación por fluidos de perforación y mejoramiento de la zona invadidaStudy of Nanoparticle/Polymer/CaCO3 Interactions to Optimize the Colloidal Suspension Stability and the Solids PackingTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] A. Koohestanian, M. Hosseini, and Z. Abbasian, "The separation method for removing of colloidal particles from raw water," American-Eurasian J. Agric. & Environ. Sci, vol. 4, pp. 266-273, 2008. [2] V. Gitis, C. Dlugy, J. Gun, and O. Lev, "Studies of inactivation, retardation and accumulation of viruses in porous media by a combination of dye labeled and native bacteriophage probes," Journal of contaminant hydrology, vol. 124, pp. 43-49, 2011. [3] L. M. Vane and G. M. Zang, "Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes," Journal of Hazardous Materials, vol. 55, pp. 1-22, 1997. [4] D. Arab, P. Pourafshary, S. Ayatollahi, and A. Habibi, "Remediation of colloid-facilitated contaminant transport in saturated porous media treated by nanoparticles," International Journal of Environmental Science and Technology, vol. 11, pp. 207-216, 2014. [5] D. B. Genovese, J. E. Lozano, and M. A. Rao, "The rheology of colloidal and noncolloidal food dispersions," Journal of Food Science, vol. 72, pp. R11-R20, 2007. [6] I. J. Joye, V. A. Nelis, and D. J. McClements, "Gliadin-based nanoparticles: Fabrication and stability of food-grade colloidal delivery systems," Food Hydrocolloids, vol. 44, pp. 86-93, 2015. [7] D. Çiftçi, T. Kahyaoglu, S. Kapucu, and S. Kaya, "Colloidal stability and rheological properties of sesame paste," Journal of Food Engineering, vol. 87, pp. 428-435, 2008. [8] A. Kohut, S. Ranjan, A. Voronov, W. Peukert, V. Tokarev, O. Bednarska, et al., "Design of a new invertible polymer coating on a solid surface and its effect on dispersion colloidal stability," Langmuir, vol. 22, pp. 6498-6506, 2006. [9] D. Yang, G. Liao, and S. Huang, "Hand Painting of Noniridescent Structural Multicolor through the Self-Assembly of YOHCO3 Colloids and Its Application for Anti-Counterfeiting," Langmuir, vol. 35, pp. 8428-8435, 2019. [10] K. Kolman, O. Nechyporchuk, M. Persson, K. Holmberg, and R. Bordes, "Preparation of silica/polyelectrolyte complexes for textile strengthening applied to painting canvas restoration," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 532, pp. 420-427, 2017. [11] J. Dorman, I. Lakatos, G. Szentes, and A. Meidl, "Mitigation of formation damage and wellbore instability in unconventional reservoirs using improved particle size analysis and design of drilling fluids," in SPE European Formation Damage Conference and Exhibition, 2015. [12] A. Wojtanowicz, Z. Krilov, and J. Langlinais, "Study on the effect of pore blocking mechanisms on formation damage," in SPE Production Operations Symposium, 1987. [13] A. Wojtanowicz, Z. Krilov, and J. Langlinais, "Experimental determination of formation damage pore blocking mechanisms," 1988. [14] D. Jiao and M. M. Sharma, "Mechanism of cake buildup in crossflow filtration of colloidal suspensions," Journal of Colloid and Interface Science, vol. 162, pp. 454-462, 1994. [15] A. Kalantariasl, A. Zeinijahromi, and P. Bedrikovetsky, "External filter cake buildup in dynamic filtration: mechanisms and key factors," in SPE International Symposium and Exhibition on Formation Damage Control, 2014. [16] J. Eastman, "Colloid stability," Colloid science, pp. 36-49, 2005. [17] Y.