Uniqueness of global weak solution for some hyperbolic conservation system
Abstract. In the present work, we study the uniqueness of entropy solutions for the Riemann and Cauchy problems associated to the Suliciu relaxation system where the initial data satisfies the conditions H1 and H2. Moreover, the solution is in L∞ space. Also, we show the explixit solutions for the C...
- Autores:
-
De la Cruz Guerrero, Richard Alexander
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2014
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/51990
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/51990
http://bdigital.unal.edu.co/46238/
- Palabra clave:
- 51 Matemáticas / Mathematics
Uniqueness
Suliciu relaxation system
Cauchy and Riemann problems
Global weak solutions
Delta shock solutions
Unicidad
Sistema de relajación de Suliciu
Problemas de Cauchy y Riemann
Soluciones débiles globales
Soluciones delta choques
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Abstract. In the present work, we study the uniqueness of entropy solutions for the Riemann and Cauchy problems associated to the Suliciu relaxation system where the initial data satisfies the conditions H1 and H2. Moreover, the solution is in L∞ space. Also, we show the explixit solutions for the Cauchy problem and generalized Riemann problem. When the condition H1 is not satisfied delta shock solutions are obtained for the Riemann problem associated to the Suliciu relaxation system. To guarantee uniqueness of delta shock solutions, we employ a generalization of the Rankine-Hugoniot condition together with a suitable entropy condition. |
---|