Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas

ilustraciones, diagramas, fotografías

Autores:
Rojas Cubides, Harvey David
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85916
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85916
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Control con rechazo activo de perturbaciones (ADRC)
Enrutador de energía
Interconexión de microrredes
Observador en cascada
Observador de estado extendido (ESO)
Observador proporcional integral generalizado (GPIO)
Análisis de robustez y desempeño
Active disturbance rejection control (ADRC)
Energy router
Microgrid interconnection
Cascade observer
Extended estate observer (ESO)
Generalized proportional integral observer (GPIO)
Robustness and performance analysis
GPIO
Ruido (física)
Sistema de suministro eléctrico
General Purpose Input/Output
noise
transmission of electricity
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_4f182bdcb34a9cd63983cd34780be738
oai_identifier_str oai:repositorio.unal.edu.co:unal/85916
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas
dc.title.translated.eng.fl_str_mv Active disturbance rejection control of an energy router used in microgrid interconnection
title Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas
spellingShingle Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Control con rechazo activo de perturbaciones (ADRC)
Enrutador de energía
Interconexión de microrredes
Observador en cascada
Observador de estado extendido (ESO)
Observador proporcional integral generalizado (GPIO)
Análisis de robustez y desempeño
Active disturbance rejection control (ADRC)
Energy router
Microgrid interconnection
Cascade observer
Extended estate observer (ESO)
Generalized proportional integral observer (GPIO)
Robustness and performance analysis
GPIO
Ruido (física)
Sistema de suministro eléctrico
General Purpose Input/Output
noise
transmission of electricity
title_short Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas
title_full Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas
title_fullStr Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas
title_full_unstemmed Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas
title_sort Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas
dc.creator.fl_str_mv Rojas Cubides, Harvey David
dc.contributor.advisor.spa.fl_str_mv Cortés Romero, John Alexander
dc.contributor.author.spa.fl_str_mv Rojas Cubides, Harvey David
dc.contributor.researchgroup.spa.fl_str_mv Electrical Machines & Drives, Em&D
dc.contributor.orcid.spa.fl_str_mv 0000-0003-1451-4881
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001405838
dc.contributor.scopus.spa.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=56032708600
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Harvey-Rojas
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=77yIc3cAAAAJ&hl=es
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Control con rechazo activo de perturbaciones (ADRC)
Enrutador de energía
Interconexión de microrredes
Observador en cascada
Observador de estado extendido (ESO)
Observador proporcional integral generalizado (GPIO)
Análisis de robustez y desempeño
Active disturbance rejection control (ADRC)
Energy router
Microgrid interconnection
Cascade observer
Extended estate observer (ESO)
Generalized proportional integral observer (GPIO)
Robustness and performance analysis
GPIO
Ruido (física)
Sistema de suministro eléctrico
General Purpose Input/Output
noise
transmission of electricity
dc.subject.proposal.spa.fl_str_mv Control con rechazo activo de perturbaciones (ADRC)
Enrutador de energía
Interconexión de microrredes
Observador en cascada
Observador de estado extendido (ESO)
Observador proporcional integral generalizado (GPIO)
Análisis de robustez y desempeño
dc.subject.proposal.eng.fl_str_mv Active disturbance rejection control (ADRC)
Energy router
Microgrid interconnection
Cascade observer
Extended estate observer (ESO)
Generalized proportional integral observer (GPIO)
Robustness and performance analysis
dc.subject.wikidata.spa.fl_str_mv GPIO
Ruido (física)
Sistema de suministro eléctrico
dc.subject.wikidata.eng.fl_str_mv General Purpose Input/Output
noise
transmission of electricity
description ilustraciones, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-15T20:06:38Z
dc.date.available.none.fl_str_mv 2024-04-15T20:06:38Z
dc.date.issued.none.fl_str_mv 2024-03
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85916
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85916
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Banco Interamericano de Desarrollo (BID), "Smart Grids Colombia Visión 2030 - Mapa de ruta para la implementación de redes inteligentes en Colombia: Parte I," techreport Cooperación técnica ATN-KK-14254-CO (CO-T1337), Bogotá D. C., Colombia, 2016.
J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, "Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1254–1262, 2013.
E. Bullich-Massagué, F. Díaz-González, M. Aragués-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, "Microgrid clustering architectures," Applied Energy, vol. 212, pp. 340–361, 2018.
L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, "Review on Control of DC Microgrids and Multiple Microgrid Clusters," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 928–948, 2017.
X. Zhou, L. Zhou, Y. Chen, J. M. Guerrero, A. Luo, W. Wu, and L. Yang, "A microgrid cluster structure and its autonomous coordination control strategy," International Journal of Electrical Power & Energy Systems, vol. 100, pp. 69–80, 2018.
E. Hossain, E. Kabalci, R. Bayindir, and R. Perez, "Microgrid testbeds around the world: State of art," Energy Conversion and Management, vol. 86, pp. 132–153, 2014.
S. K. Pandey, S. R. Mohanty, and N. Kishor, "A literature survey on load-frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, vol. 25, pp. 318–334, 2013.
A. Ordoño, E. Unamuno, J. Barrena, and J. Paniagua, "Interlinking converters and their contribution to primary regulation: a review," International Journal of Electrical Power and Energy Systems, vol. 111, pp. 44–57, 2019.
B. Liu, J. Chen, Y. Zhu, Y. Liu, and Y. Shi, "Distributed control strategy of a microgrid community with an energy router," IET Generation, Transmission and Distribution, vol. 12, no. 17, pp. 4009–4015, 2018.
J. M. Rodriguez-Bernuz, E. Prieto-Araujo, F. Girbau-Llistuella, A. Sumper, R. Villafafila-Robles, and J. A. Vidal-Clos, "Experimental validation of a single phase Intelligent Power Router," Sustainable Energy, Grids and Networks, vol. 4, pp. 1–15, 2015.
Y. Liu, Y. Fang, and J. Li, "Interconnecting Microgrids via the Energy Router with Smart Energy Management," Energies, vol. 10, no. 9, p. 1297, 2017.
B. Long Liu, Y. Bing Zha, and T. Zhang, "Sliding mode control of solid state transformer using a three-level hysteresis function," Journal of Central South University, vol. 23, no. 8, pp. 2063–2074, 2016.
G. Van den Broeck, J. Stuyts, and J. Driesen, "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, vol. 229, pp. 281–288, 2018.
Q. Shafiee, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, "Hierarchical control for multiple DC-microgrids clusters," IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 922–933, 2014.
M. L. Herrera, S. A. Subramanyam, and X. Zhang, "Robust Control and Optimal Operation of Multiple Microgrids with Configurable Interconnections," in 2019 IEEE Green Technologies Conference (GreenTech), pp. 1–4, IEEE, 2019.
Y. Liu, J. Li, Y. Wu, and F. Zhou, "Coordinated Control of the Energy Router-Based Smart Home Energy Management System," Applied Sciences, vol. 7, no. 9, p. 943, 2017.
I. Roasto, O. Husev, M. Najafzadeh, T. Jalakas, and J. Rodriguez, "Voltage Source Operation of the Energy-Router Based on Model Predictive Control," Energies, vol. 12, no. 10, p. 1892, 2019.
Y. Han, X. Ning, P. Yang, and L. Xu, "Review of Power Sharing, Voltage Restoration and Stabilization Techniques in Hierarchical Controlled DC Microgrids," IEEE Access, vol. 7, pp. 149202–149223, 2019.
H. Hua, Y. Qin, H. Xu, C. Hao, and J. Cao, "Robust Control Method for DC Microgrids and Energy Routers to Improve Voltage Stability in Energy Internet," Energies, vol. 12, no. 9, p. 1622, 2019.
C. Wang, X. Li, L. Guo, and Y. Li, "A nonlinear-disturbance-observer-based DC-Bus voltage control for a hybrid AC/DC microgrid," IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 6162–6177, 2014.
M. A. Hossain, H. R. Pota, M. J. Hossain, and F. Blaabjerg, "Evolution of microgrids with converter-interfaced generations: Challenges and opportunities," International Journal of Electrical Power & Energy Systems, vol. 109, pp. 160–186, 2019.
K. Nishimoto, Y. Kado, N.-m. Keiji Wada, and S. Member, "Implementation of Decoupling Power Flow Control System in Triple Active Bridge Converter Rated at 400 V, 10 kW, and 20 kHz," IEEJ Journal of Industry Applications, vol. 7, no. 5, pp. 410–415, 2018.
B. Tharani and C. Nagarajan, "An AC–DC/DC–DC hybrid multi-port embedded energy router based steady-state power flow optimizing in power system using substantial transformative energy management strategy," Journal of Ambient Intelligence and Humanized Computing 2020 12:5, vol. 12, no. 5, pp. 5687–5707, 2020.
D. M. Phan and H. H. Lee, "Interlinking Converter to Improve Power Quality in Hybrid AC-DC Microgrids with Nonlinear Loads," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1959–1968, 2019.
F. Xiao, C. Tu, Q. Ge, K. Zhou, Q. Guo, and Z. Lan, "Ripple Voltage Suppression and Control Strategy for CHB-Based Solid-State Transformer," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 1104–1118, 2021.
B. Liu, Y. Peng, J. Xu, C. Mao, D. Wang, and Q. Duan, "Design and Implementation of Multiport Energy Routers Toward Future Energy Internet," IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 1945–1957, 2021.
X. Weng, Z. Zhao, K. Chen, L. Yuan, and Y. Jiang, "A Nonlinear Control Method for Bumpless Mode Transition in Noninverting Buck-Boost Converter," IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 2166–2178, 2021.
F. Nejabatkhah and Y. W. Li, "Overview of Power Management Strategies of Hybrid AC/DC Microgrid," IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7072–7089, 2015.
N. Vilhena, C. Roncero-Clemente, V. Delgado-Gomes, V. F. Pires, and J. F. Martins, "Energy router for SC: GC, SA and transition mode controls," IET Renewable Power Generation, vol. 14, no. 5, pp. 914–924, 2020.
X. Zheng, T. Cui, Y. Jiang, and H. Cao, "Research on smooth switching and islanding detection technology for ER system," IET Renewable Power Generation, vol. 14, no. 3, pp. 466–474, 2020.
G. Yao, T. Zhang, L. Zhou, Q. Li, and N. Jin, "An Alterable Structure Power Router with General AC and DC Port for Microgrid Applications," Energies, vol. 12, no. 9, p. 1815, 2019.
Y. Chen, P. Wang, Y. Elasser, and M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13210–13224, 2020.
M. Hosseinzadeh and F. R. Salmasi, "Fault-Tolerant Supervisory Controller for a Hybrid AC/DC Micro-Grid," IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2809–2823, 2018.
C. Tu, F. Xiao, Z. Lan, Q. Guo, and Z. Shuai, "Analysis and Control of a Novel Modular-Based Energy Router for DC Microgrid Cluster," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 331–342, 2019.
P. H. Nguyen, W. L. Kling, and P. F. Ribeiro, "Smart power router: A flexible agent-based converter interface in active distribution networks," IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 487–495, 2011.
V. Ramirez, R. Ortega, O. Bethoux, and A. Sánchez-Squella, "A dynamic router for microgrid applications: Theory and experimental results," Control Engineering Practice, vol. 27, no. 1, pp. 23–31, 2014.
X. Gai, Y. Wang, R. Chen, and L. Zou, "Research on Hybrid Microgrid Based on Simultaneous AC and DC Distribution Network and Its Power Router," Energies, vol. 12, no. 6, p. 1077, 2019.
J. Ahmad, M. Tahir, and S. K. Mazumder, "Improved dynamic performance and hierarchical energy management of microgrids with energy routing," IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3218–3229, 2019.
H. Hua, Y. Qin, J. Geng, C. Hao, and J. Cao, "Robust Mixed H2/H∞ Controller Design for Energy Routers in Energy Internet," Energies, vol. 12, no. 3, p. 340, 2019.
H. Bueno-Contreras, G. A. Ramos, and R. Costa-Castelló, "Robust H∞ Design for Resonant Control in a CVCF Inverter Application over Load Uncertainties," Electronics, vol. 9, no. 1, p. 66, 2020.
G. A. Ramos, R. I. Ruget, and R. Costa-Castello, "Robust Repetitive Control of Power Inverters for Standalone Operation in DG Systems," IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 237–247, 2020.
G. A. Ramos Fuentes, J. A. Cifuentes Quintero, and I. D. Melo Lagos, "High performance control of a three-phase PWM rectifier using odd harmonic high order repetitive control," Dyna, vol. 83, no. 198, pp. 27–36, 2016.
M. A. Hannan, M. Faisal, P. J. Ker, L. H. Mun, K. Parvin, T. M. I. Mahlia, and F. Blaabjerg, "A review of internet of energy based building energy management systems: Issues and recommendations," IEEE Access, vol. 6, pp. 38997–39014, 2018.
G. Ramos and R. Costa-Castelló, "Comparison of Different Repetitive Control Architectures: Synthesis and Comparison. Application to VSI Converters," Electronics, vol. 7, no. 12, p. 446, 2018.
G. A. Ramos Fuentes, J. A. Cortés-Romero, Z. X. Zou, R. Costa-Castelló, and K. Zhou, "Power active filter control based on a resonant disturbance observer," IET Power Electronics, vol. 8, no. 4, pp. 554–564, 2015.
M. R. Stanković, M. R. Rapaić, S. M. Manojlović, S. T. Mitrović, S. M. Simić, and M. Naumović, "Optimised active disturbance rejection motion control with resonant extended state observer," International Journal of Control, vol. 92, no. 8, pp. 1815–1826, 2019.
H. Coral-Enriquez, S. Pulido-Guerrero, and J. Cortés-Romero, "Robust Disturbance Rejection Based Control with Extended-state Resonant Observer for Sway Reduction in Uncertain Tower-cranes," International Journal of Automation and Computing, vol. 16, no. 6, pp. 812–827, 2019.
S. Chen, W. Bai, Y. Hu, Y. Huang, and Z. Gao, "On the conceptualization of total disturbance and its profound implications," Science China Information Sciences, vol. 63, no. 2, pp. 1–3, 2020.
