N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions

Abstract. In the schematic approach to non-commutative algebraic geometry arises some important classes of non-commutative algebras like Koszul algebras, Artin-Schelter regular algebras, Calabi-Yau algebras, and closely related with them, the skew PBW extensions. There exist some relations between t...

Full description

Autores:
Suárez Suárez, Héctor Julio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/60792
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/60792
http://bdigital.unal.edu.co/59129/
Palabra clave:
51 Matemáticas / Mathematics
Skew PBW extensions
Koszul algebras
Artin-Schelter regular algebras
Calabi-Yau algebras
Extensiones PBW torcidas
Álgebras de Koszul
Álgebras Artin-Schelter regulares
Álgebras Calabi-Yau
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_50de3ae3a55a938e3b1aca65c1a400f9
oai_identifier_str oai:repositorio.unal.edu.co:unal/60792
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions
title N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions
spellingShingle N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions
51 Matemáticas / Mathematics
Skew PBW extensions
Koszul algebras
Artin-Schelter regular algebras
Calabi-Yau algebras
Extensiones PBW torcidas
Álgebras de Koszul
Álgebras Artin-Schelter regulares
Álgebras Calabi-Yau
title_short N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions
title_full N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions
title_fullStr N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions
title_full_unstemmed N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions
title_sort N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions
dc.creator.fl_str_mv Suárez Suárez, Héctor Julio
dc.contributor.author.spa.fl_str_mv Suárez Suárez, Héctor Julio
dc.contributor.spa.fl_str_mv Lezama Serrano, José Oswaldo
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Skew PBW extensions
Koszul algebras
Artin-Schelter regular algebras
Calabi-Yau algebras
Extensiones PBW torcidas
Álgebras de Koszul
Álgebras Artin-Schelter regulares
Álgebras Calabi-Yau
dc.subject.proposal.spa.fl_str_mv Skew PBW extensions
Koszul algebras
Artin-Schelter regular algebras
Calabi-Yau algebras
Extensiones PBW torcidas
Álgebras de Koszul
Álgebras Artin-Schelter regulares
Álgebras Calabi-Yau
description Abstract. In the schematic approach to non-commutative algebraic geometry arises some important classes of non-commutative algebras like Koszul algebras, Artin-Schelter regular algebras, Calabi-Yau algebras, and closely related with them, the skew PBW extensions. There exist some relations between these algebras and the skew PBW extensions. We give conditions to guarantee that skew PBW extensions over fields are nonhomogeneous Koszul or Koszul algebras. We also show that a constant skew PBW extension of a field is a PBW deformation of its homogeneous version. We define graded skew PBW extensions, study some properties of these algebras and showed that if R is a PBW algebra then a graded skew PBW extension of R is a PBW algebra, and therefore, a Koszul algebra. As a generalization of the above results, we prove that every graded skew PBW extension of a finitely presented Koszul algebra is Koszul. Artin-Schelter regularity and the skew Calabi-Yau condition are studied for graded skew PBW extensions. We prove that every graded quasi-commutative skew PBW extension of an Artin-Schelter regular algebra is an Artin-Schelter regular algebra and, more general, graded skew PBW extensions of a finitely presented Auslander-regular algebra, are Artin-Schelter regular algebras. As a consequence, every graded quasi-commutative skew PBW extension of a finitely presented skew Calabi-Yau algebra is skew Calabi-Yau, and graded skew PBW extensions of a finitely presented Auslander-regular algebra are skew Calabi-Yau. Since graded quasi-commutative skew PBW extensions with coefficients in a finitely presented skew Calabi-Yau algebra are skew Calabi-Yau, the Nakayama automorphism exists for these extensions. With this in mind, we give a description of Nakayama automorphism for these non-commutative algebras using the Nakayama automorphism of the ring of the coefficients.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-11-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T19:07:31Z
dc.date.available.spa.fl_str_mv 2019-07-02T19:07:31Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/60792
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/59129/
url https://repositorio.unal.edu.co/handle/unal/60792
http://bdigital.unal.edu.co/59129/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas Matemáticas
Matemáticas
dc.relation.references.spa.fl_str_mv Suárez Suárez, Héctor Julio (2017) N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/60792/1/6776683.2017.pdf
https://repositorio.unal.edu.co/bitstream/unal/60792/2/6776683.2017.pdf.jpg
bitstream.checksum.fl_str_mv f5dc630cf7a017baf3c3146a351a6658
8aa2d319b2e30f85dbebc12d64576315
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089518510243840
