Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas
Múltiples estudios presentan las microalgas como la fuente de biocombustibles más prometedora, debido a que, entre otras características, son 50 veces más eficientes en convertir la luz solar en biomasa y capturan entre 10 y 50 veces más CO2 que las plantas terrestres. Debido a que el contenido de a...
- Autores:
-
Pasos Panqueva, Johan Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79961
- Palabra clave:
- 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
660 - Ingeniería química
Microalga
Licuefacción hidrotermal
Tratamiento de aguas residuales
Procesos avanzados de oxidación
Recuperación de nutrientes
Oxidación hidrotermal con peroxido
Chlorella vulgaris
Microalgae
Hydrothernal liquefaction
Wastewater treatment
Wet peroxide oxidation
Nutrient recovery
Advanced oxidation process
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_4ed450842fafd91f273e568a260cead2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79961 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas |
dc.title.translated.eng.fl_str_mv |
Assessment of the wet peroxide oxidation process as an alternative for the treatment of the aqueous phase resulting from the hydrothermal liquefaction of microalgae |
title |
Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas |
spellingShingle |
Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas 620 - Ingeniería y operaciones afines::624 - Ingeniería civil 660 - Ingeniería química Microalga Licuefacción hidrotermal Tratamiento de aguas residuales Procesos avanzados de oxidación Recuperación de nutrientes Oxidación hidrotermal con peroxido Chlorella vulgaris Microalgae Hydrothernal liquefaction Wastewater treatment Wet peroxide oxidation Nutrient recovery Advanced oxidation process |
title_short |
Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas |
title_full |
Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas |
title_fullStr |
Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas |
title_full_unstemmed |
Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas |
title_sort |
Evaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgas |
dc.creator.fl_str_mv |
Pasos Panqueva, Johan Andrés |
dc.contributor.advisor.none.fl_str_mv |
Godoy Silva, Rubén Darío Rodríguez Varela, Luis Ignacio |
dc.contributor.author.none.fl_str_mv |
Pasos Panqueva, Johan Andrés |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil 660 - Ingeniería química |
topic |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil 660 - Ingeniería química Microalga Licuefacción hidrotermal Tratamiento de aguas residuales Procesos avanzados de oxidación Recuperación de nutrientes Oxidación hidrotermal con peroxido Chlorella vulgaris Microalgae Hydrothernal liquefaction Wastewater treatment Wet peroxide oxidation Nutrient recovery Advanced oxidation process |
dc.subject.proposal.spa.fl_str_mv |
Microalga Licuefacción hidrotermal Tratamiento de aguas residuales Procesos avanzados de oxidación Recuperación de nutrientes Oxidación hidrotermal con peroxido |
dc.subject.proposal.none.fl_str_mv |
Chlorella vulgaris |
dc.subject.proposal.eng.fl_str_mv |
Microalgae Hydrothernal liquefaction Wastewater treatment Wet peroxide oxidation Nutrient recovery Advanced oxidation process |
description |
Múltiples estudios presentan las microalgas como la fuente de biocombustibles más prometedora, debido a que, entre otras características, son 50 veces más eficientes en convertir la luz solar en biomasa y capturan entre 10 y 50 veces más CO2 que las plantas terrestres. Debido a que el contenido de agua de estos microorganismos puede alcanzar más del 95% en peso, la licuefacción hidrotermal (LHT), que emplea agua a condiciones supercríticas, se ha perfilado como la mejor manera para convertir la biomasa húmeda de microalga en biocrudo. Sin embargo, el rendimiento del proceso para producir biocrudo no supera el 50%, por lo que la generación de una fase acuosa (subproducto de la LHT) constituye el principal residuo del proceso. El presente trabajo pretende evaluar otro proceso hidrotermal, denominado oxidación hidrotermal con peróxido, como alternativa de tratamiento de la fase acuosa proveniente de la LHT de la microalga Chlorella vulgaris. En primer lugar, se obtuvo la biomasa algal a licuar, se caracterizó bioquímicamente y se realizó la licuefacción hidrotermal, determinando los rendimientos de producción de cada una de las fases a condiciones constantes de reacción (375ºC y 15 minutos de reacción). Posteriormente se caracterizó la fase acuosa obtenida y se diseñó un plan de experimentos que permita establecer las condiciones de reacción adecuadas (tiempo y relación molar de peróxido) que maximicen la producción de fase acuosa tratada. Finalmente, se caracterizó la fase acuosa tratada y se realizaron cultivos comparativos de la microalga en diferentes diluciones de fase acuosa, con el fin de cuantificar el crecimiento algal y evaluar el potencial de recirculación del agua tratada por medio de la oxidación hidrotermal con peróxido. Con el desarrollo de este trabajo se demostró que es viable tratar la fase acuosa de la LHT, para recircular agua y recuperar nutrientes; con lo cual, se mejora la sostenibilidad ambiental y energética de la producción de biocrudo a partir de algas. (Texto tomado de la fuente) |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-18T15:15:12Z |
dc.date.available.none.fl_str_mv |
2021-08-18T15:15:12Z |
dc.date.issued.none.fl_str_mv |
2021-06 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
DataPaper Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79961 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79961 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. BIORESOURCE TECHNOLOGY, 118, 61–66. https://doi.org/10.1016/j.biortech.2012.05.055 Aida, T., Maruta, R., Tanabe, Y., Oshima, MinNonaka, T., Kujiraoka, H., Kumagai, Y., & Ota, M. (2016). Nutrient recycle from defatted microalgae (Aurantiochytrium ) with hydrothermal treatment for microalgae cultivation. Bioresource Technology. https://doi.org/10.1016/j.biortech.2016.12.078 Al-duri, B., & Alsoqyani, F. (2017). Supercritical water oxidation ( SCWO ) for the removal of nitrogen containing heterocyclic waste hydrocarbons . Part II : System kinetics. The Journal of Supercritical Fluids, 128(May), 412–418. https://doi.org/10.1016/j.supflu.2017.05.010 Al Hattab, M., & Ghaly, A. (2015). Production of Biodiesel from Marine and Freshwater Microalgae : A Review. Advances in Research, 3(2), 107–155. https://doi.org/10.9734/AIR/2015/7752 Alcaraz, M. R., Fabiano, S. N., & Cámara, M. S. (2012). Determinación De Contenido Fenólico Total En Agua Superficial De Distintos Puntos De La Provincia De Santa Fe – Argentina – Haciendo Uso De Un Biosensor Enzimático Mediante Calibración Multivariada Por Cuadrados Parciales Mínimos , Pls. Septimo Congreso de Medio Ambiente, 1–22. Alimoradi, S., Stohr, H., Stagg-Williams, S., & Sturm, B. (2020). Effect of temperature on toxicity and biodegradability of dissolved organic nitrogen formed during hydrothermal liquefaction of biomass. Chemosphere, 238, 124573. https://doi.org/10.1016/j.chemosphere.2019.124573 Alnaizy, R., & Akgerman, A. U. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4(May), 233–244. Anastasakis, K., & Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology, 102(7), 4876–4883. https://doi.org/10.1016/j.biortech.2011.01.031 Andersen, R. A. (2005). Algal Culturing Techniques (1st ed.). Elsevier Academic Press. Anku, W., Mamo, M., & Govender, P. (2017). Phenolic compounds in Water: Sources, reactivity, toxicity and treatment methods. In M. Soto-Hernandez, M. Palma-Tenango, & M. del R. Garcia-Mateos (Eds.), Phenolic Compounds - Natural Sources, Importance and Applications abundant (p. 444). InTech. https://doi.org/http://dx.doi.org/10.5772/66927 Ansari, F. A., Gupta, S. K., Nasr, M., Rawat, I., & Bux, F. (2018). Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 182, 634–643. https://doi.org/10.1016/j.jclepro.2018.02.098 APHA. (1999). Standard Methods for the Examination of Water and Wastewater (21st ed.). Armandina, E., Tercero, R., Bertucco, A., & Brilman, D. W. F. W. (2015). Process water recycle in Hydrothermal Liquefaction of microalgae to enhance bio-oil yield. Energy and Fuels, 3. https://doi.org/10.1021/ef502773w Arun, J., Varshini, P., Prithvinath, P. K., Priyadarshini, V., & Gopinath, K. P. (2018). Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresource Technology, 4. https://doi.org/10.1016/j.biortech.2018.04.029 Azov, Y., & Goldman, J. C. (1982). Free Ammonia Inhibition of Algal Photosynthesis in Intensive Culturest. Applied And, 43(4), 735–739. Bagnoud-Velásquez, M., Schmid-Staiger, U., Peng, G., Vogel, F., & Ludwig, C. (2015). First developments towards closing the nutrient cycle in a biofuel production process. Algal Research, 8, 76–82. https://doi.org/10.1016/j.algal.2014.12.012 Baier, S. L., Clements, M., Griffiths, C. W., & Ihrig, J. E. (2009). Biofuels Impact on Crop and Food Prices: Using an Interactive Spreadsheet. Social Science Research Network, 967. https://doi.org/10.2139/ssrn.1372839 Barbarino, E., & Louren, S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. Journal of Applied Phycology, 17, 447–460. https://doi.org/10.1007/s10811-005-1641-4 Bashan, Y., Lopez, B. R., Huss, V. A. R., Amavizca, E., & de-Bashan, L. E. (2016). Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain. Journal of Applied Phycology, 28(1), 113–121. https://doi.org/10.1007/s10811-015-0571-z Baup, S., Jaffre, C., Wolbert, D., & Laplanche, A. (2000). Adsorption of pesticides onto granular activated carbon: Determination of surface diffusivities using simple batch experiments. Adsorption, 6(3), 219–228. https://doi.org/10.1023/A:1008937210953 Becker, R., Dorgerloh, U., Paulke, E., Mumme, J., & Nehls, I. (2014). Hydrothermal Carbonization of Biomass : Major Organic Components of the Aqueous Phase. Chemical Engineering and Technology, 3, 511–518. https://doi.org/10.1002/ceat.201300401 Benatti, C. T., Granhen Tavares, C. R., & Guedes, T. A. (2006). Optimization of Fenton ’ s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Engineering (United States), 80, 66–74. https://doi.org/10.1016/j.jenvman.2005.08.014 Benvenuti, G., Bosma, R., Cuaresma, M., Janssen, M., Barbosa, M. J., & Wijffels, R. H. (2015). Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. Journal of Applied Phycology, 27(4), 1425–1431. https://doi.org/10.1007/s10811-014-0470-8 Bermejo, M. D., & Cocero, M. J. (2006). Supercritical Water Oxidation: A Technical Review. AIChE Journal, 52(11), 3933–3951. https://doi.org/10.1002/aic Biller, P., & Ross, A. B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), 215–225. https://doi.org/10.1016/j.biortech.2010.06.028 Biller, P., Ross, A. B., Skill, S. C., Lea-Langton, A., Balasundaram, B., Hall, C., Riley, R., & Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 70–76. https://doi.org/10.1016/j.algal.2012.02.002 Biller, Patrick, Madsen, R. B., Klemmer, M., Becker, J., Iversen, B. B., & Glasius, M. (2016). Effect of hydrothermal liquefaction aqueous phase recycling on bio- crude yields and composition. Bioresource Technology, 220, 190–199. https://doi.org/10.1016/j.biortech.2016.08.053 Bio-Rad. (2006). Protein Assay. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.prodprot15 Blair, M. F., Kokabian, B., & Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665–674. https://doi.org/10.1016/j.jece.2013.11.005 Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. Boer, K. De, & Moheimani, N. R. (2012). Extraction and conversion pathways for microalgae to biodiesel : a review focused on energy consumption. Journal of Applied Phycology, 24, 1681–1698. https://doi.org/10.1007/s10811-012-9835-z Bradford, Marion M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Brand, S., Hardi, F., Kim, J., & Suh, D. J. (2014). Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol. Energy, 68, 420–427. https://doi.org/10.1016/j.energy.2014.02.086 Brennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009 Brown, M. R., & Mccausland, M. A. (1998). The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture, 165, 281–293. Brown, T. M., Duan, P., & Savage, P. E. (2010). Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy and Fuels, 24(6), 3639–3646. https://doi.org/10.1021/ef100203u Byreddy, A. R., Gupta, A., Barrow, C. J., & Puri, M. (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of Microbiological Methods, 125, 28–32. https://doi.org/10.1016/j.mimet.2016.04.002 Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030 Cao, Y., Wang, Y., Riley, J. T., & Pan, W. P. (2006). A novel biomass air gasification process for producing tar-free higher heating value fuel gas. Fuel Processing Technology, 87(4), 343–353. https://doi.org/10.1016/j.fuproc.2005.10.003 Chang, I. S., & Kim, S. N. (2005). Wastewater treatment using membrane filtration - Effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3–4), 1307–1314. https://doi.org/10.1016/j.procbio.2004.06.019 Chen, C., Lu, Z., Ma, X., Long, J., Peng, Y., Hu, L., & Lu, Q. (2013). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresource Technology, 144, 563–571. https://doi.org/10.1016/j.biortech.2013.07.011 Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81. https://doi.org/10.1016/j.biortech.2010.06.159 Chen, W.-T., Tang, L., Qian, W., Scheppe, K., Nair, K., Wu, Z., Gai, C., Zhang, P., & Zhang, Y. (2016). Extract Nitrogen-Containing Compounds in Biocrude Oil Converted from Wet Biowaste via Hydrothermal Liquefaction. Sustainable Chemistry and Engineering, 2. https://doi.org/10.1021/acssuschemeng.5b01645 Chen, W.-T., Zhang, Y., Zhang, J., Schideman, L., Yu, G., Zhang, P., & Minarick, M. (2014). Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Applied Energy, 128, 209–216. https://doi.org/10.1016/J.APENERGY.2014.04.068 Chen, W. H., Huang, M. Y., Chang, J. S., & Chen, C. Y. (2015). Torrefaction operation and optimization of microalga residue for energy densification and utilization. Applied Energy, 154, 622–630. https://doi.org/10.1016/j.apenergy.2015.05.068 Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039 Chen, X., Ma, X., Peng, X., Lin, Y., Wang, J., & Zheng, C. (2018). Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste. Bioresource Technology, 267(381), 167–174. https://doi.org/10.1016/j.biortech.2018.07.032 Cheng, Y. S., Zheng, Y., & VanderGheynst, J. S. (2011). Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids, 46(1), 95–103. https://doi.org/10.1007/s11745-010-3494-0 Cherad, R., Onwudili, J. A., Biller, P., Williams, P. T., & Ross, A. B. (2016a). Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. Fuel, 166, 24–28. https://doi.org/10.1016/j.fuel.2015.10.088 Chiaramonti, D., Oasmaa, A., & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable and Sustainable Energy Reviews, 11(6), 1056–1086. https://doi.org/10.1016/j.rser.2005.07.008 Christensen, P. S., Peng, G., Vogel, F., & Iversen, B. B. (2014). Hydrothermal liquefaction of the microalgae Phaeodactylum tricornutum: Impact of reaction conditions on product and elemental distribution. Energy and Fuels, 28(9), 5792–5803. https://doi.org/10.1021/ef5012808 Ciabatti, I., Tognotti, F., & Lombardi, L. (2010). Treatment and reuse of dyeing effluents by potassium ferrate. Desalination, 250(1), 222–228. https://doi.org/10.1016/j.desal.2009.06.019 Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R., & Steyer, J. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207–214. https://doi.org/10.1016/j.biortech.2010.06.154 Corley, R. (1998). Productividad de la palma de aceite Aspectos fisiológicos. Palmas, 19(Especial), 162–168. Costanzo, W., Jena, U., Hilten, R., Das, K. C., & Kastner, J. R. (2015). Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Research, 12, 377–387. https://doi.org/10.1016/j.algal.2015.09.019 Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9 Croiset, E., Rice, S. F., & Hanush, R. G. (1997). Hydrogen Peroxide Decomposition in Supercritical Water. AIChE Journal, 43(9), 2343–2352. https://doi.org/10.1002/aic.690430919 Cui, S., & Brummer, Y. (2010). Understanding Carbohydrate Analysis. In Food Carbohydrates (pp. 67–104). Taylor & Francis Group. https://doi.org/10.1201/9780203485286.ch2 Dannis, M. (1951). Determination of Phenols by the Amino-Antipyrine Method. Sewage and Industrial Wastes, 23(12), 1516–1522. Debellefontaine, H., Chakchouk, M., Foussard, J. N., Tissot, D., & Striolo, P. (1996). Treatment of organic aqueous wastes: Wet air oxidation and wet peroxide oxidation ®. Environmental Pollution, 92(2), 155–164. https://doi.org/10.1016/0269-7491(95)00100-X Demirbas, A. (2016). Calculation of higher heating values of fatty acids. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(18), 2693–2697. https://doi.org/10.1080/15567036.2015.1115924 Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0 Deniel, M., Haarlemmer, G., Roubaud, A., Weiss-hortala, E., & Fages, J. (2016). Bio-oil Production from Food Processing Residues: Improving the Bio-oil Yield and Quality by Aqueous Phase Recycle in Hydrothermal Liquefaction of Blackcurrant ( Ribes nigrum L .) Pomace Maxime De n. Energy and Fuels, 5. https://doi.org/10.1021/acs.energyfuels.6b00441 Dhankhar, R., & Hooda, A. (2011). Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467–491. https://doi.org/10.1080/09593330.2011.572922 Du, Z., Hu, B., Shi, A., Ma, X., Cheng, Y., Chen, P., Liu, Y., Lin, X., & Ruan, R. (2012). Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresource Technology, 126, 354–357. https://doi.org/10.1016/j.biortech.2012.09.062 Duan, P., Yang, S., Xu, Y., Wang, F., Zhao, D., Weng, Y., & Shi, X. (2018). Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy. https://doi.org/10.1016/j.energy.2018.05.044 Dubber, D., & Gray, N. F. (2010). Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. Journal of Environmental Science and Health, Part A, 45(12), 1595–1600. https://doi.org/10.1080/10934529.2010.506116 Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017 Eboibi, B. E., Lewis, D. M., Ashman, P. J., & Chinnasamy, S. (2014). Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresource Technology, 170, 20–29. https://doi.org/10.1016/j.biortech.2014.07.083 Edmundson, S., Huesemann, M., Kruk, R., Lemmon, T., Billing, J., Schmidt, A., & Anderson, D. (2017). Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction. Algal Research, July, 0–1. https://doi.org/10.1016/j.algal.2017.07.016 Ekpo, U., Ross, A. B., Camargo-valero, M. A., & Williams, P. T. (2016). A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae , manure and digestate. Bioresource Technology, 200, 951–960. https://doi.org/10.1016/j.biortech.2015.11.018 El-Shimi, H. I., Attia, N. K., El-Sheltawy, S. T., & El-Diwani, G. I. (2013). Biodiesel Production from Spirulina-Platensis Microalgae by In-Situ Transesterification Process. Journal of Sustainable Bioenergy Systems, 3(9), 224–233. https://doi.org/http://dx.doi.org/10.4236/jsbs.2013.33031 Elliott, D. C., Hart, T. R., Schmidt, A. J., Neuenschwander, G. G., Rotness, L. J., Olarte, M. V, Zacher, A. H., Albrecht, K. O., Hallen, R. T., & Holladay, J. E. (2013). Process development for hydrothermal liquefaction of algae feedstocks in a continuous- fl ow reactor. Algal Research, 2(4), 445–454. https://doi.org/10.1016/j.algal.2013.08.005 Environment Agency. (2007). Proposed EQS for Water Framework Directive Annex VIII substances: 2,4-dichlorophenol. EPA. (1978). Method 420.1 : Phenolics ( Spectrophotometric, Manual 4 AAP With Distillation ). Erkelens, M., Ball, A. S., & Lewis, D. M. (2015a). Bioresource Technology The application of activated carbon for the treatment and reuse of the aqueous phase derived from the hydrothermal liquefaction of a halophytic Tetraselmis sp . Bioresource Technology, 182, 378–382. https://doi.org/10.1016/j.biortech.2015.01.129 Erkelens, M., Ball, A. S., & Lewis, D. M. (2015b). The application of activated carbon for the treatment and reuse of the aqueous phase derived from the hydrothermal liquefaction of a halophytic Tetraselmis sp . BIORESOURCE TECHNOLOGY, 1–5. https://doi.org/10.1016/j.biortech.2015.01.129 Erkonak, H., Sogut, O. O., & Akgun, M. (2008). Treatment of olive mill wastewater by supercritical water oxidation. Journal of Supercritical Fluids, 46, 142–148. https://doi.org/10.1016/j.supflu.2008.04.006 Faeth, J. L., Savage, P. E., Jarvis, J. M., Mckenna, A. M., & Savage, P. E. (2016). Characterization of Products from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. AIChE Journal, 62(3). https://doi.org/10.1002/aic Faeth, J. L., Valdez, P. J., & Savage, P. E. (2013). Fast hydrothermal liquefaction of nannochloropsis sp. to produce biocrude. Energy and Fuels, 27(3), 1391–1398. https://doi.org/10.1021/ef301925d Fiorentino, A., Gentili, A., Isidori, M., Monaco, P., Nardelli, A., Parrella, A., & Temussi, F. (2003). Environmental Effects Caused by Olive Mill Wastewaters : Toxicity Comparison of Low-Molecular-Weight Phenol Components. Journal of Agricultural and Food Chemistry, 51, 1005–1009. Frank, E. D., Elgowainy, A., & Han, J. (2013). Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strateg Glob Change, 18, 137–158. https://doi.org/10.1007/s11027-012-9395-1 Fricke, K., Santen, H., Wallmann, R., Hüttner, A., & Dichtl, N. (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management, 27(1), 30–43. https://doi.org/10.1016/j.wasman.2006.03.003 Frings, C., & Dunn, R. (1970). A Colorimetric Method for Determination of Total Serum Lipids Based on the Sulfo-phospho-vanillin Reaction. American Journal of Clinical Pathology, 53(1), 89–91. https://doi.org/10.1093/ajcp/53.1.89 Fu, W., Gudmundsson, O., Feist, A. M., Herjolfsson, G., Brynjolfsson, S., & Palsson, B. Ø. (2012). Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology, 161(3), 242–249. https://doi.org/10.1016/j.jbiotec.2012.07.004 Fuhs, G. W., & Chen, M. (1975). Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecology, 2(2), 119–138. https://doi.org/10.1007/BF02010434 Fushimi, C., Kakimura, M., Tomita, R., Umeda, A., & Tanaka, T. (2016). Enhancement of nutrient recovery from microalgae in hydrothermal liquefaction using activated carbon. Fuel Processing Technology, 148, 282–288. https://doi.org/10.1016/j.fuproc.2016.03.006 Gai, C., Zhang, Y., Chen, W.-T., Zhou, Y., Schideman, L., Zhang, P., Tommaso, G., Kuo, C.-T., & Dong, Y. (2014). Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresource Technology, 43(6), 403–408. https://doi.org/10.1016/j.biortech.2014.10.118 Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 101(1), 109–116. https://doi.org/10.1016/S0378-7753(01)00707-8 García-jarana, M. B., Kings, I., Sánchez-oneto, J., Portela, J. R., & Al-duri, B. (2013). The Journal of Supercritical Fluids Supercritical water oxidation of nitrogen compounds with multi-injection of oxygen. The Journal of Supercritical Fluids, 80(2), 23–29. https://doi.org/10.1016/j.supflu.2013.04.004 Garcia Alba, L., Torri, C., Samor??, C., Van Der Spek, J., Fabbri, D., Kersten, S. R. A., & Brilman, D. W. F. (2012). Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept. Energy and Fuels, 26(1), 642–657. https://doi.org/10.1021/ef201415s Garcia, L., Torri, C., Fabbri, D., Kersten, S. R. A., & Wim, D. W. F. (2013). Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chemical Engineering Journal, 228, 214–223. https://doi.org/10.1016/j.cej.2013.04.097 Georgiou, C. D., Grintzalis, K., Zervoudakis, G., & Papapostolou, I. (2008). Mechanism of Coomassie brilliant blue G-250 binding to proteins: A hydrophobic assay for nanogram quantities of proteins. Analytical and Bioanalytical Chemistry, 391(1), 391–403. https://doi.org/10.1007/s00216-008-1996-x Gernaey, K. V., Van Loosdrecht, M. C. M., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environmental Modelling and Software, 19(9), 763–783. https://doi.org/10.1016/j.envsoft.2003.03.005 Glaze, W. H., Kang, J. W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9(4), 335–352. https://doi.org/10.1080/01919518708552148 Gonçalves, R., Frazao, A., Pedrosa, R., Spindola, D., Cristina, V., Brasileiro-Vidal, A. C., De Araújo, D., & Marques, A. (2018). Chemosphere Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products. Chemosphere, 204, 344–350. https://doi.org/10.1016/j.chemosphere.2018.04.039 Gopalan, S., & Savage, P. E. (1995). A Reaction Network Model for Phenol Oxidation in Supercritical Water. AIChE Journal, 41(8). Griffiths, M. J., Hille, R. P. Van, & Harrison, S. T. L. (2014). The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Applied Microbiology and Biotechnology, 98, 2345–2356. https://doi.org/10.1007/s00253-013-5442-4 Guo, Y., Yeh, T., Song, W., Xu, D., & Wang, S. (2015). A review of bio-oil production from hydrothermal liquefaction of algae. Renewable and Sustainable Energy Reviews, 48, 776–790. https://doi.org/10.1016/j.rser.2015.04.049 Haber, F., & Weiss, J. (1932). The Catalytic Decom position o f Hydrogen Peroxide by Iron Salts *. 