Y. Huang and W. Xue, "Active disturbance rejection control: Methodology and theoretical analysis," ISA Transactions, vol. 53, no. 4, pp. 963–976, 2014.
S. Li, J. Yang, W. H. Chen, and X. Chen, "Generalized extended state observer based control for systems with mismatched uncertainties," IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4792–4802, 2012.
Z. Gao, "Scaling and Bandwidth-Parameterization based Controller Tuning," in 2003 American Control Conference, 2003., pp. 4989–4996, 2003.
H. Sira-Ramírez and E. W. Zurita-Bustamante, "On the equivalence between ADRC and Flat Filter based controllers: A frequency domain approach," Control Engineering Practice, vol. 107, p. 104656, 2021.
W. Xue and Y. Huang, "Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems," ISA Transactions, vol. 58, no. 2014, pp. 133–154, 2015.
J. Cortés-Romero, H. Rojas-Cubides, H. Coral-Enriquez, H. Sira-Ramírez, and A. Luviano-Juárez, "Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control," Mathematical Problems in Engineering, vol. 2013, pp. 1–12, 2013.
R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Springer, Boston, MA, 2 ed., 2001.
K. Lakomy and R. Madonski, "Cascade extended state observer for active disturbance rejection control applications under measurement noise," ISA Transactions, vol. 109, pp. 1–10, 2021.
K. Lakomy, R. Madonski, B. Dai, J. Yang, P. Kicki, M. Ansari, and S. Li, "Active Disturbance Rejection Control Design with Suppression of Sensor Noise Effects in Application to DC-DC Buck Power Converter," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 816–824, 2022.
H. Sun, R. Madonski, S. Li, Y. Zhang, and W. Xue, "Composite Control Design for Systems with Uncertainties and Noise Using Combined Extended State Observer and Kalman Filter," IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 4119–4128, 2022.
J. Cortés-Romero, G. A. Ramos, and H. Coral-Enriquez, "Generalized proportional integral control for periodic signals under active disturbance rejection approach.," ISA transactions, vol. 53, no. 6, pp. 1901–1909, 2014.
H. Wang, T. Pan, H. Sira-Ramirez, and Z. Gao, "Flatness-Based Discrete Active Disturbance Rejection Control for the Flexible Transmission System," Journal of Control, Automation and Electrical Systems, vol. 32, pp. 1746–1757, 2021.
H. Wang, T. Pan, H. Sira-Ramirez, and Z. Gao, "Active disturbance rejection control for discrete systems with zero dynamics," International Journal of Robust and Nonlinear Control, vol. 31, no. 11, pp. 5298–5311, 2021.
B. Du, S. Wu, S. Han, and S. Cui, "Interturn Fault Diagnosis Strategy for Interior Permanent-Magnet Synchronous Motor of Electric Vehicles Based on Digital Signal Processor," IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1694–1706, 2016.
D. Huang, X. Hua, B. Mi, Y. Liu, and Z. Zhang, "Incipient fault diagnosis on active disturbance rejection control," Science China Information Sciences, vol. 65, no. 9, pp. 1–10, 2022.
W. H. Chen, J. Yang, L. Guo, and S. Li, "Disturbance-Observer-Based Control and Related Methods - An Overview," IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1083–1095, 2016.
Z. Gao, "Active disturbance rejection control: From an enduring idea to an emerging technology," in 2015 10th International Workshop on Robot Motion and Control (RoMoCo), pp. 269–282, 2015.
E. Sariyildiz, R. Oboe, and K. Ohnishi, "Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview," IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2042–2053, 2020.
H. Jin, J. Song, W. Lan, and Z. Gao, "On the characteristics of ADRC: a PID interpretation," Science China Information Sciences, vol. 63, no. 10, pp. 1–3, 2020.
H. Rojas-Cubides, J. Cortés-Romero, H. Coral-Enriquez, and H. Rojas-Cubides, "Sliding mode control assisted by GPI observers for tracking tasks of a nonlinear multivariable Twin-Rotor aerodynamical system," Control Engineering Practice, vol. 88, pp. 1–15, 2019.
Q. Zheng and Z. Gao, "Active disturbance rejection control: between the formulation in time and the understanding in frequency," Control Theory and Technology, vol. 14, no. 3, pp. 250–259, 2016.
H. Sira-Ramírez, "From flatness, GPI observers, GPI control and flat filters to observer-based ADRC," Control Theory and Technology, vol. 16, pp. 249–260, 2018.
S. Chen, W. Xue, and Y. Huang, “On active disturbance rejection control for nonlinear systems with multiple uncertainties and nonlinear measurement,” International Journal of Robust and Nonlinear Control, vol. 30, no. 8, pp. 3411–3435, 2020.
D. Wu and K. Chen, “Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3906–3914, 2013.
X. Chang, Y. Li, W. Zhang, N. Wang, and W. Xue, “Active Disturbance Rejection Control for a Flywheel Energy Storage System,” IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 991–1001, 2015.
W. Xue, R. Madonski, K. Lakomy, Z. Gao, and Y. Huang, “Add-On Module of Active Disturbance Rejection for Set-Point Tracking of Motion Control Systems,” IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 4028–4040, 2017.
H. Coral-Enriquez, J. Cortés-Romero, and G. A. Ramos, “Robust Active Disturbance Rejection Control Approach to Maximize Energy Capture in Variable-Speed Wind Turbines,” Mathematical Problems in Engineering, vol. 2013, pp. 1–12, 2013.
M. Srikanth and N. Yadaiah, “An AHP based optimized tuning of Modified Active Disturbance Rejection Control: An application to power system load frequency control problem,” ISA Transactions, vol. 81, pp. 286–305, 2018.
H. Sira-Ramírez, C. López-Uribe, and M. Velasco-Villa, “Linear observer-based active disturbance rejection control of the omnidirectional mobile robot,” Asian Journal of Control, vol. 15, no. 1, pp. 51–63, 2013.
B. Sun and Z. Gao, “A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1271–1277, 2005.
S. Zhuo, A. Gaillard, L. Xu, D. Paire, and F. Gao, “Extended State Observer-Based Control of DC-DC Converters for Fuel Cell Application,” IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9925–9934, 2020.
Q. Zheng and Z. Gao, “Active disturbance rejection control: some recent experimental and industrial case studies,” Control Theory and Technology, vol. 16, no. 4, pp. 301–313, 2018.
P. Grelewicz, P. Nowak, J. Czeczot, and J. Musial, “Increment Count Method and Its PLC-Based Implementation for Autotuning of Reduced-Order ADRC with Smith Predictor,” IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 12554–12564, 2021.
S. Li, J. Yang, W. H. Chen, and X. Chen, Disturbance Observer-Based Control Methods and Applications. CRC Press. Taylor & Francis Group, 2014.
E. Sariyildiz and K. Ohnishi, “A guide to design disturbance observer,” Journal of Dynamic Systems, Measurement and Control, vol. 136, no. 2, p. 021011, 2014.
H. Sira-Ramírez, E. W. Zurita-Bustamante, and C. Huang, “Equivalence Among Flat Filters, Dirty Derivative-Based PID Controllers, ADRC, and Integral Reconstructor-Based Sliding Mode Control,” IEEE Transactions on Control Systems Technology, vol. 28, no. 5, pp. 1696–1710, 2020.
R. Madoński and P. Herman, “Survey on methods of increasing the efficiency of extended state disturbance observers,” ISA Transactions, vol. 56, pp. 18–27, 2015.
B. Ahi and M. Haeri, “Linear Active Disturbance Rejection Control from the Practical Aspects,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 6, pp. 2909–2919, 2018.
H. K. Khalil, “Cascade high-gain observers in output feedback control,” Automatica, vol. 80, pp. 110–118, 2017.
World Economic Forum (WEF), “Fostering Effective Energy Transition. 2021 Edition Insight Report,” techreport, Apr. 2021.
V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. Shukla, A. Pirani, W. Moufouma-Okia, C. Pèan, R. Pidcock, S. Connors, J. Matthews, Y. Chen, X. Zhou, M. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, Global Warming of 1.5°C. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2018.
C. Defeuilley, “Energy transition and the future(s) of the electricity sector,” Utilities Policy, vol. 57, pp. 97–105, 2019.
Departamento Nacional de Planeación, Plan Nacional de Desarrollo 2018-2022: Pacto por Colombia, pacto por la equidad. Bogotá, D. C., Colombia: Departamento Nacional de Planeación, 2019.
Unidad de Planeación Minero Energética (UPME), Plan Energético Nacional 2020-2050. UPME, 2020.
I. Duque Márquez, D. Mesa Puyo, M. Lotero Robledo, and S. Sandoval Valderrama, Transición energética: un legado para el presente y el futuro de Colombia. Bogotá D. C., Colombia: Ministerio de Minas y Energía, 2021.
Alcaldía Mayor de Bogotá D.C. and Colciencias, “Plan y Acuerdo Estratégico Distrital en Ciencia, Tecnología e Innovación,” Oct. 2016.
Cámara de Comercio de Bogotá, Plan Regional de Competitividad Bogotá y Cundinamarca 2010 – 2019. Bogotá, D. C., Colombia: Cámara de Comercio de Bogotá, 2010.
Concejo de Bogotá D.C., “Acuerdo No. 761 de 2020. Por medio del cual se adopta el plan de desarrollo económico, social, ambiental y de obras públicas del distrito capital 2020-2024: un nuevo contrato social y ambiental para la Bogotá del siglo XXI,” 2020.
D. Zuluaga, R. Castillo, and D. Mayorquín, Prospectiva Tecnológica de la Industria Electro Electrónica de Bogotá y Cundinamarca. Bogotá D. C., Colombia: CIDEI; ASESEL, 2015.
World Economic Forum (WEF), “The Future of Electricity. New Technologies Transforming the Grid Edge,” techreport, Mar. 2017.
M. L. Di Silvestre, S. Favuzza, E. Riva Sanseverino, and G. Zizzo, “How Decarbonization, Digitalization and Decentralization are changing key power infrastructures,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 483–498, 2018.
S. S. Reka and T. Dragicevic, “Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 90–108, 2018.
A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 402–411, 2018.
S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925, 2015.
N. Shaukat, S. Ali, C. Mehmood, B. Khan, M. Jawad, U. Farid, Z. Ullah, S. Anwar, and M. Majid, “A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1453–1475, 2018.
M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked Microgrids: State-of-the-Art and Future Perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1238–1250, 2019.
S. Thakar, V. A.S., and S. Doolla, “System reconfiguration in microgrids,” Sustainable Energy, Grids and Networks, vol. 17, p. 100191, 2019.
D. Baimel, J. Belikov, J. M. Guerrero, and Y. Levron, “Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame: A Survey,” IEEE Access, vol. 5, pp. 21323–21335, 2017.
C. A. Macana, E. Mojica-Nava, H. R. Pota, J. M. Guerrero, and J. C. Vasquez, “A novel compact dq-reference frame model for inverter-based microgrids,” Electronics, vol. 8, no. 11, pp. 1–15, 2019.
N. Pogaku, M. Prodanović, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, 2007.
J. Schiffer, D. Zonetti, R. Ortega, A. M. Stanković, T. Sezi, and J. Raisch, “A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources,” Automatica, vol. 74, pp. 135–150, 2016.
M. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, “Stability and Control Aspects of Microgrid Architectures-A Comprehensive Review,” IEEE Access, vol. 8, pp. 144730–144766, 2020.
T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids - Part I: A Review of Control Strategies and Stabilization Techniques,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4876–4891, 2016.
M. Gayatri, A. Parimi, and A. Pavan Kumar, “A review of reactive power compensation techniques in microgrids,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1030–1036, 2018.
B. Mahamedi and J. E. Fletcher, “Trends in the protection of inverter-based microgrids,” IET Generation, Transmission and Distribution, vol. 13, no. 20, pp. 4511–4522, 2019.
M. S. Mahmoud, N. M. Alyazidi, and M. I. Abouheaf, “Adaptive intelligent techniques for microgrid control systems: A survey,” International Journal of Electrical Power and Energy Systems, vol. 90, pp. 292–305, 2017.
D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.
M. Roslan, M. Hannan, P. J. Ker, and M. Uddin, “Microgrid control methods toward achieving sustainable energy management,” Applied Energy, vol. 240, pp. 583–607, 2019.
S. Sen and V. Kumar, “Microgrid control: A comprehensive survey,” Annual Reviews in Control, vol. 45, pp. 118–151, 2018.
R. Zamora and A. K. Srivastava, “Multi-Layer Architecture for Voltage and Frequency Control in Networked Microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2076–2085, 2018.
S. Sen and V. Kumar, “Microgrid modelling: A comprehensive survey,” Annual Reviews in Control, vol. 46, pp. 216–250, 2018.
J. J. Justo, F. Mwasilu, J. Lee, and J.-W. Jung, “AC-microgrids versus DC-microgrids with distributed energy resources: A review,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 387–405, 2013.
K. Rajesh, S. Dash, R. Rajagopal, and R. Sridhar, “A review on control of ac microgrid,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 814–819, 2017.
T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids - Part II: A Review of Power Architectures, Applications, and Standardization Issues,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3528–3549, 2016.
E. Planas, J. Andreu, J. I. Gárate, I. Martínez De Alegría, and E. Ibarra, “AC and DC technology in microgrids: A review,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 726–749, 2015.
N. Eghtedarpour and E. Farjah, “Power control and management in a Hybrid AC/DC microgrid,” IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1494–1505, 2014.
P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Hybrid AC-DC microgrids with energy storages and progressive energy flow tuning,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1533–1543, 2013.
S. Mirsaeidi, X. Dong, and D. M. Said, “Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 97–103, 2018.
S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and active distribution networks. Renewable energy series 6, The Institution of Engineering and Technology, 2009.
IEEE Standards Association, “IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003) - IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces,” 2018.
G. Liu, M. R. Starke, B. Ollis, and Y. Xue, “Networked microgrids scoping study,” techreport ORNL/TM-2016/294, Oak Ridge National Labroratory, 2016.
