Annual tree rings in the rainiest forests of the Americas

ilustraciones, mapas, tablas

Autores:
Giraldo, Jorge A.
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80415
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80415
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Dendroclimatology
Dendroclimatología
Tree-Rings
Árboles - Anillos de crecimiento
Biogeographic Chocó Region
Radiocarbon
Dendrochronology
Ever-wet forest
Tropical trees
Dendrocronología
Región del Chocó Biogeográfico
Isótopos estables
Árboles tropicales
Radiocarbono
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_4ff8fbe00bd17eea5ec16c607f8681f6
oai_identifier_str oai:repositorio.unal.edu.co:unal/80415
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Annual tree rings in the rainiest forests of the Americas
dc.title.translated.spa.fl_str_mv Anillos de crecimeinto anuales en los árboles de la región mas lluviosa de las Américas
title Annual tree rings in the rainiest forests of the Americas
spellingShingle Annual tree rings in the rainiest forests of the Americas
630 - Agricultura y tecnologías relacionadas
Dendroclimatology
Dendroclimatología
Tree-Rings
Árboles - Anillos de crecimiento
Biogeographic Chocó Region
Radiocarbon
Dendrochronology
Ever-wet forest
Tropical trees
Dendrocronología
Región del Chocó Biogeográfico
Isótopos estables
Árboles tropicales
Radiocarbono
title_short Annual tree rings in the rainiest forests of the Americas
title_full Annual tree rings in the rainiest forests of the Americas
title_fullStr Annual tree rings in the rainiest forests of the Americas
title_full_unstemmed Annual tree rings in the rainiest forests of the Americas
title_sort Annual tree rings in the rainiest forests of the Americas
dc.creator.fl_str_mv Giraldo, Jorge A.
dc.contributor.advisor.none.fl_str_mv Valle, Jorge Ignacio del
dc.contributor.author.none.fl_str_mv Giraldo, Jorge A.
dc.contributor.researchgroup.spa.fl_str_mv Bosques y Cambio Climático
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Dendroclimatology
Dendroclimatología
Tree-Rings
Árboles - Anillos de crecimiento
Biogeographic Chocó Region
Radiocarbon
Dendrochronology
Ever-wet forest
Tropical trees
Dendrocronología
Región del Chocó Biogeográfico
Isótopos estables
Árboles tropicales
Radiocarbono
dc.subject.lemb.none.fl_str_mv Dendroclimatology
Dendroclimatología
Tree-Rings
Árboles - Anillos de crecimiento
dc.subject.proposal.eng.fl_str_mv Biogeographic Chocó Region
Radiocarbon
Dendrochronology
Ever-wet forest
Tropical trees
dc.subject.proposal.spa.fl_str_mv Dendrocronología
Región del Chocó Biogeográfico
Isótopos estables
Árboles tropicales
Radiocarbono
description ilustraciones, mapas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-07T15:29:01Z
dc.date.available.none.fl_str_mv 2021-10-07T15:29:01Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80415
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80415
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abdul Azim AA, Okada N (2014) Occurrence and anatomical features of growth rings in tropical rainforest trees in Peninsular Malaysia: a preliminary study. Tropics 23:15–31. doi: 10.3759/tropics.23.15
Aguilar-Rodríguez S, Barajas-Morales J (2005) Anatomía de la madera de especies arbóteas de un bosque mesófilo de montaña: un enfoque ecológico-evolutivo. Bot Sci 77:51–58. doi: 10.17129/botsci.1712
Albert LP, Restrepo-Coupe N, Smith MN, et al (2019) Cryptic phenology in plants: Case studies, implications, and recommendations. Glob Chang Biol 25:3591–3608. doi: 10.1111/gcb.14759
Álvarez E, Cayuela L, González-Caro S, et al (2017) Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS One 12:1–16. doi: https://doi.org/10.1371/ journal.pone.0171072
Alves ES, Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA J 21:3–30. doi: 10.1078/0367-2530-0058
Alvim P (1964) Tree growth periodicity in tropical climates. In: The formation of wood in forest trees. Academic Press, New York, pp 479–495
Anchukaitis KJ, Evans MN, Wheelwright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res 113:G03030. doi: 10.1029/2007JG000613
Andreu-Hayles L, Santos G, Herrera D, et al (2015) Matching Dendrochronological dates with the Southern Hemisphere 14C bomb curve to confirm annual tree rings in Pseudomedia rigida from Bolivia. Radiocarbon 57:1–13. doi: 10.2458/azu
Araya MÁ (2012) Manual para la identificación de maderas a nivel macroscópico de 110 especies maderables del caribe norte de Costa Rica. Instituto Tecnológico de Costa Rica