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lezama Serrano, José OswaldoSuárez Suárez, Héctor Julio0aa03a27-96ce-47f2-8a02-6afb93303f5b3002019-07-02T19:07:31Z2019-07-02T19:07:31Z2017-11-01https://repositorio.unal.edu.co/handle/unal/60792http://bdigital.unal.edu.co/59129/Abstract. In the schematic approach to non-commutative algebraic geometry arises some important classes of non-commutative algebras like Koszul algebras, Artin-Schelter regular algebras, Calabi-Yau algebras, and closely related with them, the skew PBW extensions. There exist some relations between these algebras and the skew PBW extensions. We give conditions to guarantee that skew PBW extensions over fields are nonhomogeneous Koszul or Koszul algebras. We also show that a constant skew PBW extension of a field is a PBW deformation of its homogeneous version. We define graded skew PBW extensions, study some properties of these algebras and showed that if R is a PBW algebra then a graded skew PBW extension of R is a PBW algebra, and therefore, a Koszul algebra. As a generalization of the above results, we prove that every graded skew PBW extension of a finitely presented Koszul algebra is Koszul. Artin-Schelter regularity and the skew Calabi-Yau condition are studied for graded skew PBW extensions. We prove that every graded quasi-commutative skew PBW extension of an Artin-Schelter regular algebra is an Artin-Schelter regular algebra and, more general, graded skew PBW extensions of a finitely presented Auslander-regular algebra, are Artin-Schelter regular algebras. As a consequence, every graded quasi-commutative skew PBW extension of a finitely presented skew Calabi-Yau algebra is skew Calabi-Yau, and graded skew PBW extensions of a finitely presented Auslander-regular algebra are skew Calabi-Yau. Since graded quasi-commutative skew PBW extensions with coefficients in a finitely presented skew Calabi-Yau algebra are skew Calabi-Yau, the Nakayama automorphism exists for these extensions. With this in mind, we give a description of Nakayama automorphism for these non-commutative algebras using the Nakayama automorphism of the ring of the coefficients.En el enfoque esquemático de la geometría algebraica no conmutativa surgen algunas clases importantes de álgebras no conmutativas como álgebras de Koszul, álgebras Artin-Schelter regulares, álgebras Calabi-Yau y, estrechamente relacionadas con estas, las extensiones PBW torcidas. Existen algunas relaciones entre estas álgebras y las extensiones PBW torcidas. Nosotros damos condiciones para garantizar cuáles extensiones PBW torcidas de un cuerpo son álgebras no homogéneas de Koszul o álgebras de Koszul. También, mostramos que una extensión PBW torcida constante de un cuerpo es una deformación PBW de su versión homogénea. Definimos las extensiones PBW torcidas graduadas, estudiamos algunas propiedades de estas álgebras y mostramos que si R es un álgebra PBW, entonces cada extensión PBW torcida graduada de R es un álgebra PBW, y por lo tanto un álgebra de Koszul. Como una generalización de los resultados anteriores, se demuestra que cada extensión PBW torcida graduada de un álgebra de Koszul finitamente presentada, es un álgebra de Koszul. La regularidad de Artin-Schelter y la condición de Calabi-Yau torcida se estudian para las extensiones PBW torcidas graduadas. Se demuestra que cada extensión PBW torcida cuasi-conmutativa graduada de un álgebra Artin-Schelter regular es un álgebra Artin-Schelter regular, y más general, extensiones PBW torcidas graduadas de un álgebra finitamente presentada Auslander-regular, son álgebras Artin-Schelter regulares. Como consecuencia, cada extensión PBW torcida cuasi-conmutativa graduada de un álgebra Calabi-Yau torcida finitamente presentada, es Calabi-Yau torcida, y las extensiones PBW torcidas graduadas de un álgebra Auslander-regular finitamente presentada son álgebras Calabi-Yau torcidas. Dado que las extensiones PBW torcidas cuasi-conmutativas graduadas con coeficientes en un álgebra Calabi-Yau torcida finitamente presentada, son Calabi-Yau torcidas, existe el automorfismo de Nakayama para estas extensiones. Con esto en mente, damos una descripción del automorphism de Nakayama para estas álgebras no conmutativas, usando el automorphism de Nakayama del anillo de coeficientes.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas MatemáticasMatemáticasSuárez Suárez, Héctor Julio (2017) N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.51 Matemáticas / MathematicsSkew PBW extensionsKoszul algebrasArtin-Schelter regular algebrasCalabi-Yau algebrasExtensiones PBW torcidasÁlgebras de KoszulÁlgebras Artin-Schelter regularesÁlgebras Calabi-YauN-Koszul algebras, Calabi-Yau algebras and skew PBW extensionsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL6776683.2017.pdfapplication/pdf1064939https://repositorio.unal.edu.co/bitstream/unal/60792/1/6776683.2017.pdff5dc630cf7a017baf3c3146a351a6658MD51THUMBNAIL6776683.2017.pdf.jpg6776683.2017.pdf.jpgGenerated Thumbnailimage/jpeg4108https://repositorio.unal.edu.co/bitstream/unal/60792/2/6776683.2017.pdf.jpg8aa2d319b2e30f85dbebc12d64576315MD52unal/60792oai:repositorio.unal.edu.co:unal/607922023-04-09 23:04:45.969Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co