J. He, X. Wu, X. Wu, Y. Xu, and J. M. Guerrero, “Small-Signal Stability Analysis and Optimal Parameters Design of Microgrid Clusters,” IEEE Access, vol. 7, pp. 36896–36909, 2019.
Y. Li, P. Zhang, and P. B. Luh, “Formal Analysis of Networked Microgrids Dynamics,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3418–3427, 2018.
M. S. Golsorkhi, D. J. Hill, and H. R. Karshenas, “Distributed voltage control and power management of networked microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1892–1902, 2018.
A. Hussain, V. H. Bui, and H. M. Kim, “Resilience-Oriented Optimal Operation of Networked Hybrid Microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 204–215, 2019.
W. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng, “Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2817–2826, 2016.
A. Parisio, C. Wiezorek, T. Kyntääja, J. Elo, K. Strunz, and K. H. Johansson, “Cooperative MPC-Based Energy Management for Networked Microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3066–3074, 2017.
A. M. Jadhav, N. R. Patne, and J. M. Guerrero, “A Novel Approach to Neighborhood Fair Energy Trading in a Distribution Network of Multiple Microgrid Clusters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1520–1531, 2019.
Y. Zhou, J. Wu, C. Long, and W. Ming, “State-of-the-Art Analysis and Perspectives for Peer-to-Peer Energy Trading,” Engineering, vol. 6, no. 7, pp. 739–753, 2020.
Y. Li, P. Dong, M. Liu, and G. Yang, “A distributed coordination control based on finite-time consensus algorithm for a cluster of dc microgrids,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2205–2215, 2019.
M. Nasir, Z. Jin, H. A. Khan, N. A. Zaffar, J. C. Vasquez, and J. M. Guerrero, “A Decentralized Control Architecture Applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions,” IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1773–1785, 2019.
P. Wu, W. Huang, N. Tai, and S. Liang, “A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection,” Applied Energy, vol. 210, pp. 1002–1016, 2018.
Y. Liu, X. Chen, Y. Wu, K. Yang, J. Zhu, and B. Li, “Enabling the Smart and Flexible Management of Energy Prosumers via the Energy Router with Parallel Operation Mode,” IEEE Access, vol. 8, pp. 35038–35047, 2020.
B. Liu, W. Wu, C. Zhou, C. Mao, D. Wang, Q. Duan, and G. Sha, “An AC-DC Hybrid Multi-Port Energy Router with Coordinated Control and Energy Management Strategies,” IEEE Access, vol. 7, pp. 109069–109082, 2019.
T. Wu, C. Zhao, and Y. J. Zhang, “Distributed AC-DC Optimal Power Dispatch of VSC-Based Energy Routers in Smart Microgrids,” IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 4457–4470, 2021.
Y. Li, Y. Peng, and X. Wang, “Seamless switching power sharing control method in a hybrid DC-AC microgrid by the isolated two-stage converter based on SST,” IET Power Electronics, vol. 14, no. 7, pp. 1384–1396, 2021.
N. L. Díaz, F. Guinjoan, G. Velasco-Quesada, A. C. Luna, and J. M. Guerrero, “Fuzzy-based cooperative interaction between stand-alone microgrids interconnected through VSC-based multiterminal converter,” International Journal of Electrical Power and Energy Systems, vol. 152, p. 109226, 2023.
Y. Xiong and Y. Ye, “Physical Interpretations of Grid Voltage Full Feedforward for Grid-Tied Inverter,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 267–271, 2019.
R. P. Kandula, A. Iyer, R. Moghe, J. E. Hernandez, and D. Divan, “Power router for meshed systems based on a fractionally rated back-to-back converter,” IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5172–5180, 2014.
M. McDonough, “Integration of Inductively Coupled Power Transfer and Hybrid Energy Storage System: A Multiport Power Electronics Interface for Battery-Powered Electric Vehicles,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6423–6433, 2015.
Z. Lan, J. Wang, J. Zeng, D. He, F. Xiao, and F. Jiang, “Constant Frequency Control Strategy of Microgrids by Coordinating Energy Router and Energy Storage System,” Mathematical Problems in Engineering, vol. 2020, pp. 1–8, 2020.
G. Zhao, C. Jiang, and J. Liu, “Research on the System and Control Strategy of an AC-DC Hybrid Single-Phase Electric Energy Router,” Electronics, vol. 8, no. 9, p. 970, 2019.
Y. Liu, Y. Li, H. Liang, J. He, and H. Cui, “Energy Routing Control Strategy for Integrated Microgrids Including Photovoltaic, Battery-Energy Storage and Electric Vehicles,” Energies, vol. 12, no. 2, p. 302, 2019.
K. Huang, Y. Li, X. Zhang, L. Liu, Y. Zhu, and X. Meng, “Research on power control strategy of household-level electric power router based on hybrid energy storage droop control,” Protection and Control of Modern Power Systems, vol. 6, no. 1, pp. 1–13, 2021.
H. Guo, F. Wang, L. Zhang, and J. Luo, “A Hierarchical Optimization Strategy of the Energy Router-Based Energy Internet,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4177–4185, 2019.
S. Zhang, W. Pei, H. Xiao, Y. Yang, H. Ye, and L. Kong, “Enhancing the survival time of multiple islanding microgrids through composable modular energy router after natural disasters,” Applied Energy, vol. 270, p. 115138, 2020.
W. Chen and T. Li, “Distributed Economic Dispatch for Energy Internet Based on Multiagent Consensus Control,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 137–152, 2021.
R. Bickel and M. Tomizuka, “Passivity-based versus disturbance observer based robot control: Equivalence and stability,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 121, no. 1, pp. 41–47, 1999.
E. Schrijver and J. Van Dijk, “Disturbance observers for rigid mechanical systems: Equivalence, stability, and design,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 124, no. 4, pp. 539–548, 2002.
B. K. Kim, H. T. Choi, W. K. Chung, and I. H. Suh, “Analysis and design of robust motion controllers in the unified framework,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 124, no. 2, pp. 313–321, 2002.
R. Garrido and J. L. Luna, “On the equivalence between PD+DOB and PID controllers applied to servo drives,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 95–100, 2018.
F. M. M. Rahman, V. Pirsto, J. Kukkola, M. Hinkkanen, D. Perez-Estevez, and J. Doval-Gandoy, “Equivalence of the Integrator-Based and Disturbance-Observer-Based State-Space Current Controllers for Grid Converters,” IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 4966–4976, 2021.
S. Jung and J. W. Lee, “Similarity Analysis between a Nonmodel-Based Disturbance Observer and a Time-Delayed Controller for Robot Manipulators in Cartesian Space,” IEEE Access, vol. 9, pp. 122299–122307, 2021.
J. Su, L. Wang, and J. N. Yun, “A design of disturbance observer in standard h∞ control framework,” International Journal of Robust and Nonlinear Control, vol. 25, no. 16, pp. 2894–2910, 2015.
H. T. Seo, S. Kim, and K. S. Kim, “An H∞ Design of Disturbance Observer for a Class of Linear Time-invariant Single-input/Single-output Systems,” International Journal of Control, Automation and Systems, vol. 18, no. 7, pp. 1662–1670, 2020.
S. Ahmad and A. Ali, “Unified Disturbance-Estimation-Based Control and Equivalence with IMC and PID: Case Study on a DC-DC Boost Converter,” IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 5122–5132, 2021.
P. Lin, X.-M. Sun, and Z. Fei, “A generalized interpretation of three types of disturbance-based controllers for perturbed integral systems in frequency domain,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1328–1332, 2021.
R. Zhou, C. Fu, and W. Tan, “Implementation of linear controllers via active disturbance rejection control structure,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6217–6226, 2021.
G. Tian and Z. Gao, “Frequency response analysis of active disturbance rejection based control system,” in 2007 IEEE International Conference on Control Applications, pp. 1595–1599, IEEE, 2007.
C. Huang and Q. Zheng, “Frequency response analysis of linear active disturbance rejection control,” Sensors and Transducers, vol. 157, no. 10, pp. 346–354, 2013.
W. Xue and Y. Huang, “On frequency-domain analysis of ADRC for uncertain system,” in 2013 American Control Conference, pp. 6637–6642, 2013.
S. Zhong and Y. Huang, “Comparison of the phase margins of different ADRC designs,” in 2019 Chinese Control Conference (CCC), pp. 1280–1285, IEEE, 2019.
H. Jin, L. Liu, W. Lan, and J. Zeng, “On stability and robustness of linear active disturbance rejection control: A small gain theorem approach,” in 2017 36th Chinese Control Conference (CCC), pp. 3242–3247, IEEE, 2017.
J. Li, X. Qi, Y. Xia, F. Pu, and K. Chang, “Frequency domain stability analysis of nonlinear active disturbance rejection control system,” ISA Transactions, vol. 56, pp. 188–195, 2015.
J. Li, Y. Xia, X. Qi, and P. Zhao, “Robust absolute stability analysis for interval nonlinear active disturbance rejection based control system,” ISA Transactions, vol. 69, pp. 122–130, 2017.
X. Qi, J. Li, Y. Xia, and Z. Gao, “On the Robust Stability of Active Disturbance Rejection Control for SISO Systems,” Circuits, Systems, and Signal Processing, vol. 36, pp. 65–81, 2017.
S. Skogestad and I. Postlethwaite, Multivariable Feedback control. Analysis and design. Wiley, 2nd ed., 2005.
P. Seiler, A. Packard, and P. Gahinet, “An introduction to disk margins [lecture notes],” IEEE Control Systems Magazine, vol. 40, no. 5, pp. 78–95, 2020.
D. Graham and R. C. Lathrop, “The synthesis of .optimum”transient response: Criteria and standard forms,” Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, vol. 72, no. 5, pp. 273–288, 1953.
A. H. Marshax, D. E. Johnson, and J. R. Johnson, “A Bessel Rational Filter,” IEEE Transactions on Circuits and Systems, vol. 21, no. 6, pp. 797–799, 1974.
H. Yang, Y. Zhang, J. Liang, J. Liu, N. Zhang, and P. D. Walker, “Robust Deadbeat Predictive Power Control with a Discrete-Time Disturbance Observer for PWM Rectifiers under Unbalanced Grid Conditions,” IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 287–300, 2018.
S. Ahmad and A. Ali, “On Active Disturbance Rejection Control in Presence of Measurement Noise,” IEEE Transactions on Industrial Electronics, vol. 69, no. 11, pp. 11600 – 11610, 2022.
M. Elkayam, S. Kolesnik, and A. Kuperman, “Guidelines to Classical Frequency-Domain Disturbance Observer Redesign for Enhanced Rejection of Periodic Uncertainties and Disturbances,” IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3986–3995, 2019.
R. Madonski, M. Stankovic, A. Ferdjali, S. Shao, and Z. Gao, “General ADRC Design for Systems with Periodic Disturbances of Unknown and Varying Frequencies,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 143, no. 1, p. 011006, 2021.
L. Li, W. W. Huang, X. Wang, Y. L. Chen, and L. M. Zhu, “Periodic-Disturbance Observer Using Spectrum-Selection Filtering Scheme for Cross-Coupling Suppression in Atomic Force Microscopy,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 3, pp. 2037–2048, 2023.
K. Nie, W. Xue, C. Zhang, and Y. Mao, “Disturbance observer-based repetitive control with application to optoelectronic precision positioning system,” Journal of the Franklin Institute, vol. 358, no. 16, pp. 8443–8469, 2021.
Q. Meng and Z. Hou, “Active Disturbance Rejection Based Repetitive Learning Control With Applications in Power Inverters,” IEEE Transactions on Control Systems Technology, vol. 29, no. 5, pp. 2038–2048, 2021.
L. Zhou, L. Cheng, J. She, and Z. Zhang, “Generalized extended state observer-based repetitive control for systems with mismatched disturbances,” International Journal of Robust and Nonlinear Control, vol. 29, no. 11, pp. 3777–3792, 2019.
M. Tian, B. Wang, Y. Yu, Q. Dong, and D. Xu, “Discrete-Time Repetitive Control-Based ADRC for Current Loop Disturbances Suppression of PMSM Drives,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3138–3149, 2022.
M. R. Stanković, R. Madonski, S. Shao, and D. Mikluc, “On dealing with harmonic uncertainties in the class of active disturbance rejection controllers,” International Journal of Control, vol. 94, no. 10, pp. 2795–2810, 2021.
H. D. Rojas and J. Cortés-Romero, “On the equivalence between Generalized Proportional Integral Observer and Disturbance Observer,” ISA Transactions, vol. 133, pp. 397–411, 2023.
B. Guo, S. Bacha, M. Alamir, and J. Pouget, “A phase-locked loop using ESO-based loop filter for grid-connected converter: performance analysis,” Control Theory and Technology, vol. 19, pp. 49–63, 2021.
Z. Li, T. Zheng, Y. Wang, and C. Yang, “A Hierarchical Coordinative Control Strategy for Solid State Transformer Based DC Microgrids,” Applied Sciences, vol. 10, no. 19, p. 6853, 2020.
B. Guo, S. Bacha, M. Alamir, A. Hably, and C. Boudinet, “Generalized Integrator-Extended State Observer with Applications to Grid-Connected Converters in the Presence of Disturbances,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2, pp. 744–755, 2021.
P. Lin, Y. Shi, and X. M. Sun, “A Classes of Nonlinear Active Disturbance Rejection Loop Filters for Phase-Locked Loop,” IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1920–1928, 2022.
S. Chen and Z. Chen, “On Active Disturbance Rejection Control for a Class of Uncertain Systems with Measurement Uncertainty,” IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1475–1485, 2021.
R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proceedings - Electric Power Applications, vol. 153, no. 5, pp. 750–762, 2006.
M. Castilla, J. Miret, J. Matas, L. G. D. Vicuña, and J. M. Guerrero, “Resonant Harmonic Compensator for Photovoltaic Inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2724–2733, 2008.
J. Han, “From PID to Active Disturbance Rejection Control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009.
J. H. Ahrens and H. K. Khalil, “High-gain observers in the presence of measurement noise: A switched-gain approach,” Automatica, vol. 45, no. 4, pp. 936–943, 2009.