Arevalo R, Londoño A (2005) Manual para la identificación de maderas que se comercializan en el departamento del Tolima. Corporación Autónoma Regional del Tolima (Cortolima), Ibagué, Tolima
Babst F, Bouriaud O, Poulter B, et al (2019) Twentieth century redistribution in climatic drivers of global tree growth. Sci Adv 5:1–10. doi: 10.1126/sciadv.aat4313
Bagnouls B, Gaussen H (1957) Les climats biologiques et leur classification. Ann Georgr 355:193–220
Baguinon NT, Borgaonkar H, Meteorology T, et al (2008) Collaborative studies in tropical Asian dendrochronology: Addressing challenges in climatology and forest ecology. Asia-Pacific Network for Global Change Research-APN- Final Report submited to APN. Project: ARCP 2008-03CMY-Baguinon
Baker JCA, Santos GM, Gloor M, Brienen RJW (2017) Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31:1999–2009. doi: 10.1007/s00468-017-1604-9
Ballantyne AP, Baker PA, Chambers JQ, et al (2011) Regional differences in south american monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interact 15:1–35. doi: 10.1175/2010EI277.1
Barbosa A, Pereira G, Granato-Souza G, et al (2018) Tree rings and growth trajectories of tree species from seasonally dry tropical forest. Aust J Bot 66:414–427. doi: doi:10.1071/BT17212
Barthélémy D, Blaise F, Fourcaud T, Nicolini E (1995) Modelisation et simulation de l’architecture des arbres bilan et perspectives. Rev For Française 47:71–96. doi: 10.4267/2042/26721
Beech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreeSearch: The first complete global database of tree species and country distributions. J Sustain For 36:454–489. doi: 10.1080/10549811.2017.1310049
Begon M, Harper JL, Townsend CR (2006) Ecology: Individuals, Populations and Communities
Beltran L, Valencia G (2013) Anatomía de anillos de crecimiento de 80 especies arbóreas potenciales para estudios dendrocronológicos en la Selva Central, Perú. Rev Biol Trop 61:1025–1037
Bernabei M, Bontadi J, Čufar K, Baici A (2017) Dendrochronological investigation of the bowed string instruments at the Theatre Museum Carlo Schmidl in Trieste, Italy. J Cult Herit 27:S55–S62. doi: 10.1016/j.culher.2016.11.010
Boninsegna JA, Villalba R, Amarilla L, Ocampo J (1989) Studies on tree rings, growth rates and age-size relationships of tropical tree species in Misiones, Argentina. IAWA J 10:161–169. doi: 10.1163/22941932-90000484
Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247
Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221. doi: 10.1093/treephys/21.4.213
Bräuning A, Volland-Voigt F, Burchardt I, et al (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63:337–345. doi: 10.3112/erdkunde.2009.04.04
Breitsprecher A, Bethel J (1990) Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71:1156–1164
Brienen R, Lebrija-trejos E, Breugel M Van, et al (2009) The potential of tree rings for the Study of forest succession in Southern Mexico. Biotropica 41:186–195. doi: 10.1111/j.1744-7429.2008.00462.x
Brienen R, Schöngart J, Zuidema P (2016) Tree rings in the tropics: Insights into the Ecology and Climate Sensitivity of tropical trees. In: Goldstein G, Santiago SL (eds) Tropical Tree Physiology. Springer, Switzerland, pp 441–461
Brienen R, Zuidema P (2005) Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia 146:1–12. doi: 10.1007/s00442-005-0160-y
Bullock SH (1997) Effects of seasonal rainfall on radial growth in two tropical tree species. Int J Biometeorol 41:13–16. doi: 10.1007/s004840050047
Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi: 10.1016/j.dendro.2008.01.002
Bunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28:251–258. doi: 10.1016/j.dendro.2009.12.001
Callado C, Da Silva Neto S, Scarano F, Costa C (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497. doi: 10.1007/s00468-001-0128-4
Campos LE, Lobão MS, Rosero Alvarado J, et al (2008) Potencialidad de especies forestales para dendrocronología a traves de la caracterización anatómica de los anillos de crecimiento en la Amazonía Peruana – Brasilera. In: VII Congreso Nacional de Estudiantes Forestales. Madre de Dios, Perú
Cardoso S, Sousa VB, Quilhó T, Pereira H (2015) Anatomical variation of teakwood from unmanaged mature plantations in East Timor. J Wood Sci 61:326–333. doi: 10.1007/s10086-015-1474-y
Carlquist S (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer Berlin Heidelberg
Chowdhury MQ, Kitin P, De Ridder M, et al (2016) Cambial dormancy induced growth rings in Heritiera fomes Buch.- Ham.: a proxy for exploring the dynamics of Sundarbans, Bangladesh. Trees - Struct Funct 30:227–239. doi: 10.1007/s00468-015-1292-2
