Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular

ilustraciones, fotografías, graficas

Autores:
Ravelo Nieto, Eduardo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82059
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82059
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
Nanobioconjugado
Buforina II
Proteína OmpA
Nanopartículas de sílice
Fullerenol
Internalización celular
Escape endosomal
nanobioconjugates
Silica nanoparticles
Cellular uptake
Endosomal escape
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_501cdbdc3c6685ec8d7edb3c484009e4
oai_identifier_str oai:repositorio.unal.edu.co:unal/82059
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular
dc.title.translated.eng.fl_str_mv Nanobioconjugates based on silica nanoparticles and/or fullerenol, Buforin II and the OmpA protein, with potential use as cell penetration vehicles
title Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular
spellingShingle Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular
570 - Biología::572 - Bioquímica
Nanobioconjugado
Buforina II
Proteína OmpA
Nanopartículas de sílice
Fullerenol
Internalización celular
Escape endosomal
nanobioconjugates
Silica nanoparticles
Cellular uptake
Endosomal escape
title_short Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular
title_full Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular
title_fullStr Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular
title_full_unstemmed Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular
title_sort Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular
dc.creator.fl_str_mv Ravelo Nieto, Eduardo
dc.contributor.advisor.none.fl_str_mv Cruz Jiménez, Juan Carlos
Duarte Ruiz, Alvaro
dc.contributor.author.none.fl_str_mv Ravelo Nieto, Eduardo
dc.contributor.educationalvalidator.none.fl_str_mv Javier Cifuentes
dc.contributor.financer.none.fl_str_mv Universidad de los Andes
dc.contributor.researchgroup.spa.fl_str_mv Nuevos Materiales Nano y Supramoleculares
Departamento de Ingeniería Biomédica - Universidad de los Andes
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
topic 570 - Biología::572 - Bioquímica
Nanobioconjugado
Buforina II
Proteína OmpA
Nanopartículas de sílice
Fullerenol
Internalización celular
Escape endosomal
nanobioconjugates
Silica nanoparticles
Cellular uptake
Endosomal escape
dc.subject.proposal.spa.fl_str_mv Nanobioconjugado
Buforina II
Proteína OmpA
Nanopartículas de sílice
Fullerenol
Internalización celular
Escape endosomal
dc.subject.proposal.eng.fl_str_mv nanobioconjugates
Silica nanoparticles
Cellular uptake
Endosomal escape
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-24T14:35:33Z
dc.date.available.none.fl_str_mv 2022-08-24T14:35:33Z
dc.date.issued.none.fl_str_mv 2022-05-05
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82059
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82059
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Hossen, S., Hossain, K., Basher, M. K., Mia, M. N. H. & Rahman, M. T. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies : A review. J. Adv. Res. 1, 1–74 (2018).
Gonçalves, M. C. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 23, 2021 (2018).
McNeil, S. E. Unique Benefits of Nanotechnology to Drug Delivery and Diagnostics. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–8 (2011). doi:10.1007/978-1-60327-198-1.
Yokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook (eds. Naito, M., Yokoyama, T., Hosokawa, K. & Nogi, K.) 3–48 (2018).
McNeil, S. E. Evaluating Nanomedicines: Obstacles and Advancements. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–16 (2018). doi:10.1007/978-1-4939-7352-1.
Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nanotoday 9, 223–243 (2014).
Degors, I. M. S., Wang, C., Rehman, Z. U. & Zuhorn, I. S. Carriers Break Barriers in Drug Delivery : Endocytosis and Endosomal Escape of Gene Delivery Vectors Published as part of the Accounts of Chemical Research special issue “ Nanomedicine and Beyond ” . Acc. Chem. Res. 52, 1750–1760 (2019).
Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A Decade of the Protein Corona. ACS Nano 11, 11773–11776 (2017).
Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).
Zhang, R., Qin, X., Kong, F., Chen, P. & Pan, G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 26, 328–342 (2019).
Mosquera, J., García, I. & Liz-Marzán, L. M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 51, 2305–2313 (2018).
Selby, L. I., Cortez-Jugo, C. M., Such, G. K. & Johnston, A. P. R. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 9, (2017).
Parenti, G., Pignata, C., Vajro, P. & Salerno, M. New strategies for the treatment of lysosomal storage diseases. Int. J. Mol. Med. 31, 11–20 (2013).
Sun, A. Lysosomal storage disease overview. Ann. Transl. Med. 6, 476.-476. (2018).
Hillaireau, H. & Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009).
Behzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).
Stober, W. & Fink, A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. collod interface Sci. 26, 62–69 (1968).
Shi, S., Chen, F. & Cai, W. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: Focusing on molecular imaging. Nanomedicine 8, 2027–2039 (2013).
Singh, P., Srivastava, S. & Singh, S. K. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater. Sci. Eng. 5, 4882–4898 (2019).
Hermanson, G. T. Microparticles and Nanoparticles. in Bioconjugate Techniques 549–587 (2013).
Kazemzadeh, H. & Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today 24, 898–905 (2019).
Mi, P., Cabral, H. & Kataoka, K. Ligand-Installed Nanocarriers toward Precision Therapy. Adv. Mater. 32, 1–29 (2020).
Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry vol. 30 263–272 (2019).
Ahmad, A., Khan, J. M. & Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 160, 61–75 (2019).
Chakraborty, S., Dhakshinamurthy, G. S. & Misra, S. K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. - Part A 105, 2906–2928 (2017).
Biffi, S., Voltan, R., Bortot, B., Zauli, G. & Secchiero, P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin. Drug Deliv. 16, 481–496 (2019).
Kanwal, U. et al. Advances in nano-delivery systems for doxorubicin: an updated insight. J. Drug Target. 26, 296–310 (2018).
Cuellar, M. et al. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int. J. Nanomedicine 13, 8087–8094 (2018).
Perez, J. et al. Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles. Int. J. Nanomedicine 14, 8483–8497 (2019).