A. A. Prasov and H. K. Khalil, “A nonlinear high-gain observer for systems with measurement noise in a feedback control framework,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 569–580, 2013.
S. Battilotti, “Robust observer design under measurement noise with gain adaptation and saturated estimates,” Automatica, vol. 81, pp. 75–86, 2017.
H. K. Khalil and S. Priess, “Analysis of the Use of Low-Pass Filters with High-Gain Observers,” IFAC-PapersOnLine, vol. 49, no. 18, pp. 488–492, 2016.
Y. Wu, A. Isidori, and L. Marconi, “Achieving Almost Feedback-Linearization via Low-Power Extended Observer,” IEEE Control Systems Letters, vol. 4, no. 4, pp. 1030–1035, 2020.
Y. Du, W. Cao, and J. She, “Analysis and Design of Active Disturbance Rejection Control With an Improved Extended State Observer for Systems With Measurement Noise,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 855–865, 2023.
Y. Liu, G. Liu, S. Zheng, and H. Li, “A modified active disturbance rejection control strategy based on cascade structure with enhanced robustness,” ISA Transactions, vol. 129, pp. 525–534, 2022.
S. Chen, Y. Huang, and Z.-l. Zhao, “The necessary and sufficient condition for the uncertain control gain in active disturbance rejection control,” arXiv, no.2006.11731, pp. 1–8, 2020.
J. Yang, H. Cui, S. Li, and A. Zolotas, “Optimized Active Disturbance Rejection Control for DC-DC Buck Converters With Uncertainties Using a Reduced-Order GPI Observer,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 832–841, 2018.
G. A. Ramos and R. Costa-Castelló, “Power factor correction and harmonic compensation using second-order odd-harmonic repetitive control,” IET Control Theory and Applications, vol. 6, no. 11, pp. 1633–1644, 2012.
R. Costa-Castelló, R. Griñó, R. Cardoner Parpal, and E. Fossas, “High-performance control of a single-phase shunt active filter,” IEEE Transactions on Control Systems Technology, vol. 17, no. 6, pp. 1318–1329, 2009.
M. Chen and G. A. Rincón-Mora, “Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504–511, 2006.
T. Kim and W. Qiao, “A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects,” IEEE Transactions on Energy Conversion, vol. 26, no. 4, pp. 1172–1180, 2011.
D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Autonomous active power control for islanded AC microgrids with photovoltaic generation and energy storage system,” IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 882–892, 2014.
R. M. Santos Filho, P. F. Seixas, P. C. Cortizo, L. A. Torres, and A. F. Souza, “Comparison of three single-phase PLL algorithms for UPS applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2923–2932, 2008.
S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Dynamics assessment of advanced single-phase PLL structures,” IEEE Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2167–2177, 2013.
J. Xu, H. Qian, Y. Hu, S. Bian, and S. Xie, “Overview of SOGI-Based Single-Phase Phase-Locked Loops for Grid Synchronization under Complex Grid Conditions,” IEEE Access, vol. 9, pp. 39275–39291, 2021.
H. Rojas-Cubides, J. Cortés-Romero, and J. Arcos-Legarda, “Data-driven disturbance observer-based control: an active disturbance rejection approach,” Control Theory and Technology, vol. 19, pp. 80–93, 2021.
H. D. Rojas, J. Cortés-Romero, and H. E. Rojas, “Active disturbance rejection control assisted by a cascade connection of repetitive and data-driven observers,” in 2023 IEEE 6th Colombian Conference on Automatic Control (CCAC), pp. 1–6, IEEE, 2023.
H. D. Rojas, H. E. Rojas, and J. Cortés-Romero, “Fault diagnosis based on algebraic identification assisted by extended state observers,” Nonlinear Dynamics, vol. 107, no. 1, pp. 871–888, 2022.
F. O. Resende, N. J. Gil, and J. A. Lopes, “Service restoration on distribution systems using Multi-MicroGrids,” European Transactions on Electrical Power, vol. 21, no. 2, pp. 1327–1342, 2011.
A. G. Madureira, J. C. Pereira, N. J. Gil, J. A. Lopes, G. N. Korres, and N. D. Hatziargyriou, “Advanced control and management functionalities for multi-microgrids,” European Transactions on Electrical Power, vol. 21, no. 2, pp. 1159–1177, 2011.
Y. Wang, B. Ren, and Q. C. Zhong, “Robust Power Flow Control of Grid-Connected Inverters,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6887–6897, 2016.
Y. Wang, B. Ren, and Q. C. Zhong, “Robust Power Flow Control of Grid-Connected Inverters,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6887–6897, 2016.
S. A. Arefifar, M. Ordonez, and Y. A. R. I. Mohamed, “Energy Management in Multi-Microgrid Systems - Development and Assessment,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 910–922, 2017.
A. Ouammi, H. Dagdougui, L. Dessaint, and R. Sacile, “Coordinated Model Predictive-Based Power Flows Control in a Cooperative Network of Smart Microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2233–2244, 2015.
I. U. Nutkani, P. C. Loh, and F. Blaabjerg, “Power flow control of intertied ac microgrids,” IET Power Electronics, vol. 6, no. 7, pp. 1329–1338, 2013.
L. Che, M. Shahidehpour, A. Alabdulwahab, and Y. Al-Turki, “Hierarchical coordination of a community microgrid with AC and DC microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 3042–3051, 2015.
P. Tian, X. Xiao, K. Wang, and R. Ding, “A Hierarchical Energy Management System Based on Hierarchical Optimization for Microgrid Community Economic Operation,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2230–2241, 2016.
A. Werth, N. Kitamura, and K. Tanaka, “Conceptual Study for Open Energy Systems: Distributed Energy Network Using Interconnected DC Nanogrids,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1621–1630, 2015.
E. Unamuno and J. A. Barrena, “Hybrid ac/dc microgrids—Part II: Review and classification of control strategies,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 1123–1134, 2015.
M. Liserre, Z. X. Zou, and G. Buticchi, “Analysis and stabilization of a smart transformer-fed grid,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1325–1335, 2017.
G. Wang, X. Wang, and J. Lv, “An Improved Harmonic Suppression Control Strategy for the Hybrid Microgrid Bidirectional AC/DC Converter,” IEEE Access, vol. 8, pp. 220422–220436, 2020.
F. Nejabatkhah, Y. W. Li, and H. Tian, “Power quality control of smart hybrid AC/DC microgrids: An overview,” IEEE Access, vol. 7, pp. 52295–52318, 2019.
L. Ferreira Costa, G. De Carne, G. Buticchi, and M. Liserre, “The Smart Transformer: A solid-state transformer tailored to provide ancillary services to the distribution grid,” IEEE Power Electronics Magazine, vol. 4, no. 2, pp. 56–67, 2017.
R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 821–834, 2010.
M. Liserre, G. Buticchi, M. Andresen, G. De Carne, L. F. Costa, and Z. X. Zou, “The Smart Transformer: Impact on the Electric Grid and Technology Challenges,” IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp. 46–58, 2016.
J. Sun, L. Yuan, Q. Gu, and Z. Zhao, “Startup Strategy with Constant Peak Transformer Current for Solid-State Transformer in Distribution Network,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1740–1751, 2019.
H. J. Yoo, T. T. Nguyen, and H. M. Kim, “Multi-frequency control in a stand-alone multi-microgrid system using a back-to-back converter,” Energies, vol. 10, no. 6, p. 822, 2017.
I. U. Nutkani, P. C. Loh, P. Wang, T. K. Jet, and F. Blaabjerg, “Intertied ac-ac microgrids with autonomous power import and export,” International Journal of Electrical Power and Energy Systems, vol. 65, pp. 385–393, 2015.
D. Chen, Y. Xu, and A. Q. Huang, “Integration of DC Microgrids as Virtual Synchronous Machines into the AC Grid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7455–7466, 2017.
T. Zhou and B. Francois, “Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 95–104, 2011.
M. Kumar, S. C. Srivastava, and S. N. Singh, “Control Strategies of a DC Microgrid for Grid Connected and Islanded Operations,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1588–1601, 2015.
H. Zhang, J. Zhou, Q. Sun, J. M. Guerrero, and D. Ma, “Data-Driven Control for Interlinked AC/DC Microgrids Via Model-Free Adaptive Control and Dual-Droop Control,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 557–571, 2017.
A. A. A. Radwan and Y. A. R. I. Mohamed, “Networked control and power management of AC/DC hybrid microgrids,” IEEE Systems Journal, vol. 11, no. 3, pp. 1662–1673, 2017.
M. Baharizadeh, H. R. Karshenas, and J. M. Guerrero, “An improved power control strategy for hybrid AC-DC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 95, pp. 364–373, 2018.
H. Xiao, A. Luo, Z. Shuai, G. Jin, and Y. Huang, “An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 340–347, 2016.
X. Lu, J. M. Guerrero, K. Sun, J. C. Vasquez, R. Teodorescu, and L. Huang, “Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 683–692, 2014.
Y. Xia, Y. Peng, P. Yang, M. Yu, and W. Wei, “Distributed Coordination Control for Multiple Bidirectional Power Converters in a Hybrid AC/DC Microgrid,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4949–4959, 2017.
P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid,” IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1374–1382, 2013.
D. R. Aryani and H. Song, “Coordination control strategy for AC/DC hybrid microgrids in stand-alone mode,” Energies, vol. 9, no. 6, p. 469, 2016.
F. Wang, J. L. Duarte, and M. A. M. Hendrix, “Grid-Interfacing Converter Systems With Enhanced Voltage Quality for Microgrid Application—Concept and Implementation,” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3501–3513, 2011.
P. G. Khorasani, M. Joorabian, and S. G. Seifossadat, “Smart grid realization with introducing unified power quality conditioner integrated with DC microgrid,” Electric Power Systems Research, vol. 151, pp. 68–85, 2017.
P. Sanjeev, N. P. Padhy, and P. Agarwal, “Autonomous Power Control and Management between Standalone DC Microgrids,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 2941–2950, 2018.
U. Vuyyuru, S. Maiti, and C. Chakraborty, “Active Power Flow Control Between DC Microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5712–5723, 2019.
C. Samende, F. Gao, S. M. Bhagavathy, and M. McCulloch, “Decentralized Voltage Control for Efficient Power Exchange in Interconnected DC Clusters,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 103–115, 2021.
R. Haghmaram, F. Sedaghati, and R. Ghafarpour, “Power exchange among microgrids using modular-isolated bidirectional DC–DC converter,” Electrical Engineering, vol. 99, no. 1, pp. 441–454, 2017.
S. Konar and A. Ghosh, “Interconnection of islanded DC microgrids,” in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1–5, IEEE, 2015.
M. Kumar, S. C. Srivastava, S. N. Singh, and M. Ramamoorty, “Development of a control strategy for interconnection of islanded direct current microgrids,” IET Renewable Power Generation, vol. 9, no. 3, pp. 284–296, 2015.
J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase PWM AC-AC converter topologies,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 4988–5006, 2011.
R. Majumder, “A hybrid microgrid with dc connection at back to back converters,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 251–259, 2014.
Y. Xu, J. Zhang, W. Wang, A. Juneja, and S. Bhattacharya, “Energy router: Architectures and functionalities toward energy internet,” in 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 31–36, IEEE, 2011.
X. Yu, X. She, X. Zhou, and A. Q. Huang, “Power management for DC microgrid enabled by solid-state transformer,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 954–965, 2014.
