Uniqueness of global weak solution for some hyperbolic conservation system

Abstract. In the present work, we study the uniqueness of entropy solutions for the Riemann and Cauchy problems associated to the Suliciu relaxation system where the initial data satisfies the conditions H1 and H2. Moreover, the solution is in L∞ space. Also, we show the explixit solutions for the C...

Full description

Autores:
De la Cruz Guerrero, Richard Alexander
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/51990
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/51990
http://bdigital.unal.edu.co/46238/
Palabra clave:
51 Matemáticas / Mathematics
Uniqueness
Suliciu relaxation system
Cauchy and Riemann problems
Global weak solutions
Delta shock solutions
Unicidad
Sistema de relajación de Suliciu
Problemas de Cauchy y Riemann
Soluciones débiles globales
Soluciones delta choques
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Abstract. In the present work, we study the uniqueness of entropy solutions for the Riemann and Cauchy problems associated to the Suliciu relaxation system where the initial data satisfies the conditions H1 and H2. Moreover, the solution is in L∞ space. Also, we show the explixit solutions for the Cauchy problem and generalized Riemann problem. When the condition H1 is not satisfied delta shock solutions are obtained for the Riemann problem associated to the Suliciu relaxation system. To guarantee uniqueness of delta shock solutions, we employ a generalization of the Rankine-Hugoniot condition together with a suitable entropy condition.