López-Barbosa, N. et al. Magnetite-OmpA nanobioconjugates as cell- penetrating vehicles with endosomal escape abilities. ACS Biomater. Sci. Eng. 6, 415–424 (2019).
Duarte-Ruiz, Á., Echegoyen, L., Aya, A. & Gómez-Baquero, F. A new method to prepare an e,e,e trisadduct of C60 using a protection-deprotection sequence. J. Mex. Chem. Soc. 53, 169–173 (2009).
Duarte-Ruiz, A., Wurst, K. & Kräutler, B. The orthogonal (e,e,e)-tris-adduct of 9,10-dimethylanthracene with C 60-fullerene: A hidden cornerstone of fullerene chemistry. Preliminary communication. Helv. Chim. Acta 91, 1401–1408 (2008).
Torres Palacio, P., Cano Beníte, C. A. & Duarte Ruiz, Á. Self-assembly of a supramolecular square between [ni(Dppe)(tof)2] and 4,4′-bipyridine. Rev. Colomb. Quim. 42, 48–55 (2013).
Cano-Benítez, C. A., Metta-Magaña, A. J. & Duarte-Ruiz, Á. Crystal structure at 100 K of bis[1,2-bis(diphenylphosphanyl)ethane]nickel(II) bis(trifluoromethanesulfonate): A possible negative thermal expansion molecular material. Acta Crystallogr. Sect. E Crystallogr. Commun. 74, 1678–1681 (2018).
Duarte-Ruiz, A., Iuele, H., Torres-Cortés, S., Meléndez, A. & Chaur, M. N. Physical and Inorganic Chemistry Synthesis and characterization of C60 and C70 acetylacetone monoadducts and study of their photochemical properties for potential application in solar cells Síntesis y caracterización de monoaductos de C60 y C70. Revista 50, 86–97 (2021).
Neti, V. S. P. K. et al. High-yield, regiospecific bis-functionalization of C70 using a diels–alder reaction in molten anthracene. Chem. Commun. 50, 10584–10587 (2014).
Duarte-Ruiz, Á. et al. Synthesis and structure of [Na4(DMSO)15][(I 3)3(I)]. Self-assembly of hexacoordinated sodium. Chem. Commun. 47, 7110–7112 (2011).
Yokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook 3–8 (2018).
Kamyshny, A. & Magdassi, S. Aqueous Dispersions of Metallic Nanoparticles. in Nanoscience 747–778 (2010).
Hosokawa, M., Nogi, K., Naito, M. & Yokoyama, T. Basic Properties And Measuring Methods Of Nanoparticles. in Nanoparticle Technology Handbook 5–9 (2007).
Hermanson, G. T. Silane Coupling Agents. in Bioconjugate Techniques 535–548 (2013).
Deetz, J. D. et al. Reactive Molecular Dynamics Simulations of the Silanization of Silica Substrates by Methoxy- and Hydroxysilanes. Langmuir 1, 1–24 (2016).
Hermanson, G. T. Homobifunctional Crosslinkers. in Bioconjugate Techniques 275–298 (2013).
Hermanson, G. T. Zero-Length Crosslinkers. in Bioconjugate Techniques 259–274 (2013).
Voet, D. & Voet, I. Lipids and Membranes. in Biochemistry 386–466 (2011).
Mayor, S., Parton, R. G. & Donaldson, J. G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6, (2014).
Podinovskaia, M. & Spang, A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. in Endocytosis and Signaling 1–38 (2018). doi:https://doi.org/10.1007/978-3-319-96704-2.
Cupic, K. I., Rennick, J. J., Johnston, A. P. R. & Such, G. K. Controlling endosomal escape using nanoparticle composition : current progress and future perspectives. Nanomedicine 14, 215–223 (2019).
Hermanson, G. T. Introduction to Bioconjugation. in Bioconjugate Techniques 1–125 (2013).
Camargo, M. & Groot, H. El secreto antimicrobiano de las histonas. Hipótesis, Apunt. científicos uniandinos 16, 14–16 (2014).
Park, C. B., Kim, M. S. & Kim, S. C. A Novel Antimicrobial Peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218, 408–413 (1996).
Park, C. B., Yi, K., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structure – activity analysis of buforin II , a histone H2A-derived antimicrobial peptide : The proline hinge is responsible for the cell-penetrating ability of buforin II. PNAS 97, 8245–8250 (2000).
Smith, S. G. J., Mahon, V., Lambert, M. A. & Fagan, R. P. A molecular Swiss army knife : OmpA structure , function and expression. FEMS Microbiol Lett 273, 1–11 (2007).
Pautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).
Shukla, T., Upmanyu, N., Pandey, S. P. & Sudheesh, M. S. Site-specific drug delivery, targeting, and gene therapy. in Nanoarchitectonics in Biomedicine 473–505 (2019).
Kim, W. et al. A reliable approach for assessing size-dependent effects of silica nanoparticles on cellular internalization behavior and cytotoxic mechanisms. Int. J. Nanomedicine 14, 7375–7387 (2019).
Goodarzi, S., Da Ros, T., Conde, J., Sefat, F. & Mozafari, M. Fullerene: biomedical engineers get to revisit an old friend. Mater. Today 20, 460–480 (2017).
Semenov, K. N. et al. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem. 44, 59–74 (2016).
Chiang, L. Y., Wang, L. Y., Swirczewski, J. W., Soled, S. & Cameron, S. Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. J. Org. Chem. 59, 3960–3968 (1994).
Li, J. et al. C60 fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem. Soc. Chem. Commun. 1784–1785 (1993) doi:10.1039/C39930001784.
Wang, S., He, P., Zhang, J. M., Jiang, H. & Zhu, S. Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 35, 1803–1808 (2005).
Gomez, S. & Duarte, A. Síntesis de fulleroles a partir de un derivado bromado de C60. Revista Colombiana de Quimica vol. 38 83–95 (2009).