X. She, A. Q. Huang, S. Lukic, and M. E. Baran, “On integration of solid-state transformer with zonal DC microgrid,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 975–985, 2012.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii, 222 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85916/2/80073076.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85916/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85916/3/80073076.2024.pdf.jpg
bitstream.checksum.fl_str_mv 116c214a76b1eb6a1ffa3d664507f93c
eb34b1cf90b7e1103fc9dfd26be24b4a
636cfaa9b5a0dea2ab3447f638b2b26f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089283383853056
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Romero, John Alexanderd4c4ad5497c404645297a4b48010bf01Rojas Cubides, Harvey Davidb913401db487b57aedf6f9b95394ed40600Electrical Machines & Drives, Em&D0000-0003-1451-4881https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001405838https://www.scopus.com/authid/detail.uri?authorId=56032708600https://www.researchgate.net/profile/Harvey-Rojashttps://scholar.google.es/citations?user=77yIc3cAAAAJ&hl=es2024-04-15T20:06:38Z2024-04-15T20:06:38Z2024-03https://repositorio.unal.edu.co/handle/unal/85916Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLa interconexión de microrredes (MGs) eléctricas permite mejorar la fiabilidad y la eficiencia de los sistemas de potencia basados en ese tipo de redes locales y autónomas. En este contexto, el enrutador de energía (ER) actúa como una interfaz multipuerto que controla y dirige el flujo de potencia entre las MGs. La gestión efectiva del intercambio de energía en el ER requiere sistemas de control robustos y de alto rendimiento en los convertidores de potencia del ER. En tal sentido, la regulación automática de la corriente y la potencia en cada puerto, así como del voltaje del bus DC interno, constituyen las necesidades fundamentales de control. Sin embargo, factores como los problemas de calidad de potencia en las MGs, la incertidumbre en los modelos, el acoplamiento entre los puertos y los cambios en la operación, introducen perturbaciones que afectan el funcionamiento del ER e imponen desafíos para el diseño de los controladores. En los últimos años, se han reportado aproximaciones al control del ER basadas principalmente en técnicas de tipo proporcional integral (PI) y proporcional resonante (PR). No obstante, dichas soluciones exhiben múltiples restricciones de robustez y desempeño. Este problema se presenta como resultado de la diversidad de perturbaciones existentes, sumada a las limitaciones técnicas de los métodos, tales como: naturaleza no lineal de los sistemas, las consideraciones de diseño, la dependencia del modelo matemático, la sintonización compleja y otros aspectos prácticos de implementación. A su vez, esta problemática trae consigo diferentes consecuencias que van desde una calidad reducida hasta el rezago en la masificación y la estandarización del ER. Como una alternativa para enfrentar la problemática anterior, esta tesis estudia los alcances del enfoque de control con rechazo activo de perturbaciones (ADRC) para un ER usado como interfaz entre MGs. Desde esta perspectiva, se hacen diferentes contribuciones al enfoque ADRC respaldadas por bases teóricas y validaciones experimentales. En primer lugar, se propone un marco de análisis para estudiar la robustez y el desempeño de las estrategias ADRC. Este análisis, efectuado en el dominio de la frecuencia, proporciona un enfoque adecuado para comparar distintos métodos de estimación de perturbaciones, considerando sus principios y relaciones de diseño. Esto, a su vez, facilita la articulación de especificaciones prácticas de control, como los márgenes de robustez, la exactitud de las estimaciones y la sensibilidad al ruido. Adicionalmente, el marco de análisis se aplica a esquemas ADRC con observadores de uno o varios niveles. Como segunda contribución, la tesis explora el análisis, diseño e implementación de esquemas ADRC multi-observador. En primer lugar, se propone un Observador Proporcional Integral Generalizado en cascada (CGPIO) para al control de corriente de los puertos del ER. En segundo lugar, se introduce una conexión en cascada de observadores de estado extendido de orden completo y reducido (CRESO) para el control del voltaje del bus DC del ER. Estos estimadores compuestos demuestran ser soluciones efectivas para mitigar los efectos del ruido de medición (CRESO) y abordar problemas numéricos en la implementación (CGPIO), que son comunes en el ADRC con estimadores de un solo nivel. La tercera contribución de esta tesis se centra en la aplicación y evaluación de las estrategias ADRC propuestas en un ER monofásico. A lo largo del documento, la evaluación se realiza mediante una metodología exhaustiva que abarca diversos escenarios representativos de operación. Se llevan a cabo comparaciones con otros métodos previamente reportados y se analizan múltiples métricas de calidad. Además, se proporcionan diferentes niveles de detalle, que van desde la regulación de la corriente y el voltaje DC en los puertos hasta el intercambio de energía en el ER a nivel de sistema. En términos de gestión de energía, se adopta un enfoque cooperativo con el objetivo de mejorar la operación del grupo de MGs. Los resultados obtenidos ofrecen una base sólida que respalda la eficacia y aplicabilidad de los esquemas de control propuestos. (Texto tomado de la fuente).The interconnection of electrical microgrids (MGs) enhances the reliability and efficiency of power systems based on such local and autonomous networks. In this context, the energy router (ER) serves as a multi-port interface that controls and directs power flow among the MGs. Effective management of energy exchange in the ER requires robust and high-performance control for the power converters of the ER. In this regard, automatic regulation of current and power at each port, as well as the internal DC bus voltage, constitutes fundamental control needs. However, factors such as power quality issues in the MGs, model uncertainties, port coupling, and operational changes introduce disturbances that impact the ER's performance, posing challenges for controller design. In recent years, control approaches for the ER have been reported, primarily based on Proportional-Integral (PI) and Proportional-Resonant (PR) techniques. However, these solutions exhibit multiple restrictions in terms of robustness and performance. This issue arises due to the diversity of existing disturbances, coupled with technical limitations of the methods, including nonlinearities, design considerations, dependence on mathematical models, complex tuning, and other practical implementation aspects. Moreover, these problems lead to consequences ranging from reduced quality to delays in the widespread adoption and standardization of ER. As an alternative to address the aforementioned challenges, this thesis explores the application of the Active Disturbance Rejection Control (ADRC) approach for an ER used as an interface between MGs. Within this scope, various contributions are made to the field of ADRC, supported by theoretical foundations and experimental validations. First, a framework for analyzing the robustness and performance of ADRC strategies is proposed. This analysis, conducted in the frequency domain, provides a suitable approach to compare different disturbance estimation methods, considering their principles and design relationships. This, in turn, facilitates the articulation of practical control specifications, such as robustness margins, estimation accuracy, and noise sensitivity. Additionally, the analysis framework is applied to ADRC schemes with single or multiple-level observers. As a second contribution, the thesis explores the analysis, design, and implementation of multi-observer ADRC schemes. Firstly, a Cascade Generalized Proportional Integral Observer (CGPIO) is proposed for the current control of ER ports. Secondly, a cascaded connection of full-order and reduced-order Extended State Observers (CRESO) is introduced for the control of the ER's DC bus voltage. These composite estimators prove to be effective solutions for mitigating the effects of measurement noise (CRESO) and addressing numerical issues in implementation (CGPIO), which are common drawbacks in single observer-based ADRC. The third contribution of this dissertation focuses on the application and evaluation of the proposed ADRC strategies in a single-phase ER. Throughout this document, the evaluation is carried out using a comprehensive methodology that encompasses various representative operating scenarios. Comparisons are made with other previously reported methods, and multiple quality metrics are analyzed. Additionally, different levels of detail are provided, ranging from the regulation of current and DC voltage at the ports to energy exchange within the ER at the system level. In terms of energy management, a cooperative approach is adopted with the aim of enhancing the operation of the MG group. The obtained results offer a solid foundation supporting the effectiveness and applicability of the proposed control schemes.El ministerio de Ciencia, Tecnología e Innovación de Colombia (Minciencias) apoyó al autor de esta investigación a través de la beca de excelencia doctoral del bicentenario - Corte 1 (2020-2023).DoctoradoDoctor en IngenieríaAutomatización y controlxxiii, 222 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería EléctricaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaControl con rechazo activo de perturbaciones (ADRC)Enrutador de energíaInterconexión de microrredesObservador en cascadaObservador de estado extendido (ESO)Observador proporcional integral generalizado (GPIO)Análisis de robustez y desempeñoActive disturbance rejection control (ADRC)Energy routerMicrogrid interconnectionCascade observerExtended estate observer (ESO)Generalized proportional integral observer (GPIO)Robustness and performance analysisGPIORuido (física)Sistema de suministro eléctricoGeneral Purpose Input/Outputnoisetransmission of electricityControl con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricasActive disturbance rejection control of an energy router used in microgrid interconnectionTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBanco Interamericano de Desarrollo (BID), "Smart Grids Colombia Visión 2030 - Mapa de ruta para la implementación de redes inteligentes en Colombia: Parte I," techreport Cooperación técnica ATN-KK-14254-CO (CO-T1337), Bogotá D. C., Colombia, 2016.J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, "Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1254–1262, 2013.E. Bullich-Massagué, F. Díaz-González, M. Aragués-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, "Microgrid clustering architectures," Applied Energy, vol. 212, pp. 340–361, 2018.L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, "Review on Control of DC Microgrids and Multiple Microgrid Clusters," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 928–948, 2017.X. Zhou, L. Zhou, Y. Chen, J. M. Guerrero, A. Luo, W. Wu, and L. Yang, "A microgrid cluster structure and its autonomous coordination control strategy," International Journal of Electrical Power & Energy Systems, vol. 100, pp. 69–80, 2018.E. Hossain, E. Kabalci, R. Bayindir, and R. Perez, "Microgrid testbeds around the world: State of art," Energy Conversion and Management, vol. 86, pp. 132–153, 2014.S. K. Pandey, S. R. Mohanty, and N. Kishor, "A literature survey on load-frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, vol. 25, pp. 318–334, 2013.A. Ordoño, E. Unamuno, J. Barrena, and J. Paniagua, "Interlinking converters and their contribution to primary regulation: a review," International Journal of Electrical Power and Energy Systems, vol. 111, pp. 44–57, 2019.B. Liu, J. Chen, Y. Zhu, Y. Liu, and Y. Shi, "Distributed control strategy of a microgrid community with an energy router," IET Generation, Transmission and Distribution, vol. 12, no. 17, pp. 4009–4015, 2018.J. M. Rodriguez-Bernuz, E. Prieto-Araujo, F. Girbau-Llistuella, A. Sumper, R. Villafafila-Robles, and J. A. Vidal-Clos, "Experimental validation of a single phase Intelligent Power Router," Sustainable Energy, Grids and Networks, vol. 4, pp. 1–15, 2015.Y. Liu, Y. Fang, and J. Li, "Interconnecting Microgrids via the Energy Router with Smart Energy Management," Energies, vol. 10, no. 9, p. 1297, 2017.B. Long Liu, Y. Bing Zha, and T. Zhang, "Sliding mode control of solid state transformer using a three-level hysteresis function," Journal of Central South University, vol. 23, no. 8, pp. 2063–2074, 2016.G. Van den Broeck, J. Stuyts, and J. Driesen, "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, vol. 229, pp. 281–288, 2018.Q. Shafiee, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, "Hierarchical control for multiple DC-microgrids clusters," IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 922–933, 2014.M. L. Herrera, S. A. Subramanyam, and X. Zhang, "Robust Control and Optimal Operation of Multiple Microgrids with Configurable Interconnections," in 2019 IEEE Green Technologies Conference (GreenTech), pp. 1–4, IEEE, 2019.Y. Liu, J. Li, Y. Wu, and F. Zhou, "Coordinated Control of the Energy Router-Based Smart Home Energy Management System," Applied Sciences, vol. 7, no. 9, p. 943, 2017.I. Roasto, O. Husev, M. Najafzadeh, T. Jalakas, and J. Rodriguez, "Voltage Source Operation of the Energy-Router Based on Model Predictive Control," Energies, vol. 12, no. 10, p. 1892, 2019.Y. Han, X. Ning, P. Yang, and L. Xu, "Review of Power Sharing, Voltage Restoration and Stabilization Techniques in Hierarchical Controlled DC Microgrids," IEEE Access, vol. 7, pp. 149202–149223, 2019.H. Hua, Y. Qin, H. Xu, C. Hao, and J. Cao, "Robust Control Method for DC Microgrids and Energy Routers to Improve Voltage Stability in Energy Internet," Energies, vol. 12, no. 9, p. 1622, 2019.C. Wang, X. Li, L. Guo, and Y. Li, "A nonlinear-disturbance-observer-based DC-Bus voltage control for a hybrid AC/DC microgrid," IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 6162–6177, 2014.M. A. Hossain, H. R. Pota, M. J. Hossain, and F. Blaabjerg, "Evolution of microgrids with converter-interfaced generations: Challenges and opportunities," International Journal of Electrical Power & Energy Systems, vol. 109, pp. 160–186, 2019.K. Nishimoto, Y. Kado, N.