Cintra BBL, Gloor M, Boom A, et al (2019) Contrasting controls on tree ring isotope variation for Amazon floodplain and terra firme trees. Tree Physiol 39:845–860. doi: 10.1093/treephys/tpz009
Cintra BBL, Schietti J, Emillio T, et al (2013) Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area. Biogeosciences Discuss 10:6417–6459. doi: 10.5194/bgd-10-6417-2013
Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa Rican Tropical Rain Forest. J Ecol 82:865–872
Cook ER, Kairiukstis L Methods of dendrochronology - Applications in the envi- ronmental science. Kluwer, Dordrecht
Cook ER, Pederson N (2011) Uncertainty, Emergence, and Statistics in Dendrochronology. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology, Developments in Paleoenvironmental Research. Springer, pp 77–112
D’Arrigo R, Palmer J, Ummenhofer CC, et al (2011) Three centuries of Myanmar monsoon climate variability inferred from teak tree rings. Geophys Res Lett 38:1–5. doi: 10.1029/2011GL049927
Solander KC, Newman BD, Carioca De Araujo A, et al (2020) The pantropical response of soil moisture to El Niño. Hydrol Earth Syst Sci 24:2303–2322. doi: 10.5194/hess-24-2303-2020
Soliz-Gamboa C, Rozendaal DMA, Ceccantini G, et al (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27. doi: 10.1007/s00468-010-0468-z
Soudani K, Hmimina G, Delpierre N, et al (2012) Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sens Environ 123:234–245. doi: 10.1016/j.rse.2012.03.012
Speer J (2010) Fundamentals of tree ring research. University of Arizona Press
Stahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. IAWA J. 20:249–253
Stahle DW, Torbenson MCA, Howard IM, et al (2020) Pan American interactions of Amazon precipitation, streamflow, and tree growth extremes. Environ Res Lett 15:. doi: 10.1088/1748-9326/ababc6
Steinhof A, Altenburg M, Machts H (2017) Sample preparation at the Jena 14C Laboratory. Radiocarbon 59:815–830. doi: 10.1017/RDC.2017.50
Stenström KE, Skog G, Georgiadou E, et al (2011) A guide to radiocarbon units and calculations
Stine AR (2019) Global Demonstration of Local Liebig’s Law Behavior for Tree-Ring Reconstructions of Climate. Paleoceanogr Paleoclimatology 34:203–216. doi: 10.1029/2018PA003449
Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research - An overview. Nat Hazards Earth Syst Sci 8:187–202. doi: 10.5194/nhess-8-187-2008
Stoffel M, Bollschweiler M, Butler DR, Luckman B (2011) Tree Rings and Natural Hazards – A State of the Art. Springer
Sudworth G, Mell C (1911) “Colombian mahogany” (Cariniana pyriformis), its characteristics and its use as a substitute for true mahogany (Swietenia mahagoni). Department of Agriculture, Forest Service
Tanaka A (2005) Avaliação de anéis de crescimento de espécies florestais de terra-firme no município de Novo Aripuanã-AM. Dissertação (Doutorado), Universidade Federal do Amazonas – UFAM Instituto Nacional de Pesquisas da Amazônia – INPA
Tarelkin Y, Delvaux C, De Ridder M, et al (2016) Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA J 37:275–294. doi: 10.1163/22941932-20160134
Tarhule A, Hughes M (2002) Tree-ring research in semi-arid West Africa: Need and potential item. Tree-Ring Res 58:31–46
Taylor WP (1934) Significance of extreme or intermittent conditions in distribution of species and management of natural resources, with a restatement of Liebig’s Law of Minimum. Ecology 15:374–379. doi: 10.2307/1932352
Thomas P (2014) Trees: Their natural history. Cambridge University Press, Cambridge
Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94. doi: 10.2307/210739
Tomlinson P, Longman K (1981) Growth phenology of tropical trees in relation to cambial activity. In: Bormann F, Berlyn G (eds) Age and growth rate of tropical trees: New dimensions for research. New Haven: Yale University, New Haven, pp 7–19
Tomlinson T, Craichead F (1972) Growth-ring studies on the native trees of subtropical Florida. In: Ghouse K, Yunus M (eds) Research trends in plant anatomy. McGraw Hill, New Delhi, pp 39–51
Trevizor TT (2011) Anatomia comparada do lenho de 64 espécies arbóreas de ocorrência natural na floresta tropical Amazônica no estado do Pará Tássio. Universidade de São Paulo
TRMM (2011) TRMM Microwave Imager Precipitation Profile L3 1 month 0.5 degree x 0.5 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://disc.gsfc.nasa.gov/datacollection/TRMM_3A12_7.html
Trouet V, Coppin P, Beeckman H (2006) Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 38:375–382. doi: 10.1111/j.1744-7429.2006.00155.x
Tuck SL, Phillips HRP, Hintzen RE, et al (2014) MODISTools - downloading and processing MODIS remotely sensed data in R. Ecol Evol 4:4658–4668. doi: 10.1002/ece3.1273