Afreen, S., Kokubo, K., Muthoosamy, K. & Manickam, S. Hydration or hydroxylation: Direct synthesis of fullerenol from pristine fullerene [C60] via acoustic cavitation in the presence of hydrogen peroxide. RSC Adv. 7, 31930–31939 (2017).
Kokubo, K., Shirakawa, S., Kobayashi, N., Aoshima, H. & Oshima, T. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 4, 204–215 (2011).
Kokubo, K., Matsubayashi, K., Tategaki, H., Takada, H. & Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2, 327–333 (2008).
Planque, M. R. R. De, Aghdaei, S., Roose, T. & Morgan, H. Electrophysiological Characterization of Membrane Disruption by Nanoparticles. ACS Nano 5, 3599–3606 (2011).
Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 6, 662–668 (2006).
Jiang, W. E. N., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).
Chaudhuri, A., Battaglia, G. & Golestanian, R. The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8, 1–9 (2011).
Soenen, S. et al. Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano 6, 5767–5783 (2012).
Edrissi, M., Soleymani, M. & Adinehnia, M. Synthesis of Silica Nanoparticles by Ultrasound-Assisted Sol-Gel Method : Optimized by Taguchi Robust Design. Chem. Eng. Technol. 34, 1813–1819 (2011).
Kovač, T., Borišev, I., Crevar, B., Kenjerić, F. Č. & Ko, M. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B 1 biosynthesis in Aspergillus flavus. Sci. Rep. 60, 1–8 (2018).
Kinnear, C., Moore, T. L., Rodriguez-lorenzo, L., Rothen-rutishauser, B. & Petri-fink, A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev. 117, 11476–11521 (2017).
Li, Y. & Gu, N. Thermodynamics of Charged Nanoparticle Adsorption on Charge-Neutral Membranes : A Simulation Study. J. Phys. Chem. 114, 2749–2754 (2010).
Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I 2 / KI Etchant 2009. Nano Lett. 9, 1080–1084 (2009).
Mahmoudi, M. et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol. Adv. 1, 1–14 (2014).
Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–51 (2015).
Adijanto, J. & Naash, M. I. Nanoparticle-based technologies for retinal gene therapy. Eur. J. Pharm. Biopharm. 1, 1–15 (2015).
Rüter, C., Buss, C., Scharnert, J., Heusipp, G. & Schmidt, M. A. A newly identified bacterial cell-penetrating peptide that reduces the transcription of pro-inflammatory cytokines. J. Cell Sci. 123, 2190–2198 (2010).
Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).
Sun, T. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Rev. 53, 2–47 (2014).
Lin, G. et al. Non-viral gene therapy using multifunctional nanoparticles : Status, challenges, and opportunities. Coord. Chem. Rev. J. 374, 133–152 (2018).
Kim, I., Joachim, E., Choi, H. & Kevin, K. K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine Nanotechnology, Biol. Med. 1–10 (2015) doi:10.1016/j.nano.2015.03.004.
Schuh, R. S., Baldo, G. & Teixeira, H. F. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin. Drug Deliv. 13, 1709–1718 (2016).
Aguilera-Segura, S. M. et al. Advances in Computational Biology Proceedings of the 2nd Colombian Congress on Computational Biology and Bioinformatics (CCBCOL). in Escherichia coli´s OmpA as Biosurfactant for Cosmetic Industry: Stability Analysis and Experimental Validation Based on Molecular Simulations 265–272 (2014). doi:10.1007/978-3-319-01568-2.
Shafqat, S. S. et al. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 8, 385–395 (2019).
Hermanson, G. T. Immobilization of Ligands on Chromatography Supports. in Bioconjugate Techniques 734 (2013).
Hermanson, G. T. PEGylation and Synthetic Polymer Modification. in Bioconjugate Techniques 786–838 (2013).
Levi-Polyachenko, N. H., Carroll, D. L. & Stewart, J. H. Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology. in Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (eds. Cataldo, F. & Milani, P.) 225 (2008).
Pautsch, A. & Schulz, G. E. High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298, 273–282 (2000).
Ravelo-Nieto, E., Duarte-Ruiz, A., Reyes, L. H. & Cruz, J. C. Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. Mater. Proc. 4, 15 (2020).
De Santiago, H. A., Gupta, S. K. & Mao, Y. On high purity fullerenol obtained by combined dialysis and freeze-drying method with its morphostructural transition and photoluminescence. Sep. Purif. Technol. 210, 927–934 (2019).
Potter, T. M., Neun, B. W., Ilinskaya, A. N. & Obrovolskaia, M. A. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.
Muñoz-Camargo, C. et al. Unveiling the multifaceted mechanisms of antibacterial activity of buforin II and frenatin 2.3S peptides from skin micro-organs of the orinoco lime treefrog (Sphaenorhynchus lacteus). Int. J. Mol. Sci. 19, (2018).
Potter, T. M. et al. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 103–124 (2018). doi:10.1007/978-1-4939-7352-1.
Lopez-barbosa, N. et al. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer ’ s. Drug Deliv. 27, 864–875 (2020).
Meerloo, J. van., Kaspers, G. J. L. & Jacqueline, C. Cell Sensitivity Assays: The MTT Assay. in Cancer Cell Culture: Methods and Protocols (ed. Cree, I. A.) 237–245 (Humana Press, 2011). doi:10.1007/978-1-61779-080-5.
Balakrishnan, V., Ab Wab, H. A., Abdul Razak, K. & Shamsuddin, S. In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J. Nanomater. 2013, (2013).
Rahman, I. A., Vejayakumaran, P., Sipaut, C. S., Ismail, J. & Chee, C. K. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater. Chem. Phys. 114, 328–332 (2009).
Azarshin, S., Moghadasi, J. & A Aboosadi, Z. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Explor. Exploit. 35, 685–697 (2017).
Holder, C. F. & Schaak, R. E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 13, 7359–7365 (2019).