-m. Keiji Wada, and S. Member, "Implementation of Decoupling Power Flow Control System in Triple Active Bridge Converter Rated at 400 V, 10 kW, and 20 kHz," IEEJ Journal of Industry Applications, vol. 7, no. 5, pp. 410–415, 2018.B. Tharani and C. Nagarajan, "An AC–DC/DC–DC hybrid multi-port embedded energy router based steady-state power flow optimizing in power system using substantial transformative energy management strategy," Journal of Ambient Intelligence and Humanized Computing 2020 12:5, vol. 12, no. 5, pp. 5687–5707, 2020.D. M. Phan and H. H. Lee, "Interlinking Converter to Improve Power Quality in Hybrid AC-DC Microgrids with Nonlinear Loads," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1959–1968, 2019.F. Xiao, C. Tu, Q. Ge, K. Zhou, Q. Guo, and Z. Lan, "Ripple Voltage Suppression and Control Strategy for CHB-Based Solid-State Transformer," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 1104–1118, 2021.B. Liu, Y. Peng, J. Xu, C. Mao, D. Wang, and Q. Duan, "Design and Implementation of Multiport Energy Routers Toward Future Energy Internet," IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 1945–1957, 2021.X. Weng, Z. Zhao, K. Chen, L. Yuan, and Y. Jiang, "A Nonlinear Control Method for Bumpless Mode Transition in Noninverting Buck-Boost Converter," IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 2166–2178, 2021.F. Nejabatkhah and Y. W. Li, "Overview of Power Management Strategies of Hybrid AC/DC Microgrid," IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7072–7089, 2015.N. Vilhena, C. Roncero-Clemente, V. Delgado-Gomes, V. F. Pires, and J. F. Martins, "Energy router for SC: GC, SA and transition mode controls," IET Renewable Power Generation, vol. 14, no. 5, pp. 914–924, 2020.X. Zheng, T. Cui, Y. Jiang, and H. Cao, "Research on smooth switching and islanding detection technology for ER system," IET Renewable Power Generation, vol. 14, no. 3, pp. 466–474, 2020.G. Yao, T. Zhang, L. Zhou, Q. Li, and N. Jin, "An Alterable Structure Power Router with General AC and DC Port for Microgrid Applications," Energies, vol. 12, no. 9, p. 1815, 2019.Y. Chen, P. Wang, Y. Elasser, and M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13210–13224, 2020.M. Hosseinzadeh and F. R. Salmasi, "Fault-Tolerant Supervisory Controller for a Hybrid AC/DC Micro-Grid," IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2809–2823, 2018.C. Tu, F. Xiao, Z. Lan, Q. Guo, and Z. Shuai, "Analysis and Control of a Novel Modular-Based Energy Router for DC Microgrid Cluster," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 331–342, 2019.P. H. Nguyen, W. L. Kling, and P. F. Ribeiro, "Smart power router: A flexible agent-based converter interface in active distribution networks," IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 487–495, 2011.V. Ramirez, R. Ortega, O. Bethoux, and A. Sánchez-Squella, "A dynamic router for microgrid applications: Theory and experimental results," Control Engineering Practice, vol. 27, no. 1, pp. 23–31, 2014.X. Gai, Y. Wang, R. Chen, and L. Zou, "Research on Hybrid Microgrid Based on Simultaneous AC and DC Distribution Network and Its Power Router," Energies, vol. 12, no. 6, p. 1077, 2019.J. Ahmad, M. Tahir, and S. K. Mazumder, "Improved dynamic performance and hierarchical energy management of microgrids with energy routing," IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3218–3229, 2019.H. Hua, Y. Qin, J. Geng, C. Hao, and J. Cao, "Robust Mixed H2/H∞ Controller Design for Energy Routers in Energy Internet," Energies, vol. 12, no. 3, p. 340, 2019.H. Bueno-Contreras, G. A. Ramos, and R. Costa-Castelló, "Robust H∞ Design for Resonant Control in a CVCF Inverter Application over Load Uncertainties," Electronics, vol. 9, no. 1, p. 66, 2020.G. A. Ramos, R. I. Ruget, and R. Costa-Castello, "Robust Repetitive Control of Power Inverters for Standalone Operation in DG Systems," IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 237–247, 2020.G. A. Ramos Fuentes, J. A. Cifuentes Quintero, and I. D. Melo Lagos, "High performance control of a three-phase PWM rectifier using odd harmonic high order repetitive control," Dyna, vol. 83, no. 198, pp. 27–36, 2016.M. A. Hannan, M. Faisal, P. J. Ker, L. H. Mun, K. Parvin, T. M. I. Mahlia, and F. Blaabjerg, "A review of internet of energy based building energy management systems: Issues and recommendations," IEEE Access, vol. 6, pp. 38997–39014, 2018.G. Ramos and R. Costa-Castelló, "Comparison of Different Repetitive Control Architectures: Synthesis and Comparison. Application to VSI Converters," Electronics, vol. 7, no. 12, p. 446, 2018.G. A. Ramos Fuentes, J. A. Cortés-Romero, Z. X. Zou, R. Costa-Castelló, and K. Zhou, "Power active filter control based on a resonant disturbance observer," IET Power Electronics, vol. 8, no. 4, pp. 554–564, 2015.M. R. Stanković, M. R. Rapaić, S. M. Manojlović, S. T. Mitrović, S. M. Simić, and M. Naumović, "Optimised active disturbance rejection motion control with resonant extended state observer," International Journal of Control, vol. 92, no. 8, pp. 1815–1826, 2019.H. Coral-Enriquez, S. Pulido-Guerrero, and J. Cortés-Romero, "Robust Disturbance Rejection Based Control with Extended-state Resonant Observer for Sway Reduction in Uncertain Tower-cranes," International Journal of Automation and Computing, vol. 16, no. 6, pp. 812–827, 2019.S. Chen, W. Bai, Y. Hu, Y. Huang, and Z. Gao, "On the conceptualization of total disturbance and its profound implications," Science China Information Sciences, vol. 63, no. 2, pp. 1–3, 2020.Y. Huang and W. Xue, "Active disturbance rejection control: Methodology and theoretical analysis," ISA Transactions, vol. 53, no. 4, pp. 963–976, 2014.S. Li, J. Yang, W. H. Chen, and X. Chen, "Generalized extended state observer based control for systems with mismatched uncertainties," IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4792–4802, 2012.Z. Gao, "Scaling and Bandwidth-Parameterization based Controller Tuning," in 2003 American Control Conference, 2003., pp. 4989–4996, 2003.H. Sira-Ramírez and E. W. Zurita-Bustamante, "On the equivalence between ADRC and Flat Filter based controllers: A frequency domain approach," Control Engineering Practice, vol. 107, p. 104656, 2021.W. Xue and Y. Huang, "Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems," ISA Transactions, vol. 58, no. 2014, pp. 133–154, 2015.J. Cortés-Romero, H. Rojas-Cubides, H. Coral-Enriquez, H. Sira-Ramírez, and A. Luviano-Juárez, "Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control," Mathematical Problems in Engineering, vol. 2013, pp. 1–12, 2013.R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Springer, Boston, MA, 2 ed., 2001.K. Lakomy and R. Madonski, "Cascade extended state observer for active disturbance rejection control applications under measurement noise," ISA Transactions, vol. 109, pp. 1–10, 2021.K. Lakomy, R. Madonski, B. Dai, J. Yang, P. Kicki, M. Ansari, and S. Li, "Active Disturbance Rejection Control Design with Suppression of Sensor Noise Effects in Application to DC-DC Buck Power Converter," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 816–824, 2022.H. Sun, R. Madonski, S. Li, Y. Zhang, and W. Xue, "Composite Control Design for Systems with Uncertainties and Noise Using Combined Extended State Observer and Kalman Filter," IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 4119–4128, 2022.J. Cortés-Romero, G. A. Ramos, and H. Coral-Enriquez, "Generalized proportional integral control for periodic signals under active disturbance rejection approach.," ISA transactions, vol. 53, no. 6, pp. 1901–1909, 2014.H. Wang, T. Pan, H. Sira-Ramirez, and Z. Gao, "Flatness-Based Discrete Active Disturbance Rejection Control for the Flexible Transmission System," Journal of Control, Automation and Electrical Systems, vol. 32, pp. 1746–1757, 2021.H. Wang, T. Pan, H. Sira-Ramirez, and Z. Gao, "Active disturbance rejection control for discrete systems with zero dynamics," International Journal of Robust and Nonlinear Control, vol. 31, no. 11, pp. 5298–5311, 2021.B. Du, S. Wu, S. Han, and S. Cui, "Interturn Fault Diagnosis Strategy for Interior Permanent-Magnet Synchronous Motor of Electric Vehicles Based on Digital Signal Processor," IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1694–1706, 2016.D. Huang, X. Hua, B. Mi, Y. Liu, and Z. Zhang, "Incipient fault diagnosis on active disturbance rejection control," Science China Information Sciences, vol. 65, no. 9, pp. 1–10, 2022.W. H. Chen, J. Yang, L. Guo, and S. Li, "Disturbance-Observer-Based Control and Related Methods - An Overview," IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1083–1095, 2016.Z. Gao, "Active disturbance rejection control: From an enduring idea to an emerging technology," in 2015 10th International Workshop on Robot Motion and Control (RoMoCo), pp. 269–282, 2015.E. Sariyildiz, R. Oboe, and K. Ohnishi, "Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview," IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2042–2053, 2020.H. Jin, J. Song, W. Lan, and Z. Gao, "On the characteristics of ADRC: a PID interpretation," Science China Information Sciences, vol. 63, no. 10, pp. 1–3, 2020.H. Rojas-Cubides, J. Cortés-Romero, H. Coral-Enriquez, and H. Rojas-Cubides, "Sliding mode control assisted by GPI observers for tracking tasks of a nonlinear multivariable Twin-Rotor aerodynamical system," Control Engineering Practice, vol. 88, pp. 1–15, 2019.Q. Zheng and Z. Gao, "Active disturbance rejection control: between the formulation in time and the understanding in frequency," Control Theory and Technology, vol. 14, no. 3, pp. 250–259, 2016.H. Sira-Ramírez, "From flatness, GPI observers, GPI control and flat filters to observer-based ADRC," Control Theory and Technology, vol. 16, pp. 249–260, 2018.S. Chen, W. Xue, and Y. Huang, “On active disturbance rejection control for nonlinear systems with multiple uncertainties and nonlinear measurement,” International Journal of Robust and Nonlinear Control, vol. 30, no. 8, pp. 3411–3435, 2020.D. Wu and K. Chen, “Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3906–3914, 2013.X. Chang, Y. Li, W. Zhang, N. Wang, and W. Xue, “Active Disturbance Rejection Control for a Flywheel Energy Storage System,” IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 991–1001, 2015.W. Xue, R. Madonski, K. Lakomy, Z. Gao, and Y. Huang, “Add-On Module of Active Disturbance Rejection for Set-Point Tracking of Motion Control Systems,” IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 4028–4040, 2017.H. Coral-Enriquez, J. Cortés-Romero, and G. A. Ramos, “Robust Active Disturbance Rejection Control Approach to Maximize Energy Capture in Variable-Speed Wind Turbines,” Mathematical Problems in Engineering, vol. 2013, pp. 1–12, 2013.M. Srikanth and N. Yadaiah, “An AHP based optimized tuning of Modified Active Disturbance Rejection Control: An application to power system load frequency control problem,” ISA Transactions, vol. 81, pp. 286–305, 2018.H. Sira-Ramírez, C. López-Uribe, and M. Velasco-Villa, “Linear observer-based active disturbance rejection control of the omnidirectional mobile robot,” Asian Journal of Control, vol. 15, no. 1, pp. 51–63, 2013.B. Sun and Z. Gao, “A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1271–1277, 2005.S. Zhuo, A. Gaillard, L. Xu, D. Paire, and F. Gao, “Extended State Observer-Based Control of DC-DC Converters for Fuel Cell Application,” IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9925–9934, 2020.Q. Zheng and Z. Gao, “Active disturbance rejection control: some recent experimental and industrial case studies,” Control Theory and Technology, vol. 16, no. 4, pp. 301–313, 2018.P. Grelewicz, P. Nowak, J. Czeczot, and J. Musial, “Increment Count Method and Its PLC-Based Implementation for Autotuning of Reduced-Order ADRC with Smith Predictor,” IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 12554–12564, 2021.S. Li, J. Yang, W. H. Chen, and X. Chen, Disturbance Observer-Based Control Methods and Applications. CRC Press. Taylor & Francis Group, 2014.E. Sariyildiz and K. Ohnishi, “A guide to design disturbance observer,” Journal of Dynamic Systems, Measurement and Control, vol. 136, no. 2, p. 021011, 2014.H. Sira-Ramírez, E. W. Zurita-Bustamante, and C. Huang, “Equivalence Among Flat Filters, Dirty Derivative-Based PID Controllers, ADRC, and Integral Reconstructor-Based Sliding Mode Control,” IEEE Transactions on Control Systems Technology, vol. 28, no. 5, pp. 1696–1710, 2020.R. Madoński and P. Herman, “Survey on methods of increasing the efficiency of extended state disturbance observers,” ISA Transactions, vol. 56, pp. 18–27, 2015.B. Ahi and M. Haeri, “Linear Active Disturbance Rejection Control from the Practical Aspects,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 6, pp. 2909–2919, 2018.H. K. Khalil, “Cascade high-gain observers in output feedback control,” Automatica, vol. 80, pp. 110–118, 2017.World Economic Forum (WEF), “Fostering Effective Energy Transition. 2021 Edition Insight Report,” techreport, Apr. 2021.V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. Shukla, A. Pirani, W. Moufouma-Okia, C. Pèan, R. Pidcock, S. Connors, J. Matthews, Y. Chen, X. Zhou, M. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, Global Warming of 1.5°C. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2018.C. Defeuilley, “Energy transition and the future(s) of the electricity sector,” Utilities Policy, vol. 57, pp. 97–105, 2019.Departamento Nacional de Planeación, Plan Nacional de Desarrollo 2018-2022: Pacto por Colombia, pacto por la equidad. Bogotá, D. C., Colombia: Departamento Nacional de Planeación, 2019.Unidad de Planeación Minero Energética (UPME), Plan Energético Nacional 2020-2050. UPME, 2020.I. Duque Márquez, D. Mesa Puyo, M. Lotero Robledo, and S. Sandoval Valderrama, Transición energética: un legado para el presente y el futuro de Colombia. Bogotá D. C., Colombia: Ministerio de Minas y Energía, 2021.Alcaldía Mayor de Bogotá D.C. and Colciencias, “Plan y Acuerdo Estratégico Distrital en Ciencia, Tecnología e Innovación,” Oct. 2016.Cámara de Comercio de Bogotá, Plan Regional de Competitividad Bogotá y Cundinamarca 2010 – 2019. Bogotá, D. C., Colombia: Cámara de Comercio de Bogotá, 2010.Concejo de Bogotá D.C., “Acuerdo No. 761 de 2020. Por medio del cual se adopta el plan de desarrollo económico, social, ambiental y de obras públicas del distrito capital 2020-2024: un nuevo contrato social y ambiental para la Bogotá del siglo XXI,” 2020.D. Zuluaga, R. Castillo, and D. Mayorquín, Prospectiva Tecnológica de la Industria Electro Electrónica de Bogotá y Cundinamarca. Bogotá D. C., Colombia: CIDEI; ASESEL, 2015.World Economic Forum (WEF), “The Future of Electricity. New Technologies Transforming the Grid Edge,” techreport, Mar. 2017.M. L. Di Silvestre, S. Favuzza, E. Riva Sanseverino, and G. Zizzo, “How Decarbonization, Digitalization and Decentralization are changing key power infrastructures,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 483–498, 2018.S. S. Reka and T. Dragicevic, “Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 90–108, 2018.A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 402–411, 2018.S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925, 2015.N. Shaukat, S. Ali, C. Mehmood, B. Khan, M. Jawad, U. Farid, Z. Ullah, S. Anwar, and M. Majid, “A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1453–1475, 2018.M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked Microgrids: State-of-the-Art and Future Perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1238–1250, 2019.S. Thakar, V. A.S., and S. Doolla, “System reconfiguration in microgrids,” Sustainable Energy, Grids and Networks, vol. 17, p. 100191, 2019.D. Baimel, J. Belikov, J. M. Guerrero, and Y. Levron, “Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame: A Survey,” IEEE Access, vol. 5, pp. 21323–21335, 2017.C. A. Macana, E. Mojica-Nava, H. R. Pota, J. M. Guerrero, and J. C. Vasquez, “A novel compact dq-reference frame model for inverter-based microgrids,” Electronics, vol. 8, no. 11, pp. 1–15, 2019.N. Pogaku, M. Prodanović, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, 2007.J. Schiffer, D. Zonetti, R. Ortega, A. M. Stanković, T. Sezi, and J. Raisch, “A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources,” Automatica, vol. 74, pp. 135–150, 2016.M. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, “Stability and Control Aspects of Microgrid Architectures-A Comprehensive Review,” IEEE Access, vol. 8, pp. 144730–144766, 2020.T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids - Part I: A Review of Control Strategies and Stabilization Techniques,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4876–4891, 2016.M. Gayatri, A. Parimi, and A. Pavan Kumar, “A review of reactive power compensation techniques in microgrids,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1030–1036, 2018.B. Mahamedi and J. E. Fletcher, “Trends in the protection of inverter-based microgrids,” IET Generation, Transmission and Distribution, vol. 13, no. 20, pp. 4511–4522, 2019.M. S. Mahmoud, N. M. Alyazidi, and M. I. Abouheaf, “Adaptive intelligent techniques for microgrid control systems: A survey,” International Journal of Electrical Power and Energy Systems, vol. 90, pp. 292–305, 2017.D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.M. Roslan, M. Hannan, P. J. Ker, and M. Uddin, “Microgrid control methods toward achieving sustainable energy management,” Applied Energy, vol. 240, pp. 583–607, 2019.S. Sen and V. Kumar, “Microgrid control: A comprehensive survey,” Annual Reviews in Control, vol. 45, pp. 118–151, 2018.R. Zamora and A. K. Srivastava, “Multi-Layer Architecture for Voltage and Frequency Control in Networked Microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2076–2085, 2018.S. Sen and V. Kumar, “Microgrid modelling: A comprehensive survey,” Annual Reviews in Control, vol. 46, pp. 216–250, 2018.J. J. Justo, F. Mwasilu, J. Lee, and J.-W. Jung, “AC-microgrids versus DC-microgrids with distributed energy resources: A review,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 387–405, 2013.K. Rajesh, S. Dash, R. Rajagopal, and R. Sridhar, “A review on control of ac microgrid,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 814–819, 2017.T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids - Part II: A Review of Power Architectures, Applications, and Standardization Issues,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3528–3549, 2016.E. Planas, J. Andreu, J. I. Gárate, I. Martínez De Alegría, and E. Ibarra, “AC and DC technology in microgrids: A review,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 726–749, 2015.N. Eghtedarpour and E. Farjah, “Power control and management in a Hybrid AC/DC microgrid,” IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1494–1505, 2014.P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Hybrid AC-DC microgrids with energy storages and progressive energy flow tuning,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1533–1543, 2013.S. Mirsaeidi, X. Dong, and D. M. Said, “Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 97–103, 2018.S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and active distribution networks. Renewable energy series 6, The Institution of Engineering and Technology, 2009.IEEE Standards Association, “IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003) - IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces,” 2018.G. Liu, M. R. Starke, B. Ollis, and Y. Xue, “Networked microgrids scoping study,” techreport ORNL/TM-2016/294, Oak Ridge National Labroratory, 2016.J. He, X. Wu, X. Wu, Y. Xu, and J. M. Guerrero, “Small-Signal Stability Analysis and Optimal Parameters Design of Microgrid Clusters,” IEEE Access, vol. 7, pp. 36896–36909, 2019.Y. Li, P. Zhang, and P. B. Luh, “Formal Analysis of Networked Microgrids Dynamics,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3418–3427, 2018.M. S. Golsorkhi, D. J. Hill, and H. R. Karshenas, “Distributed voltage control and power management of networked microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1892–1902, 2018.A. Hussain, V. H. Bui, and H. M. Kim, “Resilience-Oriented Optimal Operation of Networked Hybrid Microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 204–215, 2019.W. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng, “Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2817–2826, 2016.A. Parisio, C. Wiezorek, T. Kyntääja, J. Elo, K. Strunz, and K. H. Johansson, “Cooperative MPC-Based Energy Management for Networked Microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3066–3074, 2017.A. M. Jadhav, N. R. Patne, and J. M. Guerrero, “A Novel Approach to Neighborhood Fair Energy Trading in a Distribution Network of Multiple Microgrid Clusters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1520–1531, 2019.Y. Zhou, J. Wu, C. Long, and W. Ming, “State-of-the-Art Analysis and Perspectives for Peer-to-Peer Energy Trading,” Engineering, vol. 6, no. 7, pp. 739–753, 2020.Y. Li, P. Dong, M. Liu, and G. Yang, “A distributed coordination control based on finite-time consensus algorithm for a cluster of dc microgrids,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2205–2215, 2019.M. Nasir, Z. Jin, H. A. Khan, N. A. Zaffar, J. C. Vasquez, and J. M. Guerrero, “A Decentralized Control Architecture Applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions,” IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1773–1785, 2019.P. Wu, W. Huang, N. Tai, and S. Liang, “A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection,” Applied Energy, vol. 210, pp. 1002–1016, 2018.Y. Liu, X. Chen, Y. Wu, K. Yang, J. Zhu, and B. Li, “Enabling the Smart and Flexible Management of Energy Prosumers via the Energy Router with Parallel Operation Mode,” IEEE Access, vol. 8, pp. 35038–35047, 2020.B. Liu, W. Wu, C. Zhou, C. Mao, D. Wang, Q. Duan, and G. Sha, “An AC-DC Hybrid Multi-Port Energy Router with Coordinated Control and Energy Management Strategies,” IEEE Access, vol. 7, pp. 109069–109082, 2019.T. Wu, C. Zhao, and Y. J. Zhang, “Distributed AC-DC Optimal Power Dispatch of VSC-Based Energy Routers in Smart Microgrids,” IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 4457–4470, 2021.Y. Li, Y. Peng, and X. Wang, “Seamless switching power sharing control method in a hybrid DC-AC microgrid by the isolated two-stage converter based on SST,” IET Power Electronics, vol. 14, no. 7, pp. 1384–1396, 2021.N. L. Díaz, F. Guinjoan, G. Velasco-Quesada, A. C. Luna, and J. M. Guerrero, “Fuzzy-based cooperative interaction between stand-alone microgrids interconnected through VSC-based multiterminal converter,” International Journal of Electrical Power and Energy Systems, vol. 152, p. 109226, 2023.Y. Xiong and Y. Ye, “Physical Interpretations of Grid Voltage Full Feedforward for Grid-Tied Inverter,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 267–271, 2019.R. P. Kandula, A. Iyer, R. Moghe, J. E. Hernandez, and D. Divan, “Power router for meshed systems based on a fractionally rated back-to-back converter,” IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5172–5180, 2014.M. McDonough, “Integration of Inductively Coupled Power Transfer and Hybrid Energy Storage System: A Multiport Power Electronics Interface for Battery-Powered Electric Vehicles,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6423–6433, 2015.Z. Lan, J. Wang, J. Zeng, D. He, F. Xiao, and F. Jiang, “Constant Frequency Control Strategy of Microgrids by Coordinating Energy Router and Energy Storage System,” Mathematical Problems in Engineering, vol. 2020, pp. 1–8, 2020.G. Zhao, C. Jiang, and J. Liu, “Research on the System and Control Strategy of an AC-DC Hybrid Single-Phase Electric Energy Router,” Electronics, vol. 8, no. 9, p. 970, 2019.Y. Liu, Y. Li, H. Liang, J. He, and H. Cui, “Energy Routing Control Strategy for Integrated Microgrids Including Photovoltaic, Battery-Energy Storage and Electric Vehicles,” Energies, vol. 12, no. 2, p. 302, 2019.K. Huang, Y. Li, X. Zhang, L. Liu, Y. Zhu, and X. Meng, “Research on power control strategy of household-level electric power router based on hybrid energy storage droop control,” Protection and Control of Modern Power Systems, vol. 6, no. 1, pp. 1–13, 2021.H. Guo, F. Wang, L. Zhang, and J. Luo, “A Hierarchical Optimization Strategy of the Energy Router-Based Energy Internet,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4177–4185, 2019.S. Zhang, W. Pei, H. Xiao, Y. Yang, H. Ye, and L. Kong, “Enhancing the survival time of multiple islanding microgrids through composable modular energy router after natural disasters,” Applied Energy, vol. 270, p. 115138, 2020.W. Chen and T. Li, “Distributed Economic Dispatch for Energy Internet Based on Multiagent Consensus Control,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 137–152, 2021.R. Bickel and M. Tomizuka, “Passivity-based versus disturbance observer based robot control: Equivalence and stability,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 121, no. 1, pp. 41–47, 1999.E. Schrijver and J. Van Dijk, “Disturbance observers for rigid mechanical systems: Equivalence, stability, and design,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 124, no. 4, pp. 539–548, 2002.B. K. Kim, H. T. Choi, W. K. Chung, and I. H. Suh, “Analysis and design of robust motion controllers in the unified framework,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 124, no. 2, pp. 313–321, 2002.R. Garrido and J. L. Luna, “On the equivalence between PD+DOB and PID controllers applied to servo drives,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 95–100, 2018.F. M. M. Rahman, V. Pirsto, J. Kukkola, M. Hinkkanen, D. Perez-Estevez, and J. Doval-Gandoy, “Equivalence of the Integrator-Based and Disturbance-Observer-Based State-Space Current Controllers for Grid Converters,” IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 4966–4976, 2021.S. Jung and J. W. Lee, “Similarity Analysis between a Nonmodel-Based Disturbance Observer and a Time-Delayed Controller for Robot Manipulators in Cartesian Space,” IEEE Access, vol. 9, pp. 122299–122307, 2021.J. Su, L. Wang, and J. N. Yun, “A design of disturbance observer in standard h∞ control framework,” International Journal of Robust and Nonlinear Control, vol. 25, no. 16, pp. 2894–2910, 2015.H. T. Seo, S. Kim, and K. S. Kim, “An H∞ Design of Disturbance Observer for a Class of Linear Time-invariant Single-input/Single-output Systems,” International Journal of Control, Automation and Systems, vol. 18, no. 7, pp. 1662–1670, 2020.S. Ahmad and A. Ali, “Unified Disturbance-Estimation-Based Control and Equivalence with IMC and PID: Case Study on a DC-DC Boost Converter,” IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 5122–5132, 2021.P. Lin, X.-M. Sun, and Z. Fei, “A generalized interpretation of three types of disturbance-based controllers for perturbed integral systems in frequency domain,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1328–1332, 2021.R. Zhou, C. Fu, and W. Tan, “Implementation of linear controllers via active disturbance rejection control structure,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6217–6226, 2021.G. Tian and Z. Gao, “Frequency response analysis of active disturbance rejection based control system,” in 2007 IEEE International Conference on Control Applications, pp. 1595–1599, IEEE, 2007.C. Huang and Q. Zheng, “Frequency response analysis of linear active disturbance rejection control,” Sensors and Transducers, vol. 157, no. 10, pp. 346–354, 2013.W. Xue and Y. Huang, “On frequency-domain analysis of ADRC for uncertain system,” in 2013 American Control Conference, pp. 6637–6642, 2013.S. Zhong and Y. Huang, “Comparison of the phase margins of different ADRC designs,” in 2019 Chinese Control Conference (CCC), pp. 1280–1285, IEEE, 2019.H. Jin, L. Liu, W. Lan, and J. Zeng, “On stability and robustness of linear active disturbance rejection control: A small gain theorem approach,” in 2017 36th Chinese Control Conference (CCC), pp. 3242–3247, IEEE, 2017.J. Li, X. Qi, Y. Xia, F. Pu, and K. Chang, “Frequency domain stability analysis of nonlinear active disturbance rejection control system,” ISA Transactions, vol. 56, pp. 188–195, 2015.J. Li, Y. Xia, X. Qi, and P. Zhao, “Robust absolute stability analysis for interval nonlinear active disturbance rejection based control system,” ISA Transactions, vol. 69, pp. 122–130, 2017.X. Qi, J. Li, Y. Xia, and Z. Gao, “On the Robust Stability of Active Disturbance Rejection Control for SISO Systems,” Circuits, Systems, and Signal Processing, vol. 36, pp. 65–81, 2017.S. Skogestad and I. Postlethwaite, Multivariable Feedback control. Analysis and design. Wiley, 2nd ed., 2005.P. Seiler, A. Packard, and P. Gahinet, “An introduction to disk margins [lecture notes],” IEEE Control Systems Magazine, vol. 40, no. 5, pp. 78–95, 2020.D. Graham and R. C. Lathrop, “The synthesis of .optimum”transient response: Criteria and standard forms,” Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, vol. 72, no. 5, pp. 273–288, 1953.A. H. Marshax, D. E. Johnson, and J. R. Johnson, “A Bessel Rational Filter,” IEEE Transactions on Circuits and Systems, vol. 21, no. 6, pp. 797–799, 1974.H. Yang, Y. Zhang, J. Liang, J. Liu, N. Zhang, and P. D. Walker, “Robust Deadbeat Predictive Power Control with a Discrete-Time Disturbance Observer for PWM Rectifiers under Unbalanced Grid Conditions,” IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 287–300, 2018.S. Ahmad and A. Ali, “On Active Disturbance Rejection Control in Presence of Measurement Noise,” IEEE Transactions on Industrial Electronics, vol. 69, no. 11, pp. 11600 – 11610, 2022.M. Elkayam, S. Kolesnik, and A. Kuperman, “Guidelines to Classical Frequency-Domain Disturbance Observer Redesign for Enhanced Rejection of Periodic Uncertainties and Disturbances,” IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3986–3995, 2019.R. Madonski, M. Stankovic, A. Ferdjali, S. Shao, and Z. Gao, “General ADRC Design for Systems with Periodic Disturbances of Unknown and Varying Frequencies,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 143, no. 1, p. 011006, 2021.L. Li, W. W. Huang, X. Wang, Y. L. Chen, and L. M. Zhu, “Periodic-Disturbance Observer Using Spectrum-Selection Filtering Scheme for Cross-Coupling Suppression in Atomic Force Microscopy,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 3, pp. 2037–2048, 2023.K. Nie, W. Xue, C. Zhang, and Y. Mao, “Disturbance observer-based repetitive control with application to optoelectronic precision positioning system,” Journal of the Franklin Institute, vol. 358, no. 16, pp. 8443–8469, 2021.Q. Meng and