Turner IM (2004) The Ecology of Trees in the Tropical Rain Forest. J Appl Ecol 33:1–314. doi: 10.2307/2404743
UNODC (2016) Best Practice Guide for Forensic Timber Identification. UNODC, United Nations Off Drugs Crime 226
Vaganov E, Hughes M, Shashkin A (2006) Growth dynamics of conifer tree ring. Springer, Berlin
Van der Sleen P, Groenendijk P, Zuidema PA (2015) Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Glob Planet Change 127:58–66. doi: 10.1016/j.gloplacha.2015.01.014
van der Sleen P, Zuidema PA, Pons TL (2017) Stable isotopes in tropical tree rings: theory, methods and applications. Funct Ecol 31:1674–1689. doi: 10.1111/1365-2435.12889
Vásquez A, Ramírez A (2005) Maderas comerciales en el valle de Aburrá. Área Metropolitana del Valle de Aburrá, Medellín
Vetter RE, Botosso PC (1989) Remarks on age and growth rate determination of amazonian trees. IAWA J 10:133–145. doi: 10.1163/22941932-90000481
Wagner F, Rossi V, Stahl C, et al (2012) Water availability is the main climate driver of neotropical tree growth. PLoS One 7:1–11. doi: 10.1371/journal.pone.0034074
Walter H, Harnickell E, Mueller-Dombois D (1976) Climate-diagram maps of the individual continents and the ecological climatic regions of the Earth. Springer-Verlag, Berlin
Walter H, Harnickell E, Mueller-Dombois D (1975) Climate-diagrams maps. Springer, Berlin
Wang D, Tian L, Cai Z, et al (2020) Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales. Earth Planet Sci Lett 529:115837. doi: 10.1016/j.epsl.2019.115837
Wang KH, Hamzah MZ (2018) Different cambial activities in response to climatic factors of three Malaysian rainforest Shorea species with different stem diameters. Trees - Struct Funct 32:1519–1530. doi: 10.1007/s00468-018-1730-z
Wheeler EA, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: A global analysis based on the insidewood database. IAWA J 28:229–258. doi: 10.1163/22941932-90001638
Whitmore T (1990) An introduction to tropical rain forests. Clarendon Press, Oxford
Whitmore T (1975) Tropical rain forest of the Far East. Clarendon Press, Oxford
Wiedenhoeft A (2011) Identificación de las especies maderables de centroamérica. USDA
Wolodarsky-Franke A, Lara A (2005) The role of “forensic” dendrochronology in the conservation of alerce (Fitzroya cupressoides ((Molina) Johnston)) forests in Chile. Dendrochronologia 22:235–240. doi: 10.1016/j.dendro.2005.05.008
Worbes M (2002) One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20:217–231. doi: 10.1078/1125-7865-00018
Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. doi: 10.1046/j.1365-2745.1999.00361.x
Worbes M (1995) How to measure growth dynamics in tropical trees. IAWA J 16:337–351. doi: 10.1163/22941932-90001424
Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, et al. (eds) Amazonian floodplain forest. Springer, pp 329–346
Worbes M, Herawati H, Martius C (2017) Tree growth rings in tropical peat swamp forests of Kalimantan, Indonesia. Forests 8:1–15. doi: 10.3390/f8090336
Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70:503–507
Yáñez-Espinosa L, Terrazas T, López-Mata L (2010) Phenology and radial stem growth periodicity in evergreen subtropical rainforest trees. IAWA J 31:293–307. doi: Article
Zang C, Biondi F (2015) Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography (Cop) 38:431–436. doi: 10.1111/ecog.01335
Zuidema P, Brienen R, Schöngart J (2012) Tropical Forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 131 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Chocó, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Doctorado en Ecología
dc.publisher.department.spa.fl_str_mv Departamento de Ciencias Forestales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80415/8/71557384.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80415/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80415/9/71557384.2021.pdf.jpg
bitstream.checksum.fl_str_mv ba5ebe105ea1bd447e11c6983d13c1a0
cccfe52f796b7c63423298c2d3365fc6
fac7eb12ab8cbac18c262d7b87e59994
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089512414871552