332–351. He, Z., Xu, D., Liu, L., Wang, Y., Wang, S., Guo, Y., & Jing, Z. (2018). Product characterization of multi-temperature steps of hydrothermal liquefaction of Chlorella microalgae. Algal Research, 33(January), 8–15. https://doi.org/10.1016/j.algal.2018.04.013 Heredia-arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35, 2245–2253. https://doi.org/10.1016/j.biombioe.2011.02.036 Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D. J., & Eshtiaghi, N. (2014). A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment. BIORESOURCE TECHNOLOGY, 155, 289–299. https://doi.org/10.1016/j.biortech.2013.12.066 HiP. (n.d.). High Pressure Equipment. Technical Information. https://www.highpressure.com/ Hognon, C., Delrue, F., & Texier, J. (2014). Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii . Growth studies on the recovered hydrothermal aqueous phase. Biomass and Bioenergy, 73, 23–31. https://doi.org/10.1016/j.biombioe.2014.11.025 Hon, T. H. E., & Costa, M. (2016). Shell Sustainability Report 2016. Royal Dutch Shell Plc. Hosseini, S. E., Wahid, M. A., Salehirad, S., & Seis, M. M. (2013). Evaluation of Palm Oil Combustion Characteristics by Using the Chemical Equilibrium with Application (CEA) Software. Applied Mechanics and Materials, 388, 268–272. https://doi.org/10.4028/www.scientific.net/AMM.388.268 Hu, Y., Feng, S., Yuan, Z., Xu, C. C., & Bassi, A. (2017). Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.05.033 IEA, & OECD. (2016). World Energy Outlook: Energy and Air Pollution. Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635. Jena, U., & Das, K. C. (2011). Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy and Fuels, 25(11), 5472–5482. https://doi.org/10.1021/ef201373m Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221–6229. https://doi.org/10.1016/j.biortech.2011.02.057 Jena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. C. (2011a). Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology, 102(3), 3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111 Jena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. C. (2011b). Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology, 102(3), 3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111 Jiang, J., & Savage, P. E. (2018). Metals and Other Elements in Biocrude from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. Energy and Fuels, 32(4), 4118–4126. https://doi.org/10.1021/acs.energyfuels.7b03144 Jones, C., Hare, D., & Compton, S. (1989). Measuring Plant Protein with the Bradford Assay. 1 . Evaluation and Standard Method. Journal of Chemical Ecology, 15(3). K. Mandalam, R., & O Palsson, B. (1998). Elemental Balancing of Biomass and Medium Composition Enhances Growth Capacity in High-density Chlorella vulgaris Cultures. Biotechnology and Bioengineering, 59, 605–611. Kabadayi, A., Cem, I., & Yanik, J. (2017). Bioresource Technology Effects of spent liquor recirculation in hydrothermal carbonization. Bioresource Technology, 226, 89–93. https://doi.org/10.1016/j.biortech.2016.12.015 Kasina, M., Wendorff-Belon, M., Kowalski, P. R., & Michalik, M. (2019). Characterization of incineration residues from wastewater treatment plant in Polish city: a future waste based source of valuable elements? Journal of Material Cycles and Waste Management, 21(4), 885–896. https://doi.org/10.1007/s10163-019-00845-1 Killilea, R., Swallow, K. C., & Hong, G. T. (1992). The Fate of Nitrogen in Supercritical-Water Oxidation. The Journal of Supercritical Fluids, 5, 72–78. Kim, J., Chung, Y., Shin, D., Kim, M., Lee, Y., Lim, Y., & Lee, D. (2003). Chlorination by-products in surface water treatment process. Desalination, 151(1), 1–9. https://doi.org/10.1016/S0011-9164(02)00967-0 Kim, W., Min, J., Geun, P., Gim, H., Si, D. K., & Kim, W. (2012). Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess and Biosystems Engineering, 35, 19–27. https://doi.org/10.1007/s00449-011-0612-1 Knight, J. A., Anderson, S., & Rawle, J. M. (1972). Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clinical Chemistry, 18(3), 199–202. Knight, Joseph A, Anderson, S., & Rawle, J. M. (1972). ChemicalBasisof the Sulfo-phospho-vanillin Reactionfor Estimating Total Serum Lipids. Clinical Chemistry, 18(3), 199–202. https://doi.org/10.1093/clinchem/18.3.199 Kolaczkowski, S. T., Plucinski, P., Beltran, F. J., Rivas, F. J., & Mclurgh, D. B. (1999). Wet air oxidation : a review of process technologies and aspects in reactor design. 73, 143–160. Kondru, A. K., Kumar, P., & Chand, S. (2009). Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. Journal of Hazardous Materials, 166(1), 342–347. https://doi.org/10.1016/j.jhazmat.2008.11.042 Kritzer, P. (2004). Corrosion in high-temperature and supercritical water and aqueous solutions : A review. The Journal of Supercritical Fluids, 29(4), 1–29. https://doi.org/10.1016/S0896-8446(03)00031-7 Kumar, K., Dasgupta, C. N., & Das, D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology, 167, 358–366. https://doi.org/10.1016/j.biortech.2014.05.118 Kumar, S. (2012). Sub- and Supercritical Water-Based Processes for Microalgae to Biofuels (pp. 467–493). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_25 Kumar, V., Nanda, M., Joshi, H. C., Singh, A., & Sharma, S. (2018). Production of biodiesel and bioethanol using algal biomass harvested from fresh water river. Renewable Energy, 116, 606–612. https://doi.org/10.1016/j.renene.2017.10.016 L.S. Clesceri, A.R. Greenberg, R. R. T. (2010). Determinación colorimétrica de fenoles en agua por el método de la 4- aminoantipirina. 5(Revisión 1), 4–9. Lachmann, S. C., & Spijkerman, E. (2019). Nitrate or ammonium : Influences of nitrogen source on the physiology of a green alga. Ecology and Evolution, 10, 1070–1082. https://doi.org/10.1002/ece3.4790 Laliberté, G., & De La Noüe, J. (1993). Auto-, hetero- and mixotrophic-growt of chlamydomonas humicola on acetate. Journal of Phycologie, 29(6), 612–620. Lasso, A. M. (2007). Fósforo soluble en agua por el método del ácido ascórbico. Instituto De Hidrología, Meteorología y Estudios Ambientales, 3, 1–11. http://www.ideam.gov.co/ Lee, G., Nunoura, T., Matsumura, Y., & Yamamoto, K. (2002). Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions. Journal of Supercritical Fluids, 24, 239–250. Lee, R. A., & Lavoie, J. (2012). From first- to third-generation biofuels : Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, August, 6–11. https://doi.org/10.2527/af.2013-0010 Leng, L., & Huang, H. (2018). An overview of the e ff ect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270(September), 627–642. https://doi.org/10.1016/j.biortech.2018.09.030 Li, C., Yang, X., Zhang, Z., Zhou, D., Zhang, L., Zhang, S., & Chen, J. (2013). Hydrothermal Liquefaction of Desert Shrub Salix psammophila to High Value - added Chemicals and Hydrochar with Recycled Processing Water. Bioresource Technology, 8(2009), 2981–2997. Li, H., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., Liu, M., Zhu, Z., & Si, B. (2014). Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource Technology, 154, 322–329. https://doi.org/10.1016/j.biortech.2013.12.074 Li, J., Wang, S., Li, Y., Jiang, Z., Xu, T., & Zhang, Y. (2020). Supercritical water oxidation and process enhancement of nitrogen-containing organics and ammonia. Water Research, 185(x), 116222. https://doi.org/10.1016/j.watres.2020.116222 Li, J., Wang, S., Li, Y., Ren, M., Jiang, Z., Zhang, J., & Yang, C. (2020). Experimental research and commercial plant development for harmless disposal and energy utilization of petrochemical sludge by supercritical water oxidation. Chemical Engineering Research and Design, 162, 258–272. https://doi.org/10.1016/j.cherd.2020.08.006 Li, Yalin, Leow, S., Fedders, A. C., Sharma, B. K., Guest, J. S., & Strathmann, T. J. (2017). Quantitative multiphase model for hydrothermal liquefaction of algal biomass. Green Chemistry, 19(4), 1163–1174. https://doi.org/10.1039/c6gc03294j Li, Yanhui, & Wang, S. (2020). Supercritical Water Oxidation for Environmentally Friendly Treatment of Organic Wastes. In I. Pioro (Ed.), Advanced Supercritical Fluids Technologies. IntechOpen. Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic , heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049. https://doi.org/10.1007/s10529-009-9975-7 Lin, S. H., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050–2056. https://doi.org/10.1016/S0043-1354(97)00024-9 Liu, L., Zhao, Y., Jiang, X., Wang, X., & Liang, W. (2018). Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium. Bioresource Technology, 262(April), 342–346. https://doi.org/10.1016/j.biortech.2018.04.092 Liu, X., Saydah, B., Eranki, P., Colosi, L. M., Mitchell, B. G., Rhodes, J., & Clarens, A. F. (2013). Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technology, 148, 163–171. https://doi.org/10.1016/j.biortech.2013.08.112 López Barreiro, D., Bauer, M., Hornung, U., Posten, C., Kruse, A., & Prins, W. (2015). Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Research, 9, 99–106. https://doi.org/10.1016/j.algal.2015.03.007 López Barreiro, D., Prins, W., Ronsse, F., & Brilman, W. (2013a). Hydrothermal liquefaction ( HTL ) of microalgae for biofuel production : State of the art review and future prospects. Biomass and Bioenergy, 53(2), 113–127. https://doi.org/10.1016/j.biombioe.2012.12.029 López Barreiro, D., Riede, S., Hornung, U., Kruse, A., & Prins, W. (2015). Hydrothermal liquefaction of microalgae: Effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Research, 12, 206–212. https://doi.org/10.1016/j.algal.2015.08.025 Luis, A. De, Lombraña, J. I., Varona, F., & Menéndez, A. (2009). Kinetic study and hydrogen peroxide consumption of phenolic compounds oxidation by Fenton’s reagent. Korean Journal of Chemical Engineering, 26(1), 48–56. Luz, E., Moreno, M., Hernandez, J., & Bashan, Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research, 36, 2941–2948. Maddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K., & Howe, D. (2016). Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae. Biomass and Bioenergy, 93, 122–130. https://doi.org/10.1016/j.biombioe.2016.07.010 Madsen, R. B., Biller, P., Jensen, M. M., Becker, J., Iversen, B. B., & Glasius, M. (2016). Predicting the Chemical Composition of Aqueous Phase from Hydrothermal Liquefaction of Model Compounds and Biomasses. Energy and Fuels, 30(12), 10470–10483. https://doi.org/10.1021/acs.energyfuels.6b02007 Márquez, J. J. R., Levchuk, I., & Sillanpää, M. (2018). Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts, 8(12). https://doi.org/10.3390/catal8120673 Martino, C. J., & Savage, P. E. (1997). Supercritical Water Oxidation Kinetics , Products , and Pathways for CH 3 - and CHO-Substituted Phenols. Industrial & Engineering Chemistry Research, 36, 1391–1400. https://doi.org/10.1021/ie960697q Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020 Matsumura, Y., Minowa, T., Potic, B., Kersten, S. R. A., Prins, W., Van Swaaij, W. P. M., Van De Beld, B., Elliott, D. C., Neuenschwander, G. G., Kruse, A., & Antal, M. J. (2005). Biomass gasification in near- and super-critical water: Status and prospects. Biomass and Bioenergy, 29(4), 269–292. https://doi.org/10.1016/j.biombioe.2005.04.006 McMahon, A., Lu, H., & Butovich, I. A. (2013). The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions. Lipids, 48(5), 513–525. https://doi.org/10.1007/s11745-013-3755-9 Megharaj, M., Pearson, H. W., & Venkateswarlu, K. (1992). Effects of phenolic compounds on growth and metabolic activities of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Plant and Soil, 140, 25–34. Melgarejo, L. M. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia. Miao, X., Wu, Q., & Yang, C. (2004). Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis, 71(2), 855–863. https://doi.org/10.1016/j.jaap.2003.11.004 Michalak, I., Marycz, K., Basińska, K., & Chojnacka, K. (2014). Using SEM-EDX and ICP-OES to investigate the elemental composition of green macroalga vaucheria sessilis. Scientific World Journal, 2014. https://doi.org/10.1155/2014/891928 Resolucion 631-2015, Pub. L. No. 631, 62 (2015). Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077 Munoz, M., Pedro, Z. M. De, Casas, J. A., & Rodriguez, J. J. (2013). Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 228, 646–654. https://doi.org/10.1016/j.cej.2013.05.057 Myers, R. H., & Montgomery, D. C. (1997). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. In Journal of Statistixal Planning and Interference (Vol. 59). Wiley. Neveux, N., Yuen, A. K. L., Jazrawi, C., Magnusson, M., Haynes, B. S., Masters, A. F., Montoya, A., Paul, N. A., Maschmeyer, T., & Nys, R. De. (2014). Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresource Technology, 155, 334–341. https://doi.org/10.1016/j.biortech.2013.12.083 Nielsen, S. S. (2017). Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual (pp. 47–53). Springer. https://doi.org/10.1007/978-3-319-44127-6 NIVA. (2008). The toxicity of selected amines and secondary products to aquatic organisms: A review (Issue 5698). Papadopoulos, A. E., Fatta, D., & Loizidou, M. (2007). Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load. Journal of Hazardous Materials, 146, 558–563. https://doi.org/10.1016/j.jhazmat.2007.04.083 Patel, B., Guo, M., Chong, C., Sarudin, S. H. M., & Hellgardt, K. (2016). Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Science of the Total Environment, 568, 489–497. https://doi.org/10.1016/j.scitotenv.2016.06.041 Patel, B., & Hellgardt, K. (2015). Hydrothermal upgrading of algae paste in a continuous flow reactor. Bioresource Technology, 191, 460–468. https://doi.org/10.1016/j.biortech.2015.04.012 Pekakis, P. A., Xekoukoulotakis, N. P., & Ã, D. M. (2006). Treatment of textile dyehouse wastewater by TiO 2 photocatalysis. Water Research, 40, 1276–1286. https://doi.org/10.1016/j.watres.2006.01.019 Peng, W., Wu, Q., Tu, P., & Zhao, N. (2001). Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology, 80(1), 1–7. https://doi.org/10.1016/S0960-8524(01)00072-4 Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. https://doi.org/10.1039/b810100k Phani, K., Dandamudi, R., Muppaneni, T., Markovski, J. S., Lammers, P., & Deng, S. (2019). Hydrothermal liquefaction of green microalga Kirchneriella sp . under sub- and super-critical water conditions. Biomass and Bioenergy, 120(May 2018), 224–228. https://doi.org/10.1016/j.biombioe.2018.11.021 Portela, J. R., Nebot, E., & Mart, E. (2001). Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chemical Engineering Journal, 81, 287–299. Posten, C., & Schaub, G. (2009). Microalgae and terrestrial biomass as source for fuels-A process view. Journal of Biotechnology, 142(1), 64–69. https://doi.org/10.1016/j.jbiotec.2009.03.015 Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53(2), 150–154. https://doi.org/10.1111/j.1472-765X.2011.03082.x Qian, L., Wang, S., Xu, D., Guo, Y., Tang, X., & Wang, L. (2015). Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation. Bioresource Technology, 176, 218–224. https://doi.org/10.1016/j.biortech.2014.10.125 Raheem, A., Sivasangar, S., Wan Azlina, W. A. K. G., Taufiq Yap, Y. H., Danquah, M. K., & Harun, R. (2015). Thermogravimetric study of Chlorella vulgaris for syngas production. Algal Research, 12, 52–59. https://doi.org/10.1016/j.algal.2015.08.003 Rai, M. P., Nigam, S., & Sharma, R. (2013). Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass and Bioenergy, 58, 251–257. https://doi.org/10.1016/j.biombioe.2013.08.038 Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology (1st ed.). Blakwell Science Ltd. https://doi.org/10.1002/9780470995280 Rizzo, A. M., Prussi, M., Bettucci, L., Libelli, I. M., & Chiaramonti, D. (2013). Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Applied Energy, 102, 24–31. https://doi.org/10.1016/j.apenergy.2012.08.039 Rodriguez, C. H. (2015). El Instituto De Hidrología, Meteorología y Estudios Ambientales. 9. http://www.ideam.gov.co/ Rueda-Marquez, J. J., Levchuk, I., Salcedo, I., Acevedo-merino, A., & Manzano, M. A. (2016). Post-treatment of re fi nery wastewater ef fl uent using a combination of AOPs ( H2O2 photolysis and catalytic wet peroxide oxidation ) for possible water reuse . Comparison of low and medium pressure lamp performance. Water Research, 91, 86–96. https://doi.org/10.1016/j.watres.2015.12.051 Rueda-Márquez, J. J., Pintado-Herrera, M. G., Martín-Díaz, M. L., Acevedo-Merino, A., & Manzano, M. A. (2015). Combined AOPs for potential wastewater reuse or safe discharge based on multi-barrier treatment (microfiltration-H2O2/UV-catalytic wet peroxide oxidation). Chemical Engineering Journal, 270, 80–90. https://doi.org/10.1016/j.cej.2015.02.011 Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65. https://doi.org/10.1016/j.algal.2013.12.004 Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014a). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35(July), 265–278. https://doi.org/10.1016/j.rser.2014.04.007 Sanabria, D. (2004). Fósforo total en agua por digestión ácida, método del ácido ascórbico. In IDEAM (Vol. 008). http://www.fing.edu.uy/imfia/cursos/hidrometria/material/Guia_de_Monitoreo.pdf Sanz-luque, E., Chamizo-ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae Overview of Nitrate Assimilation. Frontiers in Plant Science, 6(October). https://doi.org/10.3389/fpls.2015.00899 Savage, P. E. (1999). Organic Chemical Reactions in Supercritical Water. Chemical Reviews, 99(2), 603–622. https://doi.org/10.1021/cr9700989 Savage, P. E., Duan, P., & Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, January 2011, 52–61. https://doi.org/10.1021/ie100758s Scragg, A. H. (2006). The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzyme and Microbial Technology, 39(4), 796–799. https://doi.org/10.1016/j.enzmictec.2005.12.018 Selvaratman, T., Reddy, H., Muppaneni, T., Holguin, F. O., Nirmalakhandan, N., Lammers, P. J., & Deng, S. (2015). Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Research, 12, 74–79. https://doi.org/10.1016/j.algal.2015.07.007 Shakya, R. (2014). Hydrothermal Liquefaction of Algae for Bio-oil Production. Auburn University. Shakya, R., Adhikari, S., Mahadevan, R., Shanmugam, S. R., Nam, H., Barbary, E., & Dempster, T. A. (2017). Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresource Technology, 243, 1112–1120. https://doi.org/10.1016/j.biortech.2017.07.046 Shanmugam, S. R., Adhikari, S., & Shakya, R. (2017). Hydrothermal Liquefaction of Algae Abstract : Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.031 Shanmugam, S. R., Adhikari, S., Wang, Z., & Shakya, R. (2017). Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production. Bioresource Technology, 223, 115–120. https://doi.org/10.1016/j.biortech.2016.10.008 Shen, Q. H., Gong, Y. P., Fang, W. Z., Bi, Z. C., Cheng, L. H., Xu, X. H., & Chen, H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193, 68–75. https://doi.org/10.1016/j.biortech.2015.06.050 Shen, Y., Yuan, W., Pei, Z. J., Wu, Q., & Mao, E. (2009). Microalgae mass production methods. Transactions of the ASABE, 52(4), 1275–1287. https://doi.org/10.1023/A:1012663213153 Shigeoka, T., Sato, Y., Takeda, Y., Yoshida, K., & Yamauchi, F. (1988). ACUTE TOXICITY OF CHLOROPHENOLS TO GREEN ALGAE , SELENASTRUM CAPRICORNUTUM AND STRUCTURE-ACTIVITY RELATIONSHIPS. Environmental Toxicology and Chemistry, 7, 847–854. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass: Laboratory Analytical Procedure (LAP). Nrel/Tp-510-42622, April 2005, 18. https://doi.org/NREL/TP-510-42619 Stark, K., Plaza, E., & Hultman, B. (2006). Phosphorus release from ash , dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere, 62, 827–832. https://doi.org/10.1016/j.chemosphere.2005.04.069 Stendahl, K. (2018). Phosphate recovery from sewage sludge in combination with supercritical water oxidation. Water Science and Technology, 48(1), 185–190. Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. https://doi.org/10.1016/j.rser.2012.03.047 Talbot, C., Garcia-moscoso, J., Drake, H., Stuart, B. J., & Kumar, S. (2016). Cultivation of microalgae using fl ash hydrolysis nutrient recycle. Algal Research, 18, 191–197. https://doi.org/10.1016/j.algal.2016.06.021 Tan, X., Meng, J., Tang, Z., Yang, L., & Zhang, W. (2020). Chemosphere Optimization of algae mixotrophic culture for nutrients recycling and biomass / lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere, 244, 125509. https://doi.org/10.1016/j.chemosphere.2019.125509 Tantiphiphatthana, M., Peng, L., Jitrwung, R., & Yoshikawa, K. (2015). Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae. International Scholarly and Scientific Research & Innovation, 9(5), 503–511. Taylor, P., Wang, Q., Lv, Y., Zhang, R., & Bi, J. (2013). Desalination and Water Treatment Treatment of cotton printing and dyeing wastewater by supercritical water oxidation. Desalination and Water Treatment, 51(12), 37–41. https://doi.org/10.1080/19443994.2013.792164 Terry, K. L., & Raymond, L. P. (1985). System design for the autotrophic production of microalgae. Enzyme and Microbial Technology, 7(10), 474–487. https://doi.org/10.1016/0141-0229(85)90148-6 Teymouri, A., Barbera, E., Sforza, E., Morosinotto, T., Bertucco, A., & Kumar, S. (2016). Integration of Biofuels Intermediates Production and Nutrients Recycling in the Processing of a Marine Algae. AIChE Journal, 59(6), 663–667. https://doi.org/10.1002/aic. Tian, C., Li, B., Liu, Z., Zhang, Y., & Lu, H. (2014). Hydrothermal liquefaction for algal biorefinery: A critical review. Renewable and Sustainable Energy Reviews, 38, 933–950. https://doi.org/10.1016/j.rser.2014.07.030 Timmons, M. B., & Losordo, T. (1994). Aquaculture water reuse systems : Engineering design and management. Elsevier Science. Tommaso, G., Chen, W., Li, P., Schideman, L., & Zhang, Y. (2015). Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresource Technology, 178, 139–146. https://doi.org/10.1016/j.biortech.2014.10.011 Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342. https://doi.org/10.1016/j.energy.2011.03.013 United Nations. (2000). United Nations Millennium Declaration: Resolution adapted by the General Assembly. General Assembly, September, 9. http://www.un.org/en/events/pastevents/millennium_summit.shtml UPME, & BID. (2015). Integración de las energías renovables no convencionales en Colombia. http://www.upme.gov.co/Estudios/2015/Integracion_Energias_Renovables/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdf Valdez, P. J., Dickinson, J. G., & Savage, P. E. (2011). Characterization of Product Fractions from Hydrothermal Liquefaction of Nannochloropsis sp . and the Influence of Solvents. Energy and Fuels, 25, 3235–3243. Valdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N., & Savage, P. E. (2012). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317–331. https://doi.org/10.1016/j.biombioe.2012.08.009 Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012 Wang, J., Zhou, W., Chen, H., Zhan, J., He, C., & Wang, Q. (2019). Ammonium Nitrogen Tolerant Chlorella Strain Screening and Its Damaging Effects on Photosynthesis. Frontiers in Microbiology, 9(January), 1–13. https://doi.org/10.3389/fmicb.2018.03250 Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2010). Cultivation of Green Algae Chlorella sp . in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162, 1174–1186. https://doi.org/10.1007/s12010-009-8866-7 Widjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13–20. https://doi.org/10.1016/j.jtice.2008.07.007 Wiel, J. B. Vander, Mikulicz, J. D., Boysen, M. R., Hashemi, N., Kalgren, P., Nauman, L. M., Baetzold, S. J., Powell, G. G., & Nastaran, N. (2017). Characterization of Chlorella vulgaris and Chlorella protothecoides using multi-pixel photon counters in a 3D focusing opto fl uidic system. Royal Society of Chemistry Advances, 4402–4408. https://doi.org/10.1039/c6ra25837a Wymer, P. E. O., & Thake, B. (1980). The Importance of Phosphorus in Microalgal Growth and Species Composition in Mixed Populations : Experiments and Simulations. Proceedings of the Royal Society of London, 209, 333–353. https://doi.org/10.1098/rspb.1980.0099 Xu, C., & Lad, N. (2008). Production of Heavy Oils with High Caloric Values by Direct Liquefaction of Woody Biomass in Sub / Near-critical Water. Energy and Fuels, 22(10), 635–642. Xu, P., Janex, M. L., Savoye, P., Cockx, A., & Lazarova, V. (2002). Wastewater disinfection by ozone: Main parameters for process design. Water Research, 36(4), 1043–1055. https://doi.org/10.1016/S0043-1354(01)00298-6 Xu, Y., Zheng, X., Yu, H., & Hu, X. (2014). Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Bioresource Technology, 156, 1–5. https://doi.org/10.1016/j.biortech.2014.01.010 Yang, B., Cheng, Z., Tang, Q., & Shen, Z. (2018). Nitrogen transformation of 41 organic compounds during SCWO: A study on TN degradation rate, N-containing species distribution and molecular characteristics. Water Research. https://doi.org/10.1016/j.watres.2017.12.080 Yang, B., Cheng, Z., Yuan, T., & Shen, Z. (2018). Denitrification of ammonia and nitrate through supercritical water oxidation ( SCWO ): A study on the e ff ect of NO3− / NH4+ ratios , catalysts and auxiliary fuels. The Journal of Supercritical Fluids, 138(January), 56–62. https://doi.org/10.1016/j.supflu.2018.03.021 Yang, J. H., Shin, H. Y., Ryu, Y. J., & Lee, C. G. (2018). Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery. Journal of Industrial and Engineering Chemistry, 68, 267–273. https://doi.org/10.1016/j.jiec.2018.07.053 Yang, Y. F., Feng, C. P., Inamori, Y., & Maekawa, T. (2004). Analysis of energy conversion characteristics in liquefaction of algae. Resources Conservation & Recycling, 43, 21–33. https://doi.org/10.1016/j.resconrec.2004.03.003 Yeh, K., & Chang, J. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120–127. https://doi.org/10.1016/j.biortech.2011.11.103 Yong, G., Ying, S., Loke, P., Tao, Y., & Lim, C. (2019). Reports Recent advances in algae biodiesel production : From upstream cultivation to downstream processing. Bioresource Technology Reports, 7(April), 100227. https://doi.org/10.1016/j.biteb.2019.100227 Yu, G, Zhang, Y., Schideman, L., Funk, T. L., & Wang, Z. (2011). Hydrothermal Liquefaction of Low Lipid Content Microalgae inot Biocrude Oil. American Society of Agricultural Engineers, 54(1), 239–246. Yu, Guo, Zhang, Y., Guo, B., Funk, T., & Schideman, L. (2014). Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae. Bioenergy Research, 7(4), 1317–1328. https://doi.org/10.1007/s12155-014-9471-3 Yu, Guo, Zhang, Y., Schideman, L., Funk, T., & Wang, Z. (2011). Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy and Environmental Science, 4(11), 4587–4595. https://doi.org/10.1039/c1ee01541a Zhang, H., Zhang, X., & Ding, L. (2020). Partial oxidation of phenol in supercritical water with NaOH and H 2 O 2 : Hydrogen production and polymer formation. Science of the Total Environment, 722, 137985. https://doi.org/10.1016/j.scitotenv.2020.137985 Zhang, L., Lu, H., Zhang, Y., Li, B., Liu, Z., Duan, N., & Liu, M. (2016). Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. Journal of Applied Phycology, 28(2), 1031–1039. https://doi.org/10.1007/s10811-015-0640-3 Zhu, Y., Albrecht, K. O., Elliott, D. C., Hallen, R. T., & Jones, S. B. (2013). Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Research, 2(4), 455–464. https://doi.org/10.1016/j.algal.2013.07.003 Zhu, Y., Biddy, M. J., Jones, S. B., Elliott, D. C., & Schmidt, A. J. (2014). Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction ( HTL ) and upgrading. Applied Energy, 129, 384–394. https://doi.org/10.1016/j.apenergy.2014.03.053 Zhu, Z., Rosendahl, L., Sohail, S., Yu, D., & Chen, G. (2015). Hydrothermal liquefaction of barley straw to bio-crude oil : Effects of reaction temperature and aqueous phase recirculation. APPLIED ENERGY, 137, 183–192. https://doi.org/10.1016/j.apenergy.2014.10.005 Zhuang, X., Zhan, H., Song, Y., He, C., Huang, Y., & Yin, X. (2019). Insights into the evolution of chemical structures in lignocellulose and non- lignocellulose biowastes during hydrothermal carbonization ( HTC ). Fuel, 236(June 2018), 960–974. https://doi.org/10.1016/j.fuel.2018.09.019 Zimmermann, F. (1954). Waste disposal (Patent No. 2,665,249). United States Patent Office. Zou, S., Wu, Y., Yang, M., Li, C., & Tong, J. (2009). Thermochemical catalytic liquefaction of the marine microalgae dunaliella tertiolecta and characterization of bio-oils. Energy and Fuels, 23(7), 3753–3758. https://doi.org/10.1021/ef9000105 |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados al autor, 2021 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
190 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá - Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79961/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79961/3/1032454795.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79961/4/1032454795.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 8969c5992c13f21f8236286d943d8c63 4fa22dff3e49f0f98eae0129b0c58824 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089452063031296 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Godoy Silva, Rubén Darío019810b6b9f5c2a275ca1c832cf9cda7Rodríguez Varela, Luis Ignaciocbbd6a87ab310fe6ca4325ebe6c3cff6Pasos Panqueva, Johan Andrés13dd44532bed0a88c6b70cc9ca9c14ba2021-08-18T15:15:12Z2021-08-18T15:15:12Z2021-06https://repositorio.unal.edu.co/handle/unal/79961Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Múltiples estudios presentan las microalgas como la fuente de biocombustibles más prometedora, debido a que, entre otras características, son 50 veces más eficientes en convertir la luz solar en biomasa y capturan entre 10 y 50 veces más CO2 que las plantas terrestres. Debido a que el contenido de agua de estos microorganismos puede alcanzar más del 95% en peso, la licuefacción hidrotermal (LHT), que emplea agua a condiciones supercríticas, se ha perfilado como la mejor manera para convertir la biomasa húmeda de microalga en biocrudo. Sin embargo, el rendimiento del proceso para producir biocrudo no supera el 50%, por lo que la generación de una fase acuosa (subproducto de la LHT) constituye el principal residuo del proceso. El presente trabajo pretende evaluar otro proceso hidrotermal, denominado oxidación hidrotermal con peróxido, como alternativa de tratamiento de la fase acuosa proveniente de la LHT de la microalga Chlorella vulgaris. En primer lugar, se obtuvo la biomasa algal a licuar, se caracterizó bioquímicamente y se realizó la licuefacción hidrotermal, determinando los rendimientos de producción de cada una de las fases a condiciones constantes de reacción (375ºC y 15 minutos de reacción). Posteriormente se caracterizó la fase acuosa obtenida y se diseñó un plan de experimentos que permita establecer las condiciones de reacción adecuadas (tiempo y relación molar de peróxido) que maximicen la producción de fase acuosa tratada. Finalmente, se caracterizó la fase acuosa tratada y se realizaron cultivos comparativos de la microalga en diferentes diluciones de fase acuosa, con el fin de cuantificar el crecimiento algal y evaluar el potencial de recirculación del agua tratada por medio de la oxidación hidrotermal con peróxido. Con el desarrollo de este trabajo se demostró que es viable tratar la fase acuosa de la LHT, para recircular agua y recuperar nutrientes; con lo cual, se mejora la sostenibilidad ambiental y energética de la producción de biocrudo a partir de algas. (Texto tomado de la fuente)Multiple studies present microalgae as the most promising source of biofuels, due to the fact that, among other characteristics, they are 50 times more efficient in converting sunlight into biomass and capture between 10 and 50 times more CO2 than terrestrial plants. Because the water content of these microorganisms can reach more than 95% by weight, hydrothermal liquefaction (LHT), which uses water at supercritical conditions, has emerged as the best way to convert wet microalgae biomass to biocrude. However, the yield of the process to produce biocrude does not exceed 50%, so the generation of an aqueous phase (by-product of the LHT) constitutes the main waste of the process. The present work aims to evaluate another hydrothermal process, called hydrothermal oxidation with peroxide, as an alternative for treating the aqueous phase from the LHT of the microalgae Chlorella vulgaris. First, the algal biomass to be liquefied was obtained, it was biochemically characterized and hydrothermal liquefaction was carried out, determining the production yields of each of the phases at constant reaction conditions (375ºC and 15 minutes of reaction). Subsequently, the aqueous phase obtained was characterized and an experiment plan was designed to establish the appropriate reaction conditions (time and molar ratio of peroxide) that maximize the production of the treated aqueous phase. Finally, the treated aqueous phase was characterized and comparative cultures of the microalgae were carried out in different dilutions of the aqueous phase, in order to quantify the algal growth and evaluate the recirculation potential of the treated water by means of hydrothermal oxidation with peroxide. With the development of this work it was demonstrated that it is feasible to treat the aqueous phase of the LHT, to recirculate water and recover nutrients; with which, the environmental and energy sustainability of the production of biocrude from algae is improved.(Text taken from the source)MaestríaMagister en Ingeniería QuímicaBioprocesosProcesos termoquímicos190 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá - ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civil660 - Ingeniería químicaMicroalgaLicuefacción hidrotermalTratamiento de aguas residualesProcesos avanzados de oxidaciónRecuperación de nutrientesOxidación hidrotermal con peroxidoChlorella vulgarisMicroalgaeHydrothernal liquefactionWastewater treatmentWet peroxide oxidationNutrient recoveryAdvanced oxidation processEvaluación del proceso de oxidación hidrotermal con peróxido como alternativa de tratamiento de la fase acuosa resultante de la licuefacción hidrotermal de microalgasAssessment of the wet peroxide oxidation process as an alternative for the treatment of the aqueous phase resulting from the hydrothermal liquefaction of microalgaeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperTexthttp://purl.org/redcol/resource_type/TMAbreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. BIORESOURCE TECHNOLOGY, 118, 61–66. https://doi.org/10.1016/j.biortech.2012.05.055Aida, T., Maruta, R., Tanabe, Y., Oshima, MinNonaka, T., Kujiraoka, H., Kumagai, Y., & Ota, M. (2016). Nutrient recycle from defatted microalgae (Aurantiochytrium ) with hydrothermal treatment for microalgae cultivation. Bioresource Technology. https://doi.org/10.1016/j.biortech.2016.12.078Al-duri, B., & Alsoqyani, F. (2017). Supercritical water oxidation ( SCWO ) for the removal of nitrogen containing heterocyclic waste hydrocarbons . Part II : System kinetics. The Journal of Supercritical Fluids, 128(May), 412–418. https://doi.org/10.1016/j.supflu.2017.05.010Al Hattab, M., & Ghaly, A. (2015). Production of Biodiesel from Marine and Freshwater Microalgae : A Review. Advances in Research, 3(2), 107–155. https://doi.org/10.9734/AIR/2015/7752Alcaraz, M. R., Fabiano, S. N., & Cámara, M. S. (2012). Determinación De Contenido Fenólico Total En Agua Superficial De Distintos Puntos De La Provincia De Santa Fe – Argentina – Haciendo Uso De Un Biosensor Enzimático Mediante Calibración Multivariada Por Cuadrados Parciales Mínimos , Pls. Septimo Congreso de Medio Ambiente, 1–22.Alimoradi, S., Stohr, H., Stagg-Williams, S., & Sturm, B. (2020). Effect of temperature on toxicity and biodegradability of dissolved organic nitrogen formed during hydrothermal liquefaction of biomass. Chemosphere, 238, 124573. https://doi.org/10.1016/j.chemosphere.2019.124573Alnaizy, R., & Akgerman, A. U. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4(May), 233–244.Anastasakis, K., & Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology, 102(7), 4876–4883. https://doi.org/10.1016/j.biortech.2011.01.031Andersen, R. A. (2005). Algal Culturing Techniques (1st ed.). Elsevier Academic Press.Anku, W., Mamo, M., & Govender, P. (2017). Phenolic compounds in Water: Sources, reactivity, toxicity and treatment methods. In M. Soto-Hernandez, M. Palma-Tenango, & M. del R. Garcia-Mateos (Eds.), Phenolic Compounds - Natural Sources, Importance and Applications abundant (p. 444). InTech. https://doi.org/http://dx.doi.org/10.5772/66927Ansari, F. A., Gupta, S. K., Nasr, M., Rawat, I., & Bux, F. (2018). Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 182, 634–643. https://doi.org/10.1016/j.jclepro.2018.02.098APHA. (1999). Standard Methods for the Examination of Water and Wastewater (21st ed.).Armandina, E., Tercero, R., Bertucco, A., & Brilman, D. W. F. W. (2015). Process water recycle in Hydrothermal Liquefaction of microalgae to enhance bio-oil yield. Energy and Fuels, 3. https://doi.org/10.1021/ef502773wArun, J., Varshini, P., Prithvinath, P. K., Priyadarshini, V., & Gopinath, K. P. (2018). Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresource Technology, 4. https://doi.org/10.1016/j.biortech.2018.04.029Azov, Y., & Goldman, J. C. (1982). Free Ammonia Inhibition of Algal Photosynthesis in Intensive Culturest. Applied And, 43(4), 735–739.Bagnoud-Velásquez, M., Schmid-Staiger, U., Peng, G., Vogel, F., & Ludwig, C. (2015). First developments towards closing the nutrient cycle in a biofuel production process. Algal Research, 8, 76–82. https://doi.org/10.1016/j.algal.2014.12.012Baier, S. L., Clements, M., Griffiths, C. W., & Ihrig, J. E. (2009). Biofuels Impact on Crop and Food Prices: Using an Interactive Spreadsheet. Social Science Research Network, 967. https://doi.org/10.2139/ssrn.1372839Barbarino, E., & Louren, S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. Journal of Applied Phycology, 17, 447–460. https://doi.org/10.1007/s10811-005-1641-4Bashan, Y., Lopez, B. R., Huss, V. A. R., Amavizca, E., & de-Bashan, L. E. (2016). Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain. Journal of Applied Phycology, 28(1), 113–121. https://doi.org/10.1007/s10811-015-0571-zBaup, S., Jaffre, C., Wolbert, D., & Laplanche, A. (2000). Adsorption of pesticides onto granular activated carbon: Determination of surface diffusivities using simple batch experiments. Adsorption, 6(3), 219–228. https://doi.org/10.1023/A:1008937210953Becker, R., Dorgerloh, U., Paulke, E., Mumme, J., & Nehls, I. (2014). Hydrothermal Carbonization of Biomass : Major Organic Components of the Aqueous Phase. Chemical Engineering and Technology, 3, 511–518. https://doi.org/10.1002/ceat.201300401Benatti, C. T., Granhen Tavares, C. R., & Guedes, T. A. (2006). Optimization of Fenton ’ s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Engineering (United States), 80, 66–74. https://doi.org/10.1016/j.jenvman.2005.08.014Benvenuti, G., Bosma, R., Cuaresma, M., Janssen, M., Barbosa, M. J., & Wijffels, R. H. (2015). Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. Journal of Applied Phycology, 27(4), 1425–1431. https://doi.org/10.1007/s10811-014-0470-8Bermejo, M. D., & Cocero, M. J. (2006). Supercritical Water Oxidation: A Technical Review. AIChE Journal, 52(11), 3933–3951. https://doi.org/10.1002/aicBiller, P., & Ross, A. B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), 215–225. https://doi.org/10.1016/j.biortech.2010.06.028Biller, P., Ross, A. B., Skill, S. C., Lea-Langton, A., Balasundaram, B., Hall, C., Riley, R., & Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 70–76. https://doi.org/10.1016/j.algal.2012.02.002Biller, Patrick, Madsen, R. B., Klemmer, M., Becker, J., Iversen, B. B., & Glasius, M. (2016). Effect of hydrothermal liquefaction aqueous phase recycling on bio- crude yields and composition. Bioresource Technology, 220, 190–199. https://doi.org/10.1016/j.biortech.2016.08.053Bio-Rad. (2006). Protein Assay. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.prodprot15Blair, M. F., Kokabian, B., & Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665–674. https://doi.org/10.1016/j.jece.2013.11.005Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.Boer, K. De, & Moheimani, N. R. (2012). Extraction and conversion pathways for microalgae to biodiesel : a review focused on energy consumption. Journal of Applied Phycology, 24, 1681–1698. https://doi.org/10.1007/s10811-012-9835-zBradford, Marion M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3Brand, S., Hardi, F., Kim, J., & Suh, D. J. (2014). Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol. Energy, 68, 420–427. https://doi.org/10.1016/j.energy.2014.02.086Brennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009Brown, M. R., & Mccausland, M. A. (1998). The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture, 165, 281–293.Brown, T. M., Duan, P., & Savage, P. E. (2010). Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy and Fuels, 24(6), 3639–3646. https://doi.org/10.1021/ef100203uByreddy, A. R., Gupta, A., Barrow, C. J., & Puri, M. (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of Microbiological Methods, 125, 28–32. https://doi.org/10.1016/j.mimet.2016.04.002Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030Cao, Y., Wang, Y., Riley, J. T., & Pan, W. P. (2006). A novel biomass air gasification process for producing tar-free higher heating value fuel gas. Fuel Processing Technology, 87(4), 343–353. https://doi.org/10.1016/j.fuproc.2005.10.003Chang, I. S., & Kim, S. N. (2005). Wastewater treatment using membrane filtration - Effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3–4), 1307–1314. https://doi.org/10.1016/j.procbio.2004.06.019Chen, C., Lu, Z., Ma, X., Long, J., Peng, Y., Hu, L., & Lu, Q. (2013). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresource Technology, 144, 563–571. https://doi.org/10.1016/j.biortech.2013.07.011Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81. https://doi.org/10.1016/j.biortech.2010.06.159Chen, W.-T., Tang, L., Qian, W., Scheppe, K., Nair, K., Wu, Z., Gai, C., Zhang, P., & Zhang, Y. (2016). Extract Nitrogen-Containing Compounds in Biocrude Oil Converted from Wet Biowaste via Hydrothermal Liquefaction. Sustainable Chemistry and Engineering, 2. https://doi.org/10.1021/acssuschemeng.5b01645Chen, W.-T., Zhang, Y., Zhang, J., Schideman, L., Yu, G., Zhang, P., & Minarick, M. (2014). Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Applied Energy, 128, 209–216. https://doi.org/10.1016/J.APENERGY.2014.04.068Chen, W. H., Huang, M. Y., Chang, J. S., & Chen, C. Y. (2015). Torrefaction operation and optimization of microalga residue for energy densification and utilization. Applied Energy, 154, 622–630. https://doi.org/10.1016/j.apenergy.2015.05.068Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039Chen, X., Ma, X., Peng, X., Lin, Y., Wang, J., & Zheng, C. (2018). Effects of aqueous phase recirculation in hydrothermal carbonization of sweet potato waste. Bioresource Technology, 267(381), 167–174. https://doi.org/10.1016/j.biortech.2018.07.032Cheng, Y. S., Zheng, Y., & VanderGheynst, J. S. (2011). Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids, 46(1), 95–103. https://doi.org/10.1007/s11745-010-3494-0Cherad, R., Onwudili, J. A., Biller, P., Williams, P. T., & Ross, A. B. (2016a). Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. Fuel, 166, 24–28. https://doi.org/10.1016/j.fuel.2015.10.088Chiaramonti, D., Oasmaa, A., & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable and Sustainable Energy Reviews, 11(6), 1056–1086. https://doi.org/10.1016/j.rser.2005.07.008Christensen, P. S., Peng, G., Vogel, F., & Iversen, B. B. (2014). Hydrothermal liquefaction of the microalgae Phaeodactylum tricornutum: Impact of reaction conditions on product and elemental distribution. Energy and Fuels, 28(9), 5792–5803. https://doi.org/10.1021/ef5012808Ciabatti, I., Tognotti, F., & Lombardi, L. (2010). Treatment and reuse of dyeing effluents by potassium ferrate. Desalination, 250(1), 222–228. https://doi.org/10.1016/j.desal.2009.06.019Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R., & Steyer, J. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207–214. https://doi.org/10.1016/j.biortech.2010.06.154Corley, R. (1998). Productividad de la palma de aceite Aspectos fisiológicos. Palmas, 19(Especial), 162–168.Costanzo, W., Jena, U., Hilten, R., Das, K. C., & Kastner, J. R. (2015). Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Research, 12, 377–387. https://doi.org/10.1016/j.algal.2015.09.019Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9Croiset, E., Rice, S. F., & Hanush, R. G. (1997). Hydrogen Peroxide Decomposition in Supercritical Water. AIChE Journal, 43(9), 2343–2352. https://doi.org/10.1002/aic.690430919Cui, S., & Brummer, Y. (2010). Understanding Carbohydrate Analysis. In Food Carbohydrates (pp. 67–104). Taylor & Francis Group. https://doi.org/10.1201/9780203485286.ch2Dannis, M. (1951). Determination of Phenols by the Amino-Antipyrine Method. Sewage and Industrial Wastes, 23(12), 1516–1522.Debellefontaine, H., Chakchouk, M., Foussard, J. N., Tissot, D., & Striolo, P. (1996). Treatment of organic aqueous wastes: Wet air oxidation and wet peroxide oxidation ®. Environmental Pollution, 92(2), 155–164. https://doi.org/10.1016/0269-7491(95)00100-XDemirbas, A. (2016). Calculation of higher heating values of fatty acids. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(18), 2693–2697. https://doi.org/10.1080/15567036.2015.1115924Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0Deniel, M., Haarlemmer, G., Roubaud, A., Weiss-hortala, E., & Fages, J. (2016). Bio-oil Production from Food Processing Residues: Improving the Bio-oil Yield and Quality by Aqueous Phase Recycle in Hydrothermal Liquefaction of Blackcurrant ( Ribes nigrum L .) Pomace Maxime De n. Energy and Fuels, 5. https://doi.org/10.1021/acs.energyfuels.6b00441Dhankhar, R., & Hooda, A. (2011). Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467–491. https://doi.org/10.1080/09593330.2011.572922Du, Z., Hu, B., Shi, A., Ma, X., Cheng, Y., Chen, P., Liu, Y., Lin, X., & Ruan, R. (2012). Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresource Technology, 126, 354–357. https://doi.org/10.1016/j.biortech.2012.09.062Duan, P., Yang, S., Xu, Y., Wang, F., Zhao, D., Weng, Y., & Shi, X. (2018). Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy. https://doi.org/10.1016/j.energy.2018.05.044Dubber, D., & Gray, N. F. (2010). Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. Journal of Environmental Science and Health, Part A, 45(12), 1595–1600. https://doi.org/10.1080/10934529.2010.506116Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017Eboibi, B. E., Lewis, D. M., Ashman, P. J., & Chinnasamy, S. (2014). Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresource Technology, 170, 20–29. https://doi.org/10.1016/j.biortech.2014.07.083Edmundson, S., Huesemann, M., Kruk, R., Lemmon, T., Billing, J., Schmidt, A., & Anderson, D. (2017). Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction. Algal Research, July, 0–1. https://doi.org/10.1016/j.algal.2017.07.016Ekpo, U., Ross, A. B., Camargo-valero, M. A., & Williams, P. T. (2016). A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae , manure and digestate. Bioresource Technology, 200, 951–960. https://doi.org/10.1016/j.biortech.2015.11.018El-Shimi, H. I., Attia, N. K., El-Sheltawy, S. T., & El-Diwani, G. I. (2013). Biodiesel Production from Spirulina-Platensis Microalgae by In-Situ Transesterification Process. Journal of Sustainable Bioenergy Systems, 3(9), 224–233. https://doi.org/http://dx.doi.org/10.4236/jsbs.2013.33031Elliott, D. C., Hart, T. R., Schmidt, A. J., Neuenschwander, G. G., Rotness, L. J., Olarte, M. V, Zacher, A. H., Albrecht, K. O., Hallen, R. T., & Holladay, J. E. (2013). Process development for hydrothermal liquefaction of algae feedstocks in a continuous- fl ow reactor. Algal Research, 2(4), 445–454. https://doi.org/10.1016/j.algal.2013.08.005Environment Agency. (2007). Proposed EQS for Water Framework Directive Annex VIII substances: 2,4-dichlorophenol.EPA. (1978). Method 420.1 : Phenolics ( Spectrophotometric, Manual 4 AAP With Distillation ).Erkelens, M., Ball, A. S., & Lewis, D. M. (2015a). Bioresource Technology The application of activated carbon for the treatment and reuse of the aqueous phase derived from the hydrothermal liquefaction of a halophytic Tetraselmis sp . Bioresource Technology, 182, 378–382. https://doi.org/10.1016/j.biortech.2015.01.129Erkelens, M., Ball, A. S., & Lewis, D. M. (2015b). The application of activated carbon for the treatment and reuse of the aqueous phase derived from the hydrothermal liquefaction of a halophytic Tetraselmis sp . BIORESOURCE TECHNOLOGY, 1–5. https://doi.org/10.1016/j.biortech.2015.01.129Erkonak, H., Sogut, O. O., & Akgun, M. (2008). Treatment of olive mill wastewater by supercritical water oxidation. Journal of Supercritical Fluids, 46, 142–148. https://doi.org/10.1016/j.supflu.2008.04.006Faeth, J. L., Savage, P. E., Jarvis, J. M., Mckenna, A. M., & Savage, P. E. (2016). Characterization of Products from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. AIChE Journal, 62(3). https://doi.org/10.1002/aicFaeth, J. L., Valdez, P. J., & Savage, P. E. (2013). Fast hydrothermal liquefaction of nannochloropsis sp. to produce biocrude. Energy and Fuels, 27(3), 1391–1398. https://doi.org/10.1021/ef301925dFiorentino, A., Gentili, A., Isidori, M., Monaco, P., Nardelli, A., Parrella, A., & Temussi, F. (2003). Environmental Effects Caused by Olive Mill Wastewaters : Toxicity Comparison of Low-Molecular-Weight Phenol Components. Journal of Agricultural and Food Chemistry, 51, 1005–1009.Frank, E. D., Elgowainy, A., & Han, J. (2013). Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strateg Glob Change, 18, 137–158. https://doi.org/10.1007/s11027-012-9395-1Fricke, K., Santen, H., Wallmann, R., Hüttner, A., & Dichtl, N. (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management, 27(1), 30–43. https://doi.org/10.1016/j.wasman.2006.03.003Frings, C., & Dunn, R. (1970). A Colorimetric Method for Determination of Total Serum Lipids Based on the Sulfo-phospho-vanillin Reaction. American Journal of Clinical Pathology, 53(1), 89–91. https://doi.org/10.1093/ajcp/53.1.89Fu, W., Gudmundsson, O., Feist, A. M., Herjolfsson, G., Brynjolfsson, S., & Palsson, B. Ø. (2012). Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology, 161(3), 242–249. https://doi.org/10.1016/j.jbiotec.2012.07.004Fuhs, G. W., & Chen, M. (1975). Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecology, 2(2), 119–138. https://doi.org/10.1007/BF02010434Fushimi, C., Kakimura, M., Tomita, R., Umeda, A., & Tanaka, T. (2016). Enhancement of nutrient recovery from microalgae in hydrothermal liquefaction using activated carbon. Fuel Processing Technology, 148, 282–288. https://doi.org/10.1016/j.fuproc.2016.03.006Gai, C., Zhang, Y., Chen, W.-T., Zhou, Y., Schideman, L., Zhang, P., Tommaso, G., Kuo, C.-T., & Dong, Y. (2014). Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresource Technology, 43(6), 403–408. https://doi.org/10.1016/j.biortech.2014.10.118Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 101(1), 109–116. https://doi.org/10.1016/S0378-7753(01)00707-8García-jarana, M. B., Kings, I., Sánchez-oneto, J., Portela, J. R., & Al-duri, B. (2013). The Journal of Supercritical Fluids Supercritical water oxidation of nitrogen compounds with multi-injection of oxygen. The Journal of Supercritical Fluids, 80(2), 23–29. https://doi.org/10.1016/j.supflu.2013.04.004Garcia Alba, L., Torri, C., Samor??, C., Van Der Spek, J., Fabbri, D., Kersten, S. R. A., & Brilman, D. W. F. (2012). Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept. Energy and Fuels, 26(1), 642–657. https://doi.org/10.1021/ef201415sGarcia, L., Torri, C., Fabbri, D., Kersten, S. R. A., & Wim, D. W. F. (2013). Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chemical Engineering Journal, 228, 214–223. https://doi.org/10.1016/j.cej.2013.04.097Georgiou, C. D., Grintzalis, K., Zervoudakis, G., & Papapostolou, I. (2008). Mechanism of Coomassie brilliant blue G-250 binding to proteins: A hydrophobic assay for nanogram quantities of proteins. Analytical and Bioanalytical Chemistry, 391(1), 391–403. https://doi.org/10.1007/s00216-008-1996-xGernaey, K. V., Van Loosdrecht, M. C. M., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environmental Modelling and Software, 19(9), 763–783. https://doi.org/10.1016/j.envsoft.2003.03.005Glaze, W. H., Kang, J. W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9(4), 335–352. https://doi.org/10.1080/01919518708552148Gonçalves, R., Frazao, A., Pedrosa, R., Spindola, D., Cristina, V., Brasileiro-Vidal, A. C., De Araújo, D., & Marques, A. (2018). Chemosphere Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products. Chemosphere, 204, 344–350. https://doi.org/10.1016/j.chemosphere.2018.04.039Gopalan, S., & Savage, P. E. (1995). A Reaction Network Model for Phenol Oxidation in Supercritical Water. AIChE Journal, 41(8).Griffiths, M. J., Hille, R. P. Van, & Harrison, S. T. L. (2014). The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Applied Microbiology and Biotechnology, 98, 2345–2356. https://doi.org/10.1007/s00253-013-5442-4Guo, Y., Yeh, T., Song, W., Xu, D., & Wang, S. (2015). A review of bio-oil production from hydrothermal liquefaction of algae. Renewable and Sustainable Energy Reviews, 48, 776–790. https://doi.org/10.1016/j.rser.2015.04.049Haber, F., & Weiss, J. (1932). The Catalytic Decom position o f Hydrogen Peroxide by Iron Salts *. 332–351.He, Z., Xu, D., Liu, L., Wang, Y., Wang, S., Guo, Y., & Jing, Z. (2018). Product characterization of multi-temperature steps of hydrothermal liquefaction of Chlorella microalgae. Algal Research, 33(January), 8–15. https://doi.org/10.1016/j.algal.2018.04.013Heredia-arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35, 2245–2253. https://doi.org/10.1016/j.biombioe.2011.02.036Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D. J., & Eshtiaghi, N. (2014). A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment. BIORESOURCE TECHNOLOGY, 155, 289–299. https://doi.org/10.1016/j.biortech.2013.12.066HiP. (n.d.). High Pressure Equipment. Technical Information. https://www.highpressure.com/Hognon, C., Delrue, F., & Texier, J. (2014). Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii . Growth studies on the recovered hydrothermal aqueous phase. Biomass and Bioenergy, 73, 23–31. https://doi.org/10.1016/j.biombioe.2014.11.025Hon, T. H. E., & Costa, M. (2016). Shell Sustainability Report 2016. Royal Dutch Shell Plc.Hosseini, S. E., Wahid, M. A., Salehirad, S., & Seis, M. M. (2013). Evaluation of Palm Oil Combustion Characteristics by Using the Chemical Equilibrium with Application (CEA) Software. Applied Mechanics and Materials, 388, 268–272. https://doi.org/10.4028/www.scientific.net/AMM.388.268Hu, Y., Feng, S., Yuan, Z., Xu, C. C., & Bassi, A. (2017). Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.05.033IEA, & OECD. (2016). World Energy Outlook: Energy and Air Pollution.Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.Jena, U., & Das, K. C. (2011). Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy and Fuels, 25(11), 5472–5482. https://doi.org/10.1021/ef201373mJena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221–6229. https://doi.org/10.1016/j.biortech.2011.02.057Jena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. C. (2011a). Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology, 102(3), 3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111Jena, U., Vaidyanathan, N., Chinnasamy, S., & Das, K. C. (2011b). Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technology, 102(3), 3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111Jiang, J., & Savage, P. E. (2018). Metals and Other Elements in Biocrude from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. Energy and Fuels, 32(4), 4118–4126. https://doi.org/10.1021/acs.energyfuels.7b03144Jones, C., Hare, D., & Compton, S. (1989). Measuring Plant Protein with the Bradford Assay. 1 . Evaluation and Standard Method. Journal of Chemical Ecology, 15(3).K. Mandalam, R., & O Palsson, B. (1998). Elemental Balancing of Biomass and Medium Composition Enhances Growth Capacity in High-density Chlorella vulgaris Cultures. Biotechnology and Bioengineering, 59, 605–611.Kabadayi, A., Cem, I., & Yanik, J. (2017). Bioresource Technology Effects of spent liquor recirculation in hydrothermal carbonization. Bioresource Technology, 226, 89–93. https://doi.org/10.1016/j.biortech.2016.12.015Kasina, M., Wendorff-Belon, M., Kowalski, P. R., & Michalik, M. (2019). Characterization of incineration residues from wastewater treatment plant in Polish city: a future waste based source of valuable elements? Journal of Material Cycles and Waste Management, 21(4), 885–896. https://doi.org/10.1007/s10163-019-00845-1Killilea, R., Swallow, K. C., & Hong, G. T. (1992). The Fate of Nitrogen in Supercritical-Water Oxidation. The Journal of Supercritical Fluids, 5, 72–78.Kim, J., Chung, Y., Shin, D., Kim, M., Lee, Y., Lim, Y., & Lee, D. (2003). Chlorination by-products in surface water treatment process. Desalination, 151(1), 1–9. https://doi.org/10.1016/S0011-9164(02)00967-0Kim, W., Min, J., Geun, P., Gim, H., Si, D. K., & Kim, W. (2012). Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess and Biosystems Engineering, 35, 19–27. https://doi.org/10.1007/s00449-011-0612-1Knight, J. A., Anderson, S., & Rawle, J. M. (1972). Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clinical Chemistry, 18(3), 199–202.Knight, Joseph A, Anderson, S., & Rawle, J. M. (1972). ChemicalBasisof the Sulfo-phospho-vanillin Reactionfor Estimating Total Serum Lipids. Clinical Chemistry, 18(3), 199–202. https://doi.org/10.1093/clinchem/18.3.199Kolaczkowski, S. T., Plucinski, P., Beltran, F. J., Rivas, F. J., & Mclurgh, D. B. (1999). Wet air oxidation : a review of process technologies and aspects in reactor design. 73, 143–160.Kondru, A. K., Kumar, P., & Chand, S. (2009). Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. Journal of Hazardous Materials, 166(1), 342–347. https://doi.org/10.1016/j.jhazmat.2008.11.042Kritzer, P. (2004). Corrosion in high-temperature and supercritical water and aqueous solutions : A review. The Journal of Supercritical Fluids, 29(4), 1–29. https://doi.org/10.1016/S0896-8446(03)00031-7Kumar, K., Dasgupta, C. N., & Das, D. (2014). Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology, 167, 358–366. https://doi.org/10.1016/j.biortech.2014.05.118Kumar, S. (2012). Sub- and Supercritical Water-Based Processes for Microalgae to Biofuels (pp. 467–493). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_25Kumar, V., Nanda, M., Joshi, H. C., Singh, A., & Sharma, S. (2018). Production of biodiesel and bioethanol using algal biomass harvested from fresh water river. Renewable Energy, 116, 606–612. https://doi.org/10.1016/j.renene.2017.10.016L.S. Clesceri, A.R. Greenberg, R. R. T. (2010). Determinación colorimétrica de fenoles en agua por el método de la 4- aminoantipirina. 5(Revisión 1), 4–9.Lachmann, S. C., & Spijkerman, E. (2019). Nitrate or ammonium : Influences of nitrogen source on the physiology of a green alga. Ecology and Evolution, 10, 1070–1082. https://doi.org/10.1002/ece3.4790Laliberté, G., & De La Noüe, J. (1993). Auto-, hetero- and mixotrophic-growt of chlamydomonas humicola on acetate. Journal of Phycologie, 29(6), 612–620.Lasso, A. M. (2007). Fósforo soluble en agua por el método del ácido ascórbico. Instituto De Hidrología, Meteorología y Estudios Ambientales, 3, 1–11. http://www.ideam.gov.co/Lee, G., Nunoura, T., Matsumura, Y., & Yamamoto, K. (2002). Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions. Journal of Supercritical Fluids, 24, 239–250.Lee, R. A., & Lavoie, J. (2012). From first- to third-generation biofuels : Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, August, 6–11. https://doi.org/10.2527/af.2013-0010Leng, L., & Huang, H. (2018). An overview of the e ff ect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270(September), 627–642. https://doi.org/10.1016/j.biortech.2018.09.030Li, C., Yang, X., Zhang, Z., Zhou, D., Zhang, L., Zhang, S., & Chen, J. (2013). Hydrothermal Liquefaction of Desert Shrub Salix psammophila to High Value - added Chemicals and Hydrochar with Recycled Processing Water. Bioresource Technology, 8(2009), 2981–2997.Li, H., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., Liu, M., Zhu, Z., & Si, B. (2014). Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource Technology, 154, 322–329. https://doi.org/10.1016/j.biortech.2013.12.074Li, J., Wang, S., Li, Y., Jiang, Z., Xu, T., & Zhang, Y. (2020). Supercritical water oxidation and process enhancement of nitrogen-containing organics and ammonia. Water Research, 185(x), 116222. https://doi.org/10.1016/j.watres.2020.116222Li, J., Wang, S., Li, Y., Ren, M., Jiang, Z., Zhang, J., & Yang, C. (2020). Experimental research and commercial plant development for harmless disposal and energy utilization of petrochemical sludge by supercritical water oxidation. Chemical Engineering Research and Design, 162, 258–272. https://doi.org/10.1016/j.cherd.2020.08.006Li, Yalin, Leow, S., Fedders, A. C., Sharma, B. K., Guest, J. S., & Strathmann, T. J. (2017). Quantitative multiphase model for hydrothermal liquefaction of algal biomass. Green Chemistry, 19(4), 1163–1174. https://doi.org/10.1039/c6gc03294jLi, Yanhui, & Wang, S. (2020). Supercritical Water Oxidation for Environmentally Friendly Treatment of Organic Wastes. In I. Pioro (Ed.), Advanced Supercritical Fluids Technologies. IntechOpen.Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic , heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049. https://doi.org/10.1007/s10529-009-9975-7Lin, S. H., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050–2056. https://doi.org/10.1016/S0043-1354(97)00024-9Liu, L., Zhao, Y., Jiang, X., Wang, X., & Liang, W. (2018). Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium. Bioresource Technology, 262(April), 342–346. https://doi.org/10.1016/j.biortech.2018.04.092Liu, X., Saydah, B., Eranki, P., Colosi, L. M., Mitchell, B. G., Rhodes, J., & Clarens, A. F. (2013). Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technology, 148, 163–171. https://doi.org/10.1016/j.biortech.2013.08.112López Barreiro, D., Bauer, M., Hornung, U., Posten, C., Kruse, A., & Prins, W. (2015). Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Research, 9, 99–106. https://doi.org/10.1016/j.algal.2015.03.007López Barreiro, D., Prins, W., Ronsse, F., & Brilman, W. (2013a). Hydrothermal liquefaction ( HTL ) of microalgae for biofuel production : State of the art review and future prospects. Biomass and Bioenergy, 53(2), 113–127. https://doi.org/10.1016/j.biombioe.2012.12.029López Barreiro, D., Riede, S., Hornung, U., Kruse, A., & Prins, W. (2015). Hydrothermal liquefaction of microalgae: Effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Research, 12, 206–212. https://doi.org/10.1016/j.algal.2015.08.025Luis, A. De, Lombraña, J. I., Varona, F., & Menéndez, A. (2009). Kinetic study and hydrogen peroxide consumption of phenolic compounds oxidation by Fenton’s reagent. Korean Journal of Chemical Engineering, 26(1), 48–56.Luz, E., Moreno, M., Hernandez, J., & Bashan, Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research, 36, 2941–2948.Maddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K., & Howe, D. (2016). Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae. Biomass and Bioenergy, 93, 122–130. https://doi.org/10.1016/j.biombioe.2016.07.010Madsen, R. B., Biller, P., Jensen, M. M., Becker, J., Iversen, B. B., & Glasius, M. (2016). Predicting the Chemical Composition of Aqueous Phase from Hydrothermal Liquefaction of Model Compounds and Biomasses. Energy and Fuels, 30(12), 10470–10483. https://doi.org/10.1021/acs.energyfuels.6b02007Márquez, J. J. R., Levchuk, I., & Sillanpää, M. (2018). Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts, 8(12). https://doi.org/10.3390/catal8120673Martino, C. J., & Savage, P. E. (1997). Supercritical Water Oxidation Kinetics , Products , and Pathways for CH 3 - and CHO-Substituted Phenols. Industrial & Engineering Chemistry Research, 36, 1391–1400. https://doi.org/10.1021/ie960697qMata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020Matsumura, Y., Minowa, T., Potic, B., Kersten, S. R. A., Prins, W., Van Swaaij, W. P. M., Van De Beld, B., Elliott, D. C., Neuenschwander, G. G., Kruse, A., & Antal, M. J. (2005). Biomass gasification in near- and super-critical water: Status and prospects. Biomass and Bioenergy, 29(4), 269–292. https://doi.org/10.1016/j.biombioe.2005.04.006McMahon, A., Lu, H., & Butovich, I. A. (2013). The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions. Lipids, 48(5), 513–525. https://doi.org/10.1007/s11745-013-3755-9Megharaj, M., Pearson, H. W., & Venkateswarlu, K. (1992). Effects of phenolic compounds on growth and metabolic activities of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Plant and Soil, 140, 25–34.Melgarejo, L. M. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia.Miao, X., Wu, Q., & Yang, C. (2004). Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis, 71(2), 855–863. https://doi.org/10.1016/j.jaap.2003.11.004Michalak, I., Marycz, K., Basińska, K., & Chojnacka, K. (2014). Using SEM-EDX and ICP-OES to investigate the elemental composition of green macroalga vaucheria sessilis. Scientific World Journal, 2014. https://doi.org/10.1155/2014/891928Resolucion 631-2015, Pub. L. No. 631, 62 (2015).Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077Munoz, M., Pedro, Z. M. De, Casas, J. A., & Rodriguez, J. J. (2013). Improved wet peroxide oxidation strategies for the treatment of chlorophenols. Chemical Engineering Journal, 228, 646–654. https://doi.org/10.1016/j.cej.2013.05.057Myers, R. H., & Montgomery, D. C. (1997). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. In Journal of Statistixal Planning and Interference (Vol. 59). Wiley.Neveux, N., Yuen, A. K. L., Jazrawi, C., Magnusson, M., Haynes, B. S., Masters, A. F., Montoya, A., Paul, N. A., Maschmeyer, T., & Nys, R. De. (2014). Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresource Technology, 155, 334–341. https://doi.org/10.1016/j.biortech.2013.12.083Nielsen, S. S. (2017). Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual (pp. 47–53). Springer. https://doi.org/10.1007/978-3-319-44127-6NIVA. (2008). The toxicity of selected amines and secondary products to aquatic organisms: A review (Issue 5698).Papadopoulos, A. E., Fatta, D., & Loizidou, M. (2007). Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load. Journal of Hazardous Materials, 146, 558–563. https://doi.org/10.1016/j.jhazmat.2007.04.083Patel, B., Guo, M., Chong, C., Sarudin, S. H. M., & Hellgardt, K. (2016). Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Science of the Total Environment, 568, 489–497. https://doi.org/10.1016/j.scitotenv.2016.06.041Patel, B., & Hellgardt, K. (2015). Hydrothermal upgrading of algae paste in a continuous flow reactor. Bioresource Technology, 191, 460–468. https://doi.org/10.1016/j.biortech.2015.04.012Pekakis, P. A., Xekoukoulotakis, N. P., & Ã, D. M. (2006). Treatment of textile dyehouse wastewater by TiO 2 photocatalysis. Water Research, 40, 1276–1286. https://doi.org/10.1016/j.watres.2006.01.019Peng, W., Wu, Q., Tu, P., & Zhao, N. (2001). Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology, 80(1), 1–7. https://doi.org/10.1016/S0960-8524(01)00072-4Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. https://doi.org/10.1039/b810100kPhani, K., Dandamudi, R., Muppaneni, T., Markovski, J. S., Lammers, P., & Deng, S. (2019). Hydrothermal liquefaction of green microalga Kirchneriella sp . under sub- and super-critical water conditions. Biomass and Bioenergy, 120(May 2018), 224–228. https://doi.org/10.1016/j.biombioe.2018.11.021Portela, J. R., Nebot, E., & Mart, E. (2001). Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chemical Engineering Journal, 81, 287–299.Posten, C., & Schaub, G. (2009). Microalgae and terrestrial biomass as source for fuels-A process view. Journal of Biotechnology, 142(1), 64–69. https://doi.org/10.1016/j.jbiotec.2009.03.015Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53(2), 150–154. https://doi.org/10.1111/j.1472-765X.2011.03082.xQian, L., Wang, S., Xu, D., Guo, Y., Tang, X., & Wang, L. (2015). Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation. Bioresource Technology, 176, 218–224. https://doi.org/10.1016/j.biortech.2014.10.125Raheem, A., Sivasangar, S., Wan Azlina, W. A. K. G., Taufiq Yap, Y. H., Danquah, M. K., & Harun, R. (2015). Thermogravimetric study of Chlorella vulgaris for syngas production. Algal Research, 12, 52–59. https://doi.org/10.1016/j.algal.2015.08.003Rai, M. P., Nigam, S., & Sharma, R. (2013). Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass and Bioenergy, 58, 251–257. https://doi.org/10.1016/j.biombioe.2013.08.038Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology (1st ed.). Blakwell Science Ltd. https://doi.org/10.1002/9780470995280Rizzo, A. M., Prussi, M., Bettucci, L., Libelli, I. M., & Chiaramonti, D. (2013). Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Applied Energy, 102, 24–31. https://doi.org/10.1016/j.apenergy.2012.08.039Rodriguez, C. H. (2015). El Instituto De Hidrología, Meteorología y Estudios Ambientales. 9. http://www.ideam.gov.co/Rueda-Marquez, J. J., Levchuk, I., Salcedo, I., Acevedo-merino, A., & Manzano, M. A. (2016). Post-treatment of re fi nery wastewater ef fl uent using a combination of AOPs ( H2O2 photolysis and catalytic wet peroxide oxidation ) for possible water reuse . Comparison of low and medium pressure lamp performance. Water Research, 91, 86–96. https://doi.org/10.1016/j.watres.2015.12.051Rueda-Márquez, J. J., Pintado-Herrera, M. G., Martín-Díaz, M. L., Acevedo-Merino, A., & Manzano, M. A. (2015). Combined AOPs for potential wastewater reuse or safe discharge based on multi-barrier treatment (microfiltration-H2O2/UV-catalytic wet peroxide oxidation). Chemical Engineering Journal, 270, 80–90. https://doi.org/10.1016/j.cej.2015.02.011Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65. https://doi.org/10.1016/j.algal.2013.12.004Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014a). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35(July), 265–278. https://doi.org/10.1016/j.rser.2014.04.007Sanabria, D. (2004). Fósforo total en agua por digestión ácida, método del ácido ascórbico. In IDEAM (Vol. 008). http://www.fing.edu.uy/imfia/cursos/hidrometria/material/Guia_de_Monitoreo.pdfSanz-luque, E., Chamizo-ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae Overview of Nitrate Assimilation. Frontiers in Plant Science, 6(October). https://doi.org/10.3389/fpls.2015.00899Savage, P. E. (1999). Organic Chemical Reactions in Supercritical Water. Chemical Reviews, 99(2), 603–622. https://doi.org/10.1021/cr9700989Savage, P. E., Duan, P., & Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, January 2011, 52–61. https://doi.org/10.1021/ie100758sScragg, A. H. (2006). The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzyme and Microbial Technology, 39(4), 796–799. https://doi.org/10.1016/j.enzmictec.2005.12.018Selvaratman, T., Reddy, H., Muppaneni, T., Holguin, F. O., Nirmalakhandan, N., Lammers, P. J., & Deng, S. (2015). Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Research, 12, 74–79. https://doi.org/10.1016/j.algal.2015.07.007Shakya, R. (2014). Hydrothermal Liquefaction of Algae for Bio-oil Production. Auburn University.Shakya, R., Adhikari, S., Mahadevan, R., Shanmugam, S. R., Nam, H., Barbary, E., & Dempster, T. A. (2017). Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresource Technology, 243, 1112–1120. https://doi.org/10.1016/j.biortech.2017.07.046Shanmugam, S. R., Adhikari, S., & Shakya, R. (2017). Hydrothermal Liquefaction of Algae Abstract : Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.031Shanmugam, S. R., Adhikari, S., Wang, Z., & Shakya, R. (2017). Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production. Bioresource Technology, 223, 115–120. https://doi.org/10.1016/j.biortech.2016.10.008Shen, Q. H., Gong, Y. P., Fang, W. Z., Bi, Z. C., Cheng, L. H., Xu, X. H., & Chen, H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193, 68–75. https://doi.org/10.1016/j.biortech.2015.06.050Shen, Y., Yuan, W., Pei, Z. J., Wu, Q., & Mao, E. (2009). Microalgae mass production methods. Transactions of the ASABE, 52(4), 1275–1287. https://doi.org/10.1023/A:1012663213153Shigeoka, T., Sato, Y., Takeda, Y., Yoshida, K., & Yamauchi, F. (1988). ACUTE TOXICITY OF CHLOROPHENOLS TO GREEN ALGAE , SELENASTRUM CAPRICORNUTUM AND STRUCTURE-ACTIVITY RELATIONSHIPS. Environmental Toxicology and Chemistry, 7, 847–854.Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass: Laboratory Analytical Procedure (LAP). Nrel/Tp-510-42622, April 2005, 18. https://doi.org/NREL/TP-510-42619Stark, K., Plaza, E., & Hultman, B. (2006). Phosphorus release from ash , dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere, 62, 827–832. https://doi.org/10.1016/j.chemosphere.2005.04.069Stendahl, K. (2018). Phosphate recovery from sewage sludge in combination with supercritical water oxidation. Water Science and Technology, 48(1), 185–190.Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. https://doi.org/10.1016/j.rser.2012.03.047Talbot, C., Garcia-moscoso, J., Drake, H., Stuart, B. J., & Kumar, S. (2016). Cultivation of microalgae using fl ash hydrolysis nutrient recycle. Algal Research, 18, 191–197. https://doi.org/10.1016/j.algal.2016.06.021Tan, X., Meng, J., Tang, Z., Yang, L., & Zhang, W. (2020). Chemosphere Optimization of algae