-J. Yang, "Experimental and Modeling Studies of Colloidal Suspension Stability of High-Density Particles in Aqueous Solutions," 2016. [18] G. Trefalt and M. Borkovec, "Overview of DLVO theory," Laboratory of Colloid and Surface Chemistry, University of Geneva, Switzerland, pp. 1-10, 2014. [19] D. Napper and A. Netschey, "Studies of the steric stabilization of colloidal particles," Journal of Colloid and Interface Science, vol. 37, pp. 528-535, 1971. [20] C. H. Chin, A. Muchtar, C. H. Azhari, M. Razali, and M. Aboras, "Optimization of pH and dispersant amount of Y-TZP suspension for colloidal stability," Ceramics International, vol. 41, pp. 9939-9946, 2015. [21] R. López-Esparza, B. Altamirano, E. Pérez, and A. Gama Goicochea, "Importance of molecular interactions in colloidal dispersions," Advances in Condensed Matter Physics, vol. 2015, 2015. [22] J. van Duijneveldt, "Effect of polymers on colloid stability," Colloid Science, pp. 143-157, 2005. [23] P. Bedrikovetsky, "Upscaling of stochastic micro model for suspension transport in porous media," Transport in Porous Media, vol. 75, pp. 335-369, 2008. [24] L. Chequer, P. Bedrikovetsky, A. Badalyan, and V. Gitis, "Water level and mobilisation of colloids in porous media," Advances in Water Resources, vol. 143, p. 103670, 2020. [25] S. Torkzaban, S. A. Bradford, M. T. van Genuchten, and S. L. Walker, "Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining," Journal of contaminant hydrology, vol. 96, pp. 113-127, 2008. [26] A. Kalantariasl and P. Bedrikovetsky, "Stabilization of external filter cake by colloidal forces in a “well–reservoir” system," Industrial & Engineering Chemistry Research, vol. 53, pp. 930-944, 2014. [27] C. Parsons, "Characteristics of Drilling Fluids," Transactions of the AIME, vol. 92, pp. 227-233, 1931. [28] A. Suri and M. M. Sharma, "Strategies for sizing particles in drilling and completion fluids," SPE Journal, vol. 9, pp. 13-23, 2004. [29] S. Cobianco, M. Bartosek, A. Lezzi, and A. Guarneri, "How to manage drill-in fluid composition to minimize fluid losses during drilling operations," SPE Drilling & Completion, vol. 16, pp. 154-158, 2001. [30] N. C. Mahajan and B. M. Barron, "Bridging particle size distribution: A key factor in the designing of non-damaging completion fluids," in SPE Formation Damage Symposium, 1980. [31] A. Abrams, "Mud design to minimize rock impairment due to particle invasion," Journal of petroleum technology, vol. 29, pp. 586-592, 1977. [32] M. Khalil and B. Mohamed Jan, "Viscoplastic modeling of a novel lightweight biopolymer drilling fluid for underbalanced drilling," Industrial & engineering chemistry research, vol. 51, pp. 4056-4068, 2012. [33] S. B. Hamed and M. Belhadri, "Rheological properties of biopolymers drilling fluids," Journal of Petroleum Science and Engineering, vol. 67, pp. 84-90, 2009. [34] R. Caenn, H. C. H. Darley, and G. R. Gray, "Chapter 13 - Drilling Fluid Components," in Composition and Properties of Drilling and Completion Fluids (Seventh Edition), R. Caenn, H. C. H. Darley, and G. R. Gray, Eds., ed Boston: Gulf Professional Publishing, 2017, pp. 537-595. [35] I. Ershaghi, "Modeling of Filter Cake Buildup Under Dynamic-Static Conditions," in SPE California Regional Meeting, 1980. [36] A. G. Iscan, F. Civan, and M. V. Kok, "Alteration of permeability by drilling fluid invasion and flow reversal," Journal of Petroleum Science and Engineering, vol. 58, pp. 227-244, 2007. [37] M. M. Barry, Y. Jung, J.