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valle, Jorge Ignacio deldfa93cf6310feb6fb019e31be60ed394Giraldo, Jorge A.ebdd0a243ec534cd7f2b679dd8604ce4600Bosques y Cambio Climático2021-10-07T15:29:01Z2021-10-07T15:29:01Z2021https://repositorio.unal.edu.co/handle/unal/80415Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapas, tablasIn this dissertation, I explore the dendrochronological potential of trees from a lowlands tropical wet forest (Precipitation over 7,200 mm y-1), without seasonal water deficit or flooding. I study the causes and sensitivity of annual growth rings to climate variables in several tree species by different methods. I analyzed the anatomical features of 81 tree species (~ 45% showed well-defined tree rings) (Chapter 1). Then I present results of tree ring frequency and possible causes of tree ring formation. I observed both positive and negative growth answers to water and light availability, depending on the tree species, suggesting that either excess or deficit of growth factors may explain seasonal growth rhythms in some trees (Chapter 2). This fact is also observed by the intra-annual variability of stable isotopes in tree rings (Chapter 3). As a study case, I present a practical application of dendroecology as an effective tool for resolving disputes in forensic sciences, the first carried in the biogeographic Chocó region (Chapter 4). This research opens a new frontier for tree rings science, the ever-wet tropical forests without water deficit.En esta disertación, exploro el potencial dendrocronológico de los árboles de los bosques siempre húmedos tropicales (Precipitación superior a 7,200 mm año-1 ), que no presentan déficit hídrico o inundaciones periódicas. Se estudian las causas y la sensibilidad de los anillos de crecimiento anuales a variables climáticas en muchas especies de árboles, a través de diferentes métodos. Son analizadas las características anatómicas de la madera en 81 especies de árboles (~ 45% presentan anillos de crecimiento bien definidos) (Capítulo 1). En el Capítulo 2, se presentan los resultados de la frecuencia de anillos en muchas especies y se exploran los posibles detonantes ambientes de su formación. Se obtienen observaciones tanto positivas como negativas entre el crecimiento, el agua y la disponibilidad de luz, dependiendo de la especie; lo cual sugiere que tanto el déficit como el exceso del crecimiento pueden ser factores que determinan el crecimiento rítmico en algunas especies de árboles. Dicha evidencia También es observada a través de la variabilidad intra anual de las proporciones isotópicas del oxígeno en la celulosa (δ 18Ocelulosa) (Capítulo 3). Como un caso de estudio, se presenta una aplicación práctica de la dendrocronología como una herramienta efectiva para resolver disputas legales, siendo ese el primer ejemplo de dicha aplicación, llevado a cabo en la región biogeográfica del Chocó (Capítulo 4). Esta investigación abre una nueva frontera en la ciencia de los anillos de crecimiento, los bosques siempre húmedos tropicales carentes de déficit hídrico. (Texto tomado de la fuente)DoctoradoDoctor en EcologíaBeca para estudiantes de doctorado Nacionales de COLCIENCIASDendrocronología tropicalxii, 131 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Doctorado en EcologíaDepartamento de Ciencias ForestalesFacultad de Ciencias AgrariasMedellínUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadasDendroclimatologyDendroclimatologíaTree-RingsÁrboles - Anillos de crecimientoBiogeographic Chocó RegionRadiocarbonDendrochronologyEver-wet forestTropical treesDendrocronologíaRegión del Chocó BiogeográficoIsótopos establesÁrboles tropicalesRadiocarbonoAnnual tree rings in the rainiest forests of the AmericasAnillos de crecimeinto anuales en los árboles de la región mas lluviosa de las AméricasTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDChocó, ColombiaAbdul Azim AA, Okada N (2014) Occurrence and anatomical features of growth rings in tropical rainforest trees in Peninsular Malaysia: a preliminary study. Tropics 23:15–31. doi: 10.3759/tropics.23.15Aguilar-Rodríguez S, Barajas-Morales J (2005) Anatomía de la madera de especies arbóteas de un bosque mesófilo de montaña: un enfoque ecológico-evolutivo. Bot Sci 77:51–58. doi: 10.17129/botsci.1712Albert LP, Restrepo-Coupe N, Smith MN, et al (2019) Cryptic phenology in plants: Case studies, implications, and recommendations. Glob Chang Biol 25:3591–3608. doi: 10.1111/gcb.14759Álvarez E, Cayuela L, González-Caro S, et al (2017) Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS One 12:1–16. doi: https://doi.org/10.1371/ journal.pone.0171072Alves ES, Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA J 21:3–30. doi: 10.1078/0367-2530-0058Alvim P (1964) Tree growth periodicity in tropical climates. In: The formation of wood in forest trees. Academic Press, New York, pp 479–495Anchukaitis KJ, Evans MN, Wheelwright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res 113:G03030. doi: 10.1029/2007JG000613Andreu-Hayles L, Santos G, Herrera D, et al (2015) Matching Dendrochronological dates