Cullity, B. . & Stock, S. . Diffraction III: Real Samples. in Elements of X-ray diffraction 171–189 (2014).
Pretsch, E., Bühlmann, P. & Badertscher, M. Structure determination of organic compounds: Tables of spectral data. Structure Determination of Organic Compounds: Tables of Spectral Data (2009). doi:10.1007/978-3-540-93810-1.
Tatulian, S. A. Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy. in Lipid-Protein Interactions: Methods and Protocols, Methods in Molecular Biology 177–2018 (2013). doi:10.1007/978-1-62703-275-9_9.
Guleria, A. et al. PEGylated Silicon oxide nanocomposites with blue photoluminescence prepared by a rapid electron-beam irradiation approach: applications in IFE-based Cr (VI) sensing and cell-imaging. Colloids Surfaces A Physicochem. Eng. Asp. 640, 128483 (2022).
Alizadeh, L. et al. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J. Nanoparticle Res. 22, (2020).
Rangel-Muñoz, N., González-Barrios, A. F., Pradilla, D., Osma, J. F. & Cruz, J. C. Novel bionanocompounds: Outer membrane protein a and lacasse co-immobilized on magnetite nanoparticles for produced water treatment. Nanomaterials 10, 1–22 (2020).
Lin, Z., Wu, Y. & Bi, Y. Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. J Nanopart Res 20, 304 (2018).
Ren, G., Su, H. & Wang, S. The combined method to synthesis silica nanoparticle by Stöber process. J. Sol-Gel Sci. Technol. (2020) doi:10.1007/s10971-020-05322-y.
Li, L. et al. Unexpected Size Effect: The Interplay between Different- Sized Nanoparticles in Their Cellular Uptake. Small 15, 1–8 (2019).
Chenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 1–29 (2019).
Price, G. & Patel., D. A. Drug Bioavailability. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK557852/ (2020).
Shnoudeh, A. J. et al. Synthesis, Characterization, and Applications of Metal Nanoparticles. in Biomaterials and Bionanotechnology (ed. Inc, E.) 527–611 (2019). doi:https://doi.org/10.1016/B978-0-12-814427-5.00015-9.
Kunc, F. et al. Quantification of surface functional groups on silica nanoparticles: Comparison of thermogravimetric analysis and quantitative NMR. Analyst 144, 5589–5599 (2019).
Alan, B. O., Barisik, M. & Ozcelik, H. G. Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C 124, 7274–7286 (2020).
Niu, Y. et al. Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J. Mater. Chem. B 3, (2015).
Martínez Bonilla, C. A., Torres Flóres, M.-H., Molina Velasco, D. R. & Kouznetsov, V. V. Surface characterization of thiol ligands on CdTe quantum dots analysis by 1H NMR and DOSY. New J. Chem. 43, 8452 (2019).
Potter, T. M., Neun, B. W., Ilinskaya, A. N. & Marina A, D. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.
Soares, S., Sousa, J., Pais, A. & Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 6, 1–15 (2018).
International Organization for Standardization. ISO10993-5:2009(E) Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 1–34 (2009).
Neun, B. W., Ilinskaya, A. N. & Dobrovolskaia, M. A. Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 91–102 (2018). doi:10.1007/978-1-4939-7352.
Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. - Cell Physiol. 300, 723–742 (2011).
Adler, J. & Parmryd, I. Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Part A 77, 733–742 (2010).
Ajie, H. et al. Characterization of the soluble all-carbon molecules C60 and C70. J. Phys. Chem. 94, 8630–8633 (1990).
W. Krätschmer, Lowell D. Lamb, K. F. & D. R. H. Solid C60: A new form of carbon. Nature 347, 354–358 (1990).
Brant, J. A., Labille, J., Robichaud, C. O. & Wiesner, M. Fullerol cluster formation in aqueous solutions: Implications for environmental release. J. Colloid Interface Sci. 314, 281–288 (2007).
Goswami, T. H., Singh, R., Alam, S. & Mathur, G. N. Thermal analysis: A unique method to estimate the number of substituents in fullerene derivatives. Thermochim. Acta 419, 97–104 (2004).
Hermanson, G. T. Antibody Modification and Conjugation. in Bioconjugate Techniques 879 (2013).
Podolsky, N. E. et al. Physico-chemical properties of C 60 (OH) 22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J. Mol. Liq. 278, 342–355 (2019).
Zhuravlev, L. . Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3, 316–318 (1987).
Babij, N. R. et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 20, 661–667 (2016).