Z. Hou, “Active Disturbance Rejection Based Repetitive Learning Control With Applications in Power Inverters,” IEEE Transactions on Control Systems Technology, vol. 29, no. 5, pp. 2038–2048, 2021.L. Zhou, L. Cheng, J. She, and Z. Zhang, “Generalized extended state observer-based repetitive control for systems with mismatched disturbances,” International Journal of Robust and Nonlinear Control, vol. 29, no. 11, pp. 3777–3792, 2019.M. Tian, B. Wang, Y. Yu, Q. Dong, and D. Xu, “Discrete-Time Repetitive Control-Based ADRC for Current Loop Disturbances Suppression of PMSM Drives,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3138–3149, 2022.M. R. Stanković, R. Madonski, S. Shao, and D. Mikluc, “On dealing with harmonic uncertainties in the class of active disturbance rejection controllers,” International Journal of Control, vol. 94, no. 10, pp. 2795–2810, 2021.H. D. Rojas and J. Cortés-Romero, “On the equivalence between Generalized Proportional Integral Observer and Disturbance Observer,” ISA Transactions, vol. 133, pp. 397–411, 2023.B. Guo, S. Bacha, M. Alamir, and J. Pouget, “A phase-locked loop using ESO-based loop filter for grid-connected converter: performance analysis,” Control Theory and Technology, vol. 19, pp. 49–63, 2021.Z. Li, T. Zheng, Y. Wang, and C. Yang, “A Hierarchical Coordinative Control Strategy for Solid State Transformer Based DC Microgrids,” Applied Sciences, vol. 10, no. 19, p. 6853, 2020.B. Guo, S. Bacha, M. Alamir, A. Hably, and C. Boudinet, “Generalized Integrator-Extended State Observer with Applications to Grid-Connected Converters in the Presence of Disturbances,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2, pp. 744–755, 2021.P. Lin, Y. Shi, and X. M. Sun, “A Classes of Nonlinear Active Disturbance Rejection Loop Filters for Phase-Locked Loop,” IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1920–1928, 2022.S. Chen and Z. Chen, “On Active Disturbance Rejection Control for a Class of Uncertain Systems with Measurement Uncertainty,” IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1475–1485, 2021.R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proceedings - Electric Power Applications, vol. 153, no. 5, pp. 750–762, 2006.M. Castilla, J. Miret, J. Matas, L. G. D. Vicuña, and J. M. Guerrero, “Resonant Harmonic Compensator for Photovoltaic Inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2724–2733, 2008.J. Han, “From PID to Active Disturbance Rejection Control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009.J. H. Ahrens and H. K. Khalil, “High-gain observers in the presence of measurement noise: A switched-gain approach,” Automatica, vol. 45, no. 4, pp. 936–943, 2009.A. A. Prasov and H. K. Khalil, “A nonlinear high-gain observer for systems with measurement noise in a feedback control framework,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 569–580, 2013.S. Battilotti, “Robust observer design under measurement noise with gain adaptation and saturated estimates,” Automatica, vol. 81, pp. 75–86, 2017.H. K. Khalil and S. Priess, “Analysis of the Use of Low-Pass Filters with High-Gain Observers,” IFAC-PapersOnLine, vol. 49, no. 18, pp. 488–492, 2016.Y. Wu, A. Isidori, and L. Marconi, “Achieving Almost Feedback-Linearization via Low-Power Extended Observer,” IEEE Control Systems Letters, vol. 4, no. 4, pp. 1030–1035, 2020.Y. Du, W. Cao, and J. She, “Analysis and Design of Active Disturbance Rejection Control With an Improved Extended State Observer for Systems With Measurement Noise,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 855–865, 2023.Y. Liu, G. Liu, S. Zheng, and H. Li, “A modified active disturbance rejection control strategy based on cascade structure with enhanced robustness,” ISA Transactions, vol. 129, pp. 525–534, 2022.S. Chen, Y. Huang, and Z.-l. Zhao, “The necessary and sufficient condition for the uncertain control gain in active disturbance rejection control,” arXiv, no.2006.11731, pp. 1–8, 2020.J. Yang, H. Cui, S. Li, and A. Zolotas, “Optimized Active Disturbance Rejection Control for DC-DC Buck Converters With Uncertainties Using a Reduced-Order GPI Observer,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 832–841, 2018.G. A. Ramos and R. Costa-Castelló, “Power factor correction and harmonic compensation using second-order odd-harmonic repetitive control,” IET Control Theory and Applications, vol. 6, no. 11, pp. 1633–1644, 2012.R. Costa-Castelló, R. Griñó, R. Cardoner Parpal, and E. Fossas, “High-performance control of a single-phase shunt active filter,” IEEE Transactions on Control Systems Technology, vol. 17, no. 6, pp. 1318–1329, 2009.M. Chen and G. A. Rincón-Mora, “Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504–511, 2006.T. Kim and W. Qiao, “A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects,” IEEE Transactions on Energy Conversion, vol. 26, no. 4, pp. 1172–1180, 2011.D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Autonomous active power control for islanded AC microgrids with photovoltaic generation and energy storage system,” IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 882–892, 2014.R. M. Santos Filho, P. F. Seixas, P. C. Cortizo, L. A. Torres, and A. F. Souza, “Comparison of three single-phase PLL algorithms for UPS applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2923–2932, 2008.S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Dynamics assessment of advanced single-phase PLL structures,” IEEE Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2167–2177, 2013.J. Xu, H. Qian, Y. Hu, S. Bian, and S. Xie, “Overview of SOGI-Based Single-Phase Phase-Locked Loops for Grid Synchronization under Complex Grid Conditions,” IEEE Access, vol. 9, pp. 39275–39291, 2021.H. Rojas-Cubides, J. Cortés-Romero, and J. Arcos-Legarda, “Data-driven disturbance observer-based control: an active disturbance rejection approach,” Control Theory and Technology, vol. 19, pp. 80–93, 2021.H. D. Rojas, J. Cortés-Romero, and H. E. Rojas, “Active disturbance rejection control assisted by a cascade connection of repetitive and data-driven observers,” in 2023 IEEE 6th Colombian Conference on Automatic Control (CCAC), pp. 1–6, IEEE, 2023.H. D. Rojas, H. E. Rojas, and J. Cortés-Romero, “Fault diagnosis based on algebraic identification assisted by extended state observers,” Nonlinear Dynamics, vol. 107, no. 1, pp. 871–888, 2022.F. O. Resende, N. J. Gil, and J. A. Lopes, “Service restoration on distribution systems using Multi-MicroGrids,” European Transactions on Electrical Power, vol. 21, no. 2, pp. 1327–1342, 2011.A. G. Madureira, J. C. Pereira, N. J. Gil, J. A. Lopes, G. N. Korres, and N. D. Hatziargyriou, “Advanced control and management functionalities for multi-microgrids,” European Transactions on Electrical Power, vol. 21, no. 2, pp. 1159–1177, 2011.Y. Wang, B. Ren, and Q. C. Zhong, “Robust Power Flow Control of Grid-Connected Inverters,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6887–6897, 2016.Y. Wang, B. Ren, and Q. C. Zhong, “Robust Power Flow Control of Grid-Connected Inverters,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6887–6897, 2016.S. A. Arefifar, M. Ordonez, and Y. A. R. I. Mohamed, “Energy Management in Multi-Microgrid Systems - Development and Assessment,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 910–922, 2017.A. Ouammi, H. Dagdougui, L. Dessaint, and R. Sacile, “Coordinated Model Predictive-Based Power Flows Control in a Cooperative Network of Smart Microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2233–2244, 2015.I. U. Nutkani, P. C. Loh, and F. Blaabjerg, “Power flow control of intertied ac microgrids,” IET Power Electronics, vol. 6, no. 7, pp. 1329–1338, 2013.L. Che, M. Shahidehpour, A. Alabdulwahab, and Y. Al-Turki, “Hierarchical coordination of a community microgrid with AC and DC microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 3042–3051, 2015.P. Tian, X. Xiao, K. Wang, and R. Ding, “A Hierarchical Energy Management System Based on Hierarchical Optimization for Microgrid Community Economic Operation,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2230–2241, 2016.A. Werth, N. Kitamura, and K. Tanaka, “Conceptual Study for Open Energy Systems: Distributed Energy Network Using Interconnected DC Nanogrids,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1621–1630, 2015.E. Unamuno and J. A. Barrena, “Hybrid ac/dc microgrids—Part II: Review and classification of control strategies,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 1123–1134, 2015.M. Liserre, Z. X. Zou, and G. Buticchi, “Analysis and stabilization of a smart transformer-fed grid,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1325–1335, 2017.G. Wang, X. Wang, and J. Lv, “An Improved Harmonic Suppression Control Strategy for the Hybrid Microgrid Bidirectional AC/DC Converter,” IEEE Access, vol. 8, pp. 220422–220436, 2020.F. Nejabatkhah, Y. W. Li, and H. Tian, “Power quality control of smart hybrid AC/DC microgrids: An overview,” IEEE Access, vol. 7, pp. 52295–52318, 2019.L. Ferreira Costa, G. De Carne, G. Buticchi, and M. Liserre, “The Smart Transformer: A solid-state transformer tailored to provide ancillary services to the distribution grid,” IEEE Power Electronics Magazine, vol. 4, no. 2, pp. 56–67, 2017.R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 821–834, 2010.M. Liserre, G. Buticchi, M. Andresen, G. De Carne, L. F. Costa, and Z. X. Zou, “The Smart Transformer: Impact on the Electric Grid and Technology Challenges,” IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp. 46–58, 2016.J. Sun, L. Yuan, Q. Gu, and Z. Zhao, “Startup Strategy with Constant Peak Transformer Current for Solid-State Transformer in Distribution Network,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1740–1751, 2019.H. J. Yoo, T. T. Nguyen, and H. M. Kim, “Multi-frequency control in a stand-alone multi-microgrid system using a back-to-back converter,” Energies, vol. 10, no. 6, p. 822, 2017.I. U. Nutkani, P. C. Loh, P. Wang, T. K. Jet, and F. Blaabjerg, “Intertied ac-ac microgrids with autonomous power import and export,” International Journal of Electrical Power and Energy Systems, vol. 65, pp. 385–393, 2015.D. Chen, Y. Xu, and A. Q. Huang, “Integration of DC Microgrids as Virtual Synchronous Machines into the AC Grid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7455–7466, 2017.T. Zhou and B. Francois, “Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 95–104, 2011.M. Kumar, S. C. Srivastava, and S. N. Singh, “Control Strategies of a DC Microgrid for Grid Connected and Islanded Operations,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1588–1601, 2015.H. Zhang, J. Zhou, Q. Sun, J. M. Guerrero, and D. Ma, “Data-Driven Control for Interlinked AC/DC Microgrids Via Model-Free Adaptive Control and Dual-Droop Control,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 557–571, 2017.A. A. A. Radwan and Y. A. R. I. Mohamed, “Networked control and power management of AC/DC hybrid microgrids,” IEEE Systems Journal, vol. 11, no. 3, pp. 1662–1673, 2017.M. Baharizadeh, H. R. Karshenas, and J. M. Guerrero, “An improved power control strategy for hybrid AC-DC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 95, pp. 364–373, 2018.H. Xiao, A. Luo, Z. Shuai, G. Jin, and Y. Huang, “An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 340–347, 2016.X. Lu, J. M. Guerrero, K. Sun, J. C. Vasquez, R. Teodorescu, and L. Huang, “Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 683–692, 2014.Y. Xia, Y. Peng, P. Yang, M. Yu, and W. Wei, “Distributed Coordination Control for Multiple Bidirectional Power Converters in a Hybrid AC/DC Microgrid,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4949–4959, 2017.P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid,” IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1374–1382, 2013.D. R. Aryani and H. Song, “Coordination control strategy for AC/DC hybrid microgrids in stand-alone mode,” Energies, vol. 9, no. 6, p. 469, 2016.F. Wang, J. L. Duarte, and M. A. M. Hendrix, “Grid-Interfacing Converter Systems With Enhanced Voltage Quality for Microgrid Application—Concept and Implementation,” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3501–3513, 2011.P. G. Khorasani, M. Joorabian, and S. G. Seifossadat, “Smart grid realization with introducing unified power quality conditioner integrated with DC microgrid,” Electric Power Systems Research, vol. 151, pp. 68–85, 2017.P. Sanjeev, N. P. Padhy, and P. Agarwal, “Autonomous Power Control and Management between Standalone DC Microgrids,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 2941–2950, 2018.U. Vuyyuru, S. Maiti, and C. Chakraborty, “Active Power Flow Control Between DC Microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5712–5723, 2019.C. Samende, F. Gao, S. M. Bhagavathy, and M. McCulloch, “Decentralized Voltage Control for Efficient Power Exchange in Interconnected DC Clusters,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 103–115, 2021.R. Haghmaram, F. Sedaghati, and R. Ghafarpour, “Power exchange among microgrids using modular-isolated bidirectional DC–DC converter,” Electrical Engineering, vol. 99, no. 1, pp. 441–454, 2017.S. Konar and A. Ghosh, “Interconnection of islanded DC microgrids,” in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1–5, IEEE, 2015.M. Kumar, S. C. Srivastava, S. N. Singh, and M. Ramamoorty, “Development of a control strategy for interconnection of islanded direct current microgrids,” IET Renewable Power Generation, vol. 9, no. 3, pp. 284–296, 2015.J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase PWM AC-AC converter topologies,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 4988–5006, 2011.R. Majumder, “A hybrid microgrid with dc connection at back to back converters,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 251–259, 2014.Y. Xu, J. Zhang, W. Wang, A. Juneja, and S. Bhattacharya, “Energy router: Architectures and functionalities toward energy internet,” in 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 31–36, IEEE, 2011.X. Yu, X. She, X. Zhou, and A. Q. Huang, “Power management for DC microgrid enabled by solid-state transformer,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 954–965, 2014.X. She, A. Q. Huang, S. Lukic, and M. E. Baran, “On integration of solid-state transformer with zonal DC microgrid,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 975–985, 2012.EstudiantesInvestigadoresMaestrosORIGINAL80073076.2024.pdf80073076.2024.pdfTesis de Doctorado en Ingeniería - Ingeniería Eléctricaapplication/pdf36708935https://repositorio.unal.edu.co/bitstream/unal/85916/2/80073076.2024.pdf116c214a76b1eb6a1ffa3d664507f93cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85916/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL80073076.2024.pdf.jpg80073076.2024.pdf.jpgGenerated Thumbnailimage/jpeg5170https://repositorio.unal.edu.co/bitstream/unal/85916/3/80073076.2024.pdf.jpg636cfaa9b5a0dea2ab3447f638b2b26fMD53unal/85916oai:repositorio.unal.edu.co:unal/859162024-04-15 23:05:03.184Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=