with the Southern Hemisphere 14C bomb curve to confirm annual tree rings in Pseudomedia rigida from Bolivia. Radiocarbon 57:1–13. doi: 10.2458/azuAraya MÁ (2012) Manual para la identificación de maderas a nivel macroscópico de 110 especies maderables del caribe norte de Costa Rica. Instituto Tecnológico de Costa RicaArevalo R, Londoño A (2005) Manual para la identificación de maderas que se comercializan en el departamento del Tolima. Corporación Autónoma Regional del Tolima (Cortolima), Ibagué, TolimaBabst F, Bouriaud O, Poulter B, et al (2019) Twentieth century redistribution in climatic drivers of global tree growth. Sci Adv 5:1–10. doi: 10.1126/sciadv.aat4313Bagnouls B, Gaussen H (1957) Les climats biologiques et leur classification. Ann Georgr 355:193–220Baguinon NT, Borgaonkar H, Meteorology T, et al (2008) Collaborative studies in tropical Asian dendrochronology: Addressing challenges in climatology and forest ecology. Asia-Pacific Network for Global Change Research-APN- Final Report submited to APN. Project: ARCP 2008-03CMY-BaguinonBaker JCA, Santos GM, Gloor M, Brienen RJW (2017) Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31:1999–2009. doi: 10.1007/s00468-017-1604-9Ballantyne AP, Baker PA, Chambers JQ, et al (2011) Regional differences in south american monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interact 15:1–35. doi: 10.1175/2010EI277.1Barbosa A, Pereira G, Granato-Souza G, et al (2018) Tree rings and growth trajectories of tree species from seasonally dry tropical forest. Aust J Bot 66:414–427. doi: doi:10.1071/BT17212Barthélémy D, Blaise F, Fourcaud T, Nicolini E (1995) Modelisation et simulation de l’architecture des arbres bilan et perspectives. Rev For Française 47:71–96. doi: 10.4267/2042/26721Beech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreeSearch: The first complete global database of tree species and country distributions. J Sustain For 36:454–489. doi: 10.1080/10549811.2017.1310049Begon M, Harper JL, Townsend CR (2006) Ecology: Individuals, Populations and CommunitiesBeltran L, Valencia G (2013) Anatomía de anillos de crecimiento de 80 especies arbóreas potenciales para estudios dendrocronológicos en la Selva Central, Perú. Rev Biol Trop 61:1025–1037Bernabei M, Bontadi J, Čufar K, Baici A (2017) Dendrochronological investigation of the bowed string instruments at the Theatre Museum Carlo Schmidl in Trieste, Italy. J Cult Herit 27:S55–S62. doi: 10.1016/j.culher.2016.11.010Boninsegna JA, Villalba R, Amarilla L, Ocampo J (1989) Studies on tree rings, growth rates and age-size relationships of tropical tree species in Misiones, Argentina. IAWA J 10:161–169. doi: 10.1163/22941932-90000484Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221. doi: 10.1093/treephys/21.4.213Bräuning A, Volland-Voigt F, Burchardt I, et al (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63:337–345. doi: 10.3112/erdkunde.2009.04.04Breitsprecher A, Bethel J (1990) Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71:1156–1164Brienen R, Lebrija-trejos E, Breugel M Van, et al (2009) The potential of tree rings for the Study of forest succession in Southern Mexico. Biotropica 41:186–195. doi: 10.1111/j.1744-7429.2008.00462.xBrienen R, Schöngart J, Zuidema P (2016) Tree rings in the tropics: Insights into the Ecology and Climate Sensitivity of tropical trees. In: Goldstein G, Santiago SL (eds) Tropical Tree Physiology. Springer, Switzerland, pp 441–461Brienen R, Zuidema P (2005) Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia 146:1–12. doi: 10.1007/s00442-005-0160-yBullock SH (1997) Effects of seasonal rainfall on radial growth in two tropical tree species. Int J Biometeorol 41:13–16. doi: 10.1007/s004840050047Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi: 10.1016/j.dendro.2008.01.002Bunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28:251–258. doi: 10.1016/j.dendro.2009.12.001Callado C, Da Silva Neto S, Scarano F, Costa C (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497. doi: 10.1007/s00468-001-0128-4Campos LE, Lobão MS, Rosero Alvarado J, et al (2008) Potencialidad de especies forestales para dendrocronología a traves de la caracterización anatómica de los anillos de crecimiento en la Amazonía Peruana – Brasilera. In: VII Congreso Nacional de Estudiantes Forestales. Madre de Dios, PerúCardoso S, Sousa VB, Quilhó T, Pereira H (2015) Anatomical variation of teakwood from unmanaged mature plantations in East Timor. J Wood Sci 61:326–333. doi: 10.1007/s10086-015-1474-yCarlquist S (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer Berlin HeidelbergChowdhury MQ, Kitin P, De Ridder M, et al (2016) Cambial dormancy induced growth rings in Heritiera fomes Buch.