Kunc, F. et al. Quantification and Stability Determination of Surface Amine Groups on Silica Nanoparticles Using Solution NMR. Anal. Chem. 90, 13322–13330 (2018).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 101 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82059/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82059/2/91506147.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82059/3/91506147.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
b43ad19ab278129eb9ba34e60590bde6
32c92fdf53077705390d6fe83e699b4d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886054084476928
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cruz Jiménez, Juan Carlos019b1d5ce4074ef33e5c5ad12b3913d3Duarte Ruiz, Alvaro88449c61e1dae00d63b48141a33d80d5Ravelo Nieto, Eduardodd8a7c8206962fb5ea997f7f6223ce78Javier CifuentesUniversidad de los AndesNuevos Materiales Nano y SupramolecularesDepartamento de Ingeniería Biomédica - Universidad de los Andes2022-08-24T14:35:33Z2022-08-24T14:35:33Z2022-05-05https://repositorio.unal.edu.co/handle/unal/82059Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasDiferentes barreras biológicas son generalmente responsables de la limitada liberación de cargos a nivel celular, como estrategia terapéutica. Previamente, se desarrolló una nueva familia de nanobioconjugados con capacidad de penetración celular y de escape a la ruta endosomal, inmovilizando el péptido Buforina II (BUF-II) y la proteína OmpA en nanopartículas (NPs) de magnetita. Aquí, proponemos ampliar este enfoque a nanopartículas de sílice (SNPs) y fullerenol (F) como soportes nanoestructurados para la conjugación de estos potentes agentes de penetración celular, ya que la misma molécula conjugada a diferentes nanotransportadores puede exhibir diferentes interacciones con compartimentos subcelulares. Los nanobioconjugados obtenidos (OmpA-SNPs, BUF-II-PEG12-SNPs, OmpA-F y BUF-II-PEG12-F) se caracterizaron mediante técnicas como espectroscopia infrarroja (FT-IR), UV-vis, Dispersión Dinámica de Luz (DLS), Movilidad Electroforética, Microscopía Electrónica de Barrido (SEM), Microscopía Electrónica de Transmisión (TEM), Análisis termogravimétrico (TGA), Difracción de Rayos X (DRX), y Microscopía confocal para evaluar composición, tamaño, carga, morfología, y confirmar la conjugación de dichos agentes translocantes. Los nanobioconjugados mostraron alta capacidad de internalización en células Vero (ATCC® CCL-81) y THP-1 (ATCC® TIB-202), sin afectar la viabilidad celular, no mostraron efecto hemolítico significativo, así como baja tendencia a inducir agregación plaquetaria. Adicionalmente, mostraron diferente comportamiento en el tráfico intracelular y escape endosomal en estas dos líneas celulares, lo que una vez más demostró el potencial de estos materiales para abordar los desafíos de liberación citoplasmática de fármacos o el desarrollo de terapias para el tratamiento de enfermedades de depósito lisosomal. (Texto tomado de la fuente)Several biological barriers are generally responsible for the limited delivery of cargoes at the cellular level, as a therapeutic strategy. Previously, a new family of nanobioconjugates capable of cell penetration and endosomal escape was developed by immobilizing the Buforin II (BUF-II) peptide and the OmpA protein on magnetite nanoparticles (NPs). Here, we propose to extend this approach to silica NPs (SNPs) and fullerenol (F) as nanostructured supports for the conjugation of these potent cell-penetrating agents, as the same molecule conjugated to different nanocarriers may exhibit different interactions with subcellular compartments. The obtained nanobioconjugates(OmpA-SNPs, BUF-II-PEG12-SNPs, OmpA-F, and BUF-II-PEG12-F) were characterized via Fourier transform infrared spectroscopy (FT-IR), UV-vis, Dynamic Light Scattering (DLS), Electrophoretic Mobility, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), X-ray diffraction (XRD) techniques, and confocal microscopy was conducted to evaluate size, charge, composition, morphology, and to confirm the conjugation of these translocating agents on the NPs. Nanobioconjugates showed high internalization capacity in Vero cells (ATCC® CCL-81) and THP-1 cells (ATCC® TIB-202), without affecting cell viability, showed no significant hemolytic effect, as well as low propensity to induce platelet aggregation. Additionally, nanobioconjugates showed different intracellular trafficking and endosomal escape behavior in these two cell lines, showing once again the potential of these materials to address the challenges of cytoplasmic drugs delivery or the development of therapeutics for the treatment of lysosomal storage diseases.MaestríaMaestría en Ciencias-QuímicaBionanotecnología y Biomateriales101 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaNanobioconjugadoBuforina IIProteína OmpANanopartículas de síliceFullerenolInternalización celularEscape endosomalnanobioconjugatesSilica nanoparticlesCellular uptakeEndosomal escapeNanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celularNanobioconjugates based on silica nanoparticles and/or fullerenol, Buforin II and the OmpA protein, with potential use as cell penetration vehiclesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaHossen, S., Hossain, K., Basher, M. K., Mia, M. N. H. & Rahman, M. T. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies : A review. J. Adv. Res. 1, 1–74 (2018).Gonçalves, M. C. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 23, 2021 (2018).McNeil, S. E. Unique Benefits of Nanotechnology to Drug Delivery and Diagnostics. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–8 (2011). doi:10.1007/978-1-60327-198-1.Yokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook (eds. Naito, M., Yokoyama, T., Hosokawa, K. & Nogi, K.) 3–48 (2018).McNeil, S. E. Evaluating Nanomedicines: Obstacles and Advancements. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–16 (2018). doi:10.1007/978-1-4939-7352-1.Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nanotoday 9, 223–243 (2014).Degors, I. M. S., Wang, C., Rehman, Z. U. & Zuhorn, I. S. Carriers Break Barriers in Drug Delivery : Endocytosis and Endosomal Escape of Gene Delivery Vectors Published as part of the Accounts of Chemical Research special issue “ Nanomedicine and Beyond ” . Acc. Chem. Res. 52, 1750–1760 (2019).Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A Decade of the Protein Corona. ACS Nano 11, 11773–11776 (2017).Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).Zhang, R., Qin, X., Kong, F., Chen, P. & Pan, G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 26, 328–342 (2019).Mosquera, J., García, I. & Liz-Marzán, L. M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 51, 2305–2313 (2018).Selby, L. I., Cortez-Jugo, C. M., Such, G. K. & Johnston, A. P. R. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 9, (2017).Parenti, G., Pignata, C., Vajro, P. & Salerno, M. New strategies for the treatment of lysosomal storage diseases. Int. J. Mol. Med. 31, 11–20 (2013).Sun, A. Lysosomal storage disease overview. Ann. Transl. Med. 6, 476.-476. (2018).Hillaireau, H. & Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009).Behzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).Stober, W. & Fink, A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. collod interface Sci. 26, 62–69 (1968).Shi, S., Chen, F. & Cai, W. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: Focusing on molecular imaging. Nanomedicine 8, 2027–2039 (2013).Singh, P., Srivastava, S. & Singh, S. K. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater. Sci. Eng. 5, 4882–4898 (2019).Hermanson, G. T. Microparticles and Nanoparticles. in Bioconjugate Techniques 549–587 (2013).Kazemzadeh, H. & Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today 24, 898–905 (2019).Mi, P., Cabral, H. & Kataoka, K. Ligand-Installed Nanocarriers toward Precision Therapy. Adv. Mater. 32, 1–29 (2020).Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry vol. 30 263–272 (2019).Ahmad, A., Khan, J. M. & Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 160, 61–75 (2019).Chakraborty, S., Dhakshinamurthy, G. S. & Misra, S. K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. - Part A 105, 2906–2928 (2017).Biffi, S., Voltan, R., Bortot, B., Zauli, G. & Secchiero, P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin. Drug Deliv. 16, 481–496 (2019).Kanwal, U. et al. Advances in nano-delivery systems for doxorubicin: an updated insight. J. Drug Target. 26, 296–310 (2018).Cuellar, M. et al. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int. J. Nanomedicine 13, 8087–8094 (2018).Perez, J. et al. Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles. Int. J. Nanomedicine 14, 8483–8497 (2019).López-Barbosa, N. et al. Magnetite-OmpA nanobioconjugates as cell- penetrating vehicles with endosomal escape abilities. ACS Biomater. Sci. Eng. 6, 415–424 (2019).Duarte-Ruiz, Á., Echegoyen, L., Aya, A. & Gómez-Baquero, F. A new method to prepare an e,e,e trisadduct of C60 using a protection-deprotection sequence. J. Mex. Chem. Soc. 53, 169–173 (2009).Duarte-Ruiz, A., Wurst, K. & Kräutler, B. The orthogonal (e,e,e)-tris-adduct of 9,10-dimethylanthracene with C 60-fullerene: A hidden cornerstone of fullerene chemistry. Preliminary communication. Helv. Chim. Acta 91, 1401–1408 (2008).Torres Palacio, P., Cano Beníte, C. A. & Duarte Ruiz, Á. Self-assembly of a supramolecular square between [ni(Dppe)(tof)2] and 4,4′-bipyridine. Rev. Colomb. Quim. 42, 48–55 (2013).Cano-Benítez, C. A., Metta-Magaña, A. J. & Duarte-Ruiz, Á. Crystal structure at 100 K of bis[1,2-bis(diphenylphosphanyl)ethane]nickel(II) bis(trifluoromethanesulfonate): A possible negative thermal expansion molecular material. Acta Crystallogr. Sect. E Crystallogr. Commun. 74, 1678–1681 (2018).Duarte-Ruiz, A., Iuele, H., Torres-Cortés, S., Meléndez, A. & Chaur, M. N. Physical and Inorganic Chemistry Synthesis and characterization of C60 and C70 acetylacetone monoadducts and study of their photochemical properties for potential application in solar cells Síntesis y caracterización de monoaductos de C60 y C70. Revista 50, 86–97 (2021).Neti, V. S. P. K. et al. High-yield, regiospecific bis-functionalization of C70 using a diels–alder reaction in molten anthracene. Chem. Commun. 50, 10584–10587 (2014).Duarte-Ruiz, Á. et al. Synthesis and structure of [Na4(DMSO)15][(I 3)3(I)]. Self-assembly of hexacoordinated sodium. Chem. Commun. 47, 7110–7112 (2011).Yokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook 3–8 (2018).Kamyshny, A. & Magdassi, S. Aqueous Dispersions of Metallic Nanoparticles. in Nanoscience 747–778 (2010).Hosokawa, M., Nogi, K., Naito, M. & Yokoyama, T. Basic Properties And Measuring Methods Of Nanoparticles. in Nanoparticle Technology Handbook 5–9 (2007).Hermanson, G. T. Silane Coupling Agents. in Bioconjugate Techniques 535–548 (2013).Deetz, J. D. et al. Reactive Molecular Dynamics Simulations of the Silanization of Silica Substrates by Methoxy- and Hydroxysilanes. Langmuir 1, 1–24 (2016).Hermanson, G. T. Homobifunctional Crosslinkers. in Bioconjugate Techniques 275–298 (2013).Hermanson, G. T. Zero-Length Crosslinkers. in Bioconjugate Techniques 259–274 (2013).Voet, D. & Voet, I. Lipids and Membranes. in Biochemistry 386–466 (2011).Mayor, S., Parton, R. G. & Donaldson, J. G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6, (2014).Podinovskaia, M. & Spang, A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. in Endocytosis and Signaling 1–38 (2018). doi:https://doi.org/10.1007/978-3-319-96704-2.Cupic, K. I., Rennick, J. J., Johnston, A. P. R. & Such, G. K. Controlling endosomal escape using nanoparticle composition : current progress and future perspectives. Nanomedicine 14, 215–223 (2019).Hermanson, G. T. Introduction to Bioconjugation. in Bioconjugate Techniques 1–125 (2013).Camargo, M. & Groot, H. El secreto antimicrobiano de las histonas. Hipótesis, Apunt. científicos uniandinos 16, 14–16 (2014).Park, C. B., Kim, M. S. & Kim, S. C. A Novel Antimicrobial Peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218, 408–413 (1996).Park, C. B., Yi, K., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structure – activity analysis of buforin II , a histone H2A-derived antimicrobial peptide : The proline hinge is responsible for the cell-penetrating ability of buforin II. PNAS 97, 8245–8250 (2000).Smith, S. G. J., Mahon, V., Lambert, M. A. & Fagan, R. P. A molecular Swiss army knife : OmpA structure , function and expression. FEMS Microbiol Lett 273, 1–11 (2007).Pautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).Shukla, T., Upmanyu, N., Pandey, S. P. & Sudheesh, M. S. Site-specific drug delivery, targeting, and gene therapy. in Nanoarchitectonics in Biomedicine 473–505 (2019).Kim, W. et al. A reliable approach for assessing size-dependent effects of silica nanoparticles on cellular internalization behavior and cytotoxic mechanisms. Int. J. Nanomedicine 14, 7375–7387 (2019).Goodarzi, S., Da Ros, T., Conde, J., Sefat, F. & Mozafari, M. Fullerene: biomedical engineers get to revisit an old friend. Mater. Today 20, 460–480 (2017).Semenov, K. N. et al. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem. 44, 59–74 (2016).Chiang, L. Y., Wang, L. Y., Swirczewski, J. W., Soled, S. & Cameron, S. Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. J. Org. Chem. 59, 3960–3968 (1994).Li, J. et al. C60 fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem. Soc. Chem. Commun. 1784–1785 (1993) doi:10.1039/C39930001784.Wang, S., He, P., Zhang, J. M., Jiang, H. & Zhu, S. Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 35, 1803–1808 (2005).Gomez, S. & Duarte, A. Síntesis de fulleroles a partir de un derivado bromado de C60. Revista Colombiana de Quimica vol. 38 83–95 (2009).Afreen, S., Kokubo, K., Muthoosamy, K. & Manickam, S. Hydration or hydroxylation: Direct synthesis of fullerenol from pristine fullerene [C60] via acoustic cavitation in the presence of hydrogen peroxide. RSC Adv. 7, 31930–31939 (2017).Kokubo, K., Shirakawa, S., Kobayashi, N., Aoshima, H. & Oshima, T. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 4, 204–215 (2011).Kokubo, K., Matsubayashi, K., Tategaki, H., Takada, H. & Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2, 327–333 (2008).Planque, M. R. R. De, Aghdaei, S., Roose, T. & Morgan, H. Electrophysiological Characterization of Membrane Disruption by Nanoparticles. ACS Nano 5, 3599–3606 (2011).Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 6, 662–668 (2006).Jiang, W. E. N., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).Chaudhuri, A., Battaglia, G. & Golestanian, R. The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8, 1–9 (2011).Soenen, S. et al. Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano 6, 5767–5783 (2012).Edrissi, M., Soleymani, M. & Adinehnia, M. Synthesis of Silica Nanoparticles by Ultrasound-Assisted Sol-Gel Method : Optimized by Taguchi Robust Design. Chem. Eng. Technol. 34, 1813–1819 (2011).Kovač, T., Borišev, I., Crevar, B., Kenjerić, F. Č. & Ko, M. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B 1 biosynthesis in Aspergillus flavus. Sci. Rep. 60, 1–8 (2018).Kinnear, C., Moore, T. L., Rodriguez-lorenzo, L., Rothen-rutishauser, B. & Petri-fink, A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev. 117, 11476–11521 (2017).Li, Y. & Gu, N. Thermodynamics of Charged Nanoparticle Adsorption on Charge-Neutral Membranes : A Simulation Study. J. Phys. Chem. 114, 2749–2754 (2010).Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I 2 / KI Etchant 2009. Nano Lett. 9, 1080–1084 (2009).Mahmoudi, M. et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol. Adv. 1, 1–14 (2014).Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–51 (2015).Adijanto, J. & Naash, M. I. Nanoparticle-based technologies for retinal gene therapy. Eur. J. Pharm. Biopharm. 1, 1–15 (2015).Rüter, C., Buss, C., Scharnert, J., Heusipp, G. & Schmidt, M. A. A newly identified bacterial cell-penetrating peptide that reduces the transcription of pro-inflammatory cytokines. J. Cell Sci. 123, 2190–2198 (2010).Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).Sun, T. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Rev. 53, 2–47 (2014).Lin, G. et al. Non-viral gene therapy using multifunctional nanoparticles : Status, challenges, and opportunities. Coord. Chem. Rev. J. 374, 133–152 (2018).Kim, I., Joachim, E., Choi, H. & Kevin, K. K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine Nanotechnology, Biol. Med. 1–10 (2015) doi:10.1016/j.nano.2015.03.004.Schuh, R. S., Baldo, G. & Teixeira, H. F. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin. Drug Deliv. 13, 1709–1718 (2016).Aguilera-Segura, S. M. et al. Advances in Computational Biology Proceedings of the 2nd Colombian Congress on Computational Biology and Bioinformatics (CCBCOL). in Escherichia coli´s OmpA as Biosurfactant for Cosmetic Industry: Stability Analysis and Experimental Validation Based on Molecular Simulations 265–272 (2014). doi:10.1007/978-3-319-01568-2.Shafqat, S. S. et al. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 8, 385–395 (2019).Hermanson, G. T. Immobilization of Ligands on Chromatography Supports. in Bioconjugate Techniques 734 (2013).Hermanson, G. T. PEGylation and Synthetic Polymer Modification. in Bioconjugate Techniques 786–838 (2013).Levi-Polyachenko, N. H., Carroll, D. L. & Stewart, J. H. Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology. in Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (eds. Cataldo, F. & Milani, P.) 225 (2008).Pautsch, A. & Schulz, G. E. High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298, 273–282 (2000).Ravelo-Nieto, E., Duarte-Ruiz, A., Reyes, L. H. & Cruz, J. C. Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. Mater. Proc. 4, 15 (2020).De Santiago, H. A., Gupta, S. K. & Mao, Y. On high purity fullerenol obtained by combined dialysis and freeze-drying method with its morphostructural transition and photoluminescence. Sep. Purif. Technol. 210, 927–934 (2019).Potter, T. M., Neun, B. W., Ilinskaya, A. N. & Obrovolskaia, M. A. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.Muñoz-Camargo, C. et al. Unveiling the multifaceted mechanisms of antibacterial activity of buforin II and frenatin 2.3S peptides from skin micro-organs of the orinoco lime treefrog (Sphaenorhynchus lacteus). Int. J. Mol. Sci. 19, (2018).Potter, T. M. et al. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 103–124 (2018). doi:10.1007/978-1-4939-7352-1.Lopez-barbosa, N. et al. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer ’ s. Drug Deliv. 27, 864–875 (2020).Meerloo, J. van., Kaspers, G. J. L. & Jacqueline, C. Cell Sensitivity Assays: The MTT Assay. in Cancer Cell Culture: Methods and Protocols (ed. Cree, I. A.) 237–245 (Humana Press, 2011). doi:10.1007/978-1-61779-080-5.Balakrishnan, V., Ab Wab, H. A., Abdul Razak, K. & Shamsuddin, S. In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J. Nanomater. 2013, (2013).Rahman, I. A., Vejayakumaran, P., Sipaut, C. S., Ismail, J. & Chee, C. K. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater. Chem. Phys. 114, 328–332 (2009).Azarshin, S., Moghadasi, J. & A Aboosadi, Z. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Explor. Exploit. 35, 685–697 (2017).Holder, C. F. & Schaak, R. E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 13, 7359–7365 (2019).Cullity, B. . & Stock, S. . Diffraction III: Real Samples. in Elements of X-ray diffraction 171–189 (2014).Pretsch, E., Bühlmann, P. & Badertscher, M. Structure determination of organic compounds: Tables of spectral data. Structure Determination of Organic Compounds: Tables of Spectral Data (2009). doi:10.1007/978-3-540-93810-1.Tatulian, S. A. Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy. in Lipid-Protein Interactions: Methods and Protocols, Methods in Molecular Biology 177–2018 (2013). doi:10.1007/978-1-62703-275-9_9.Guleria, A. et al. PEGylated Silicon oxide nanocomposites with blue photoluminescence prepared by a rapid electron-beam irradiation approach: applications in IFE-based Cr (VI) sensing and cell-imaging. Colloids Surfaces A Physicochem. Eng. Asp. 640, 128483 (2022).Alizadeh, L. et al. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J. Nanoparticle Res. 22, (2020).Rangel-Muñoz, N., González-Barrios, A. F., Pradilla, D., Osma, J. F. & Cruz, J. C. Novel bionanocompounds: Outer membrane protein a and lacasse co-immobilized on magnetite nanoparticles for produced water treatment. Nanomaterials 10, 1–22 (2020).Lin, Z., Wu, Y. & Bi, Y. Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. J Nanopart Res 20, 304 (2018).Ren, G., Su, H. & Wang, S. The combined method to synthesis silica nanoparticle by Stöber process. J. Sol-Gel Sci. Technol. (2020) doi:10.1007/s10971-020-05322-y.Li, L. et al. Unexpected Size Effect: The Interplay between Different- Sized Nanoparticles in Their Cellular Uptake. Small 15, 1–8 (2019).Chenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 1–29 (2019).Price, G. & Patel., D. A. Drug Bioavailability. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK557852/ (2020).Shnoudeh, A. J. et al. Synthesis, Characterization, and Applications of Metal Nanoparticles. in Biomaterials and Bionanotechnology (ed. Inc, E.) 527–611 (2019). doi:https://doi.org/10.1016/B978-0-12-814427-5.00015-9.Kunc, F. et al. Quantification of surface functional groups on silica nanoparticles: Comparison of thermogravimetric analysis and quantitative NMR. Analyst 144, 5589–5599 (2019).Alan, B. O., Barisik, M. & Ozcelik, H. G. Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C 124, 7274–7286 (2020).Niu, Y. et al. Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J. Mater. Chem. B 3, (2015).Martínez Bonilla, C. A., Torres Flóres, M.-H., Molina Velasco, D. R. & Kouznetsov, V. V. Surface characterization of thiol ligands on CdTe quantum dots analysis by 1H NMR and DOSY. New J. Chem. 43, 8452 (2019).Potter, T. M., Neun, B. W., Ilinskaya, A. N. & Marina A, D. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.Soares, S., Sousa, J., Pais, A. & Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 6, 1–15 (2018).International Organization for Standardization. ISO10993-5:2009(E) Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 1–34 (2009).Neun, B. W., Ilinskaya, A. N. & Dobrovolskaia, M. A. Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 91–102 (2018). doi:10.1007/978-1-4939-7352.Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. - Cell Physiol. 300, 723–742 (2011).Adler, J. & Parmryd, I. Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Part A 77, 733–742 (2010).Ajie, H. et al. Characterization of the soluble all-carbon molecules C60 and C70. J. Phys. Chem. 94, 8630–8633 (1990).W. Krätschmer, Lowell D. Lamb, K. F. & D. R. H. Solid C60: A new form of carbon. Nature 347, 354–358 (1990).Brant, J. A., Labille, J., Robichaud, C. O. & Wiesner, M. Fullerol cluster formation in aqueous solutions: Implications for environmental release. J. Colloid Interface Sci. 314, 281–288 (2007).Goswami, T. H., Singh, R., Alam, S. & Mathur, G. N. Thermal analysis: A unique method to estimate the number of substituents in fullerene derivatives. Thermochim. Acta 419, 97–104 (2004).Hermanson, G. T. Antibody Modification and Conjugation. in Bioconjugate Techniques 879 (2013).Podolsky, N. E. et al. Physico-chemical properties of C 60 (OH) 22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J. Mol. Liq. 278, 342–355 (2019).Zhuravlev, L. . Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3, 316–318 (1987).Babij, N. R. et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 20, 661–667 (2016).Kunc, F. et al. Quantification and Stability Determination of Surface Amine Groups on Silica Nanoparticles Using Solution NMR. Anal. Chem. 90, 13322–13330 (2018).Universidad Nacional de ColombiaUniversidad de los AndesMinciencias grant 689-2018InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82059/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL91506147.2022.pdf91506147.2022.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf5318675https://repositorio.unal.edu.co/bitstream/unal/82059/2/91506147.2022.pdfb43ad19ab278129eb9ba34e60590bde6MD52THUMBNAIL91506147.2022.pdf.jpg91506147.2022.pdf.jpgGenerated Thumbnailimage/jpeg6578https://repositorio.unal.edu.co/bitstream/unal/82059/3/91506147.2022.pdf.jpg32c92fdf53077705390d6fe83e699b4dMD53unal/82059oai:repositorio.unal.edu.co:unal/820592023-08-07 23:04:25.94Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=