-K. Lee, T. X. Phuoc, and M. K. Chyu, "Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids," Journal of Petroleum Science and Engineering, vol. 127, pp. 338-346, 2015. [38] Z. Vryzas, O. Mahmoud, H. A. Nasr-El-din, and V. C. Kelessidis, "Development and testing of novel drilling fluids using Fe2O3 and SiO2 nanoparticles for enhanced drilling operations," in International Petroleum Technology Conference, IPTC 2015, 2015. [39] M.-C. Li, Q. Wu, K. Song, Y. Qing, and Y. Wu, "Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids," ACS applied materials & interfaces, vol. 7, pp. 5006-5016, 2015. [40] O. Mahmoud, H. A. Nasr-El-Din, Z. Vryzas, and V. C. Kelessidis, "Nanoparticle-based drilling fluids for minimizing formation damage in HP/HT applications," in SPE International Conference and Exhibition on Formation Damage Control, 2016. [41] J. Aramendiz and A. Imqam, "Silica and graphene oxide nanoparticle formulation to improve thermal stability and inhibition capabilities of water-based drilling fluid applied to Woodford shale," SPE Drilling & Completion, vol. 35, pp. 164-179, 2020. [42] J. V. Clavijo, L. J. Roldán, L. Valencia, S. H. Lopera, R. D. Zabala, J. C. Cárdenas, et al., "Influence of size and surface acidity of silica nanoparticles on inhibition of the formation damage by bentonite-free water-based drilling fluids. Part I: nanofluid design based on fluid-nanoparticle interaction," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 10, p. 045020, 2019. [43] M. Sedaghatzadeh and A. Khodadadi, "An improvement in thermal and rheological properties of water-based drilling fluids using multiwall carbon nanotube (MWCNT)," Iranian Journal of Oil & Gas Science and Technology, vol. 1, pp. 55-65, 2012. [44] Z. Wang, Y. Wu, P. Luo, Y. Tian, Y. Lin, and Q. Guo, "Poly (sodium p-styrene sulfonate) modified Fe3O4 nanoparticles as effective additives in water-based drilling fluids," Journal of Petroleum Science and Engineering, vol. 165, pp. 786-797, 2018. [45] M.-C. Li, Q. Wu, K. Song, C. F. De Hoop, S. Lee, Y. Qing, et al., "Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: Rheological modeling and filtration mechanisms," Industrial & Engineering Chemistry Research, vol. 55, pp. 133-143, 2015. [46] Y. Wu, Z. Wang, Z. Yan, T. Zhang, Y. Bai, P. Wang, et al., "Poly (2-acrylamide-2-methylpropanesulfonic acid)-modified SiO2 nanoparticles for water-based muds," Industrial & Engineering Chemistry Research, vol. 56, pp. 168-174, 2016. [47] O. Contreras, G. Hareland, M. Husein, R. Nygaard, and M. Al-Saba, "Application of in-house prepared nanoparticles as filtration control additive to reduce formation damage," in SPE International Symposium and Exhibition on Formation Damage Control, 2014. [48] J. T. Srivatsa and M. B. Ziaja, "An experimental investigation on use of nanoparticles as fluid loss additives in a surfactant - Polymer based drilling fluid," in Society of Petroleum Engineers - International Petroleum Technology Conference 2012, IPTC 2012, 2012, pp. 2436-2454Becas doctorados nacionalesMincienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80298/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1152688360.2021.pdf1152688360.2021.pdfTesis Doctorado en Ingeniería – Sistemas Energéticosapplication/pdf8712677https://repositorio.unal.edu.co/bitstream/unal/80298/4/1152688360.2021.pdfb9d980f2acb24290c2e3bf3c61655945MD54THUMBNAIL1152688360.2021.pdf.jpg1152688360.2021.pdf.jpgGenerated Thumbnailimage/jpeg6434https://repositorio.unal.edu.co/bitstream/unal/80298/5/1152688360.2021.pdf.jpg49557785ce4ce10f57d62119442f3a02MD55unal/80298oai:repositorio.unal.edu.co:unal/802982024-07-30 23:10:46.046Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==