- Ham.: a proxy for exploring the dynamics of Sundarbans, Bangladesh. Trees - Struct Funct 30:227–239. doi: 10.1007/s00468-015-1292-2Cintra BBL, Gloor M, Boom A, et al (2019) Contrasting controls on tree ring isotope variation for Amazon floodplain and terra firme trees. Tree Physiol 39:845–860. doi: 10.1093/treephys/tpz009Cintra BBL, Schietti J, Emillio T, et al (2013) Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area. Biogeosciences Discuss 10:6417–6459. doi: 10.5194/bgd-10-6417-2013Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa Rican Tropical Rain Forest. J Ecol 82:865–872Cook ER, Kairiukstis L Methods of dendrochronology - Applications in the envi- ronmental science. Kluwer, DordrechtCook ER, Pederson N (2011) Uncertainty, Emergence, and Statistics in Dendrochronology. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology, Developments in Paleoenvironmental Research. Springer, pp 77–112D’Arrigo R, Palmer J, Ummenhofer CC, et al (2011) Three centuries of Myanmar monsoon climate variability inferred from teak tree rings. Geophys Res Lett 38:1–5. doi: 10.1029/2011GL049927Solander KC, Newman BD, Carioca De Araujo A, et al (2020) The pantropical response of soil moisture to El Niño. Hydrol Earth Syst Sci 24:2303–2322. doi: 10.5194/hess-24-2303-2020Soliz-Gamboa C, Rozendaal DMA, Ceccantini G, et al (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27. doi: 10.1007/s00468-010-0468-zSoudani K, Hmimina G, Delpierre N, et al (2012) Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sens Environ 123:234–245. doi: 10.1016/j.rse.2012.03.012Speer J (2010) Fundamentals of tree ring research. University of Arizona PressStahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. IAWA J. 20:249–253Stahle DW, Torbenson MCA, Howard IM, et al (2020) Pan American interactions of Amazon precipitation, streamflow, and tree growth extremes. Environ Res Lett 15:. doi: 10.1088/1748-9326/ababc6Steinhof A, Altenburg M, Machts H (2017) Sample preparation at the Jena 14C Laboratory. Radiocarbon 59:815–830. doi: 10.1017/RDC.2017.50Stenström KE, Skog G, Georgiadou E, et al (2011) A guide to radiocarbon units and calculationsStine AR (2019) Global Demonstration of Local Liebig’s Law Behavior for Tree-Ring Reconstructions of Climate. Paleoceanogr Paleoclimatology 34:203–216. doi: 10.1029/2018PA003449Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research - An overview. Nat Hazards Earth Syst Sci 8:187–202. doi: 10.5194/nhess-8-187-2008Stoffel M, Bollschweiler M, Butler DR, Luckman B (2011) Tree Rings and Natural Hazards – A State of the Art. SpringerSudworth G, Mell C (1911) “Colombian mahogany” (Cariniana pyriformis), its characteristics and its use as a substitute for true mahogany (Swietenia mahagoni). Department of Agriculture, Forest ServiceTanaka A (2005) Avaliação de anéis de crescimento de espécies florestais de terra-firme no município de Novo Aripuanã-AM. Dissertação (Doutorado), Universidade Federal do Amazonas – UFAM Instituto Nacional de Pesquisas da Amazônia – INPATarelkin Y, Delvaux C, De Ridder M, et al (2016) Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA J 37:275–294. doi: 10.1163/22941932-20160134Tarhule A, Hughes M (2002) Tree-ring research in semi-arid West Africa: Need and potential item. Tree-Ring Res 58:31–46Taylor WP (1934) Significance of extreme or intermittent conditions in distribution of species and management of natural resources, with a restatement of Liebig’s Law of Minimum. Ecology 15:374–379. doi: 10.2307/1932352Thomas P (2014) Trees: Their natural history. Cambridge University Press, CambridgeThornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94. doi: 10.2307/210739Tomlinson P, Longman K (1981) Growth phenology of tropical trees in relation to cambial activity. In: Bormann F, Berlyn G (eds) Age and growth rate of tropical trees: New dimensions for research. New Haven: Yale University, New Haven, pp 7–19Tomlinson T, Craichead F (1972) Growth-ring studies on the native trees of subtropical Florida. In: Ghouse K, Yunus M (eds) Research trends in plant anatomy. McGraw Hill, New Delhi, pp 39–51Trevizor TT (2011) Anatomia comparada do lenho de 64 espécies arbóreas de ocorrência natural na floresta tropical Amazônica no estado do Pará Tássio. Universidade de São PauloTRMM (2011) TRMM Microwave Imager Precipitation Profile L3 1 month 0.5 degree x 0.5 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://disc.gsfc.nasa.gov/datacollection/TRMM_3A12_7.htmlTrouet V, Coppin P, Beeckman H (2006) Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 38:375–382. doi: 10.1111/j.1744-7429.2006.00155.xTuck SL, Phillips HRP, Hintzen RE, et al (2014) MODISTools - downloading and processing MODIS remotely sensed data in R. Ecol Evol 4:4658–4668. doi: 10.1002/ece3.1273Turner IM (2004) The Ecology of Trees in the Tropical Rain Forest. J Appl Ecol 33:1–314. doi: 10.2307/2404743UNODC (2016) Best Practice Guide for Forensic Timber Identification. UNODC, United Nations Off Drugs Crime 226Vaganov E, Hughes M, Shashkin A (2006) Growth dynamics of conifer tree ring. Springer, BerlinVan der Sleen P, Groenendijk P, Zuidema PA (2015) Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Glob Planet Change 127:58–66. doi: 10.1016/j.gloplacha.2015.01.014van der Sleen P, Zuidema PA, Pons TL (2017) Stable isotopes in tropical tree rings: theory, methods and applications. Funct Ecol 31:1674–1689. doi: 10.1111/1365-2435.12889Vásquez A, Ramírez A (2005) Maderas comerciales en el valle de Aburrá. Área Metropolitana del Valle de Aburrá, MedellínVetter RE, Botosso PC (1989) Remarks on age and growth rate determination of amazonian trees. IAWA J 10:133–145. doi: 10.1163/22941932-90000481Wagner F, Rossi V, Stahl C, et al (2012) Water availability is the main climate driver of neotropical tree growth. PLoS One 7:1–11. doi: 10.1371/journal.pone.0034074Walter H, Harnickell E, Mueller-Dombois D (1976) Climate-diagram maps of the individual continents and the ecological climatic regions of the Earth. Springer-Verlag, BerlinWalter H, Harnickell E, Mueller-Dombois D (1975) Climate-diagrams maps. Springer, BerlinWang D, Tian L, Cai Z, et al (2020) Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales. Earth Planet Sci Lett 529:115837. doi: 10.1016/j.epsl.2019.115837Wang KH, Hamzah MZ (2018) Different cambial activities in response to climatic factors of three Malaysian rainforest Shorea species with different stem diameters. Trees - Struct Funct 32:1519–1530. doi: 10.1007/s00468-018-1730-zWheeler EA, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: A global analysis based on the insidewood database. IAWA J 28:229–258. doi: 10.1163/22941932-90001638Whitmore T (1990) An introduction to tropical rain forests. Clarendon Press, OxfordWhitmore T (1975) Tropical rain forest of the Far East. Clarendon Press, OxfordWiedenhoeft A (2011) Identificación de las especies maderables de centroamérica. USDAWolodarsky-Franke A, Lara A (2005) The role of “forensic” dendrochronology in the conservation of alerce (Fitzroya cupressoides ((Molina) Johnston)) forests in Chile. Dendrochronologia 22:235–240. doi: 10.1016/j.dendro.2005.05.008Worbes M (2002) One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20:217–231. doi: 10.1078/1125-7865-00018Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. doi: 10.1046/j.1365-2745.1999.00361.xWorbes M (1995) How to measure growth dynamics in tropical trees. IAWA J 16:337–351. doi: 10.1163/22941932-90001424Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, et al. (eds) Amazonian floodplain forest. Springer, pp 329–346Worbes M, Herawati H, Martius C (2017) Tree growth rings in tropical peat swamp forests of Kalimantan, Indonesia. Forests 8:1–15. doi: 10.3390/f8090336Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70:503–507Yáñez-Espinosa L, Terrazas T, López-Mata L (2010) Phenology and radial stem growth periodicity in evergreen subtropical rainforest trees. IAWA J 31:293–307. doi: ArticleZang C, Biondi F (2015) Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography (Cop) 38:431–436. doi: 10.1111/ecog.01335Zuidema P, Brienen R, Schöngart J (2012) Tropical Forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194Proyecto 4083 de la Universidad Nacional de ColombiaProyecto 1118-714-51372 de ColcienciasConvocatoria 785 de ColcienciasMincienciasUniversidad Nacional de Colombia, Sede MedellínInstituto Max Planck para la BiogeoquímicaInvestigadoresORIGINAL71557384.2021.pdf71557384.2021.pdfTesis de Doctorado en Ecologíaapplication/pdf3706956https://repositorio.unal.edu.co/bitstream/unal/80415/8/71557384.2021.pdfba5ebe105ea1bd447e11c6983d13c1a0MD58LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80415/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL71557384.2021.pdf.jpg71557384.2021.pdf.jpgGenerated Thumbnailimage/jpeg4024https://repositorio.unal.edu.co/bitstream/unal/80415/9/71557384.2021.pdf.jpgfac7eb12ab8cbac18c262d7b87e59994MD59unal/80415oai:repositorio.unal.edu.co:unal/804152024-07-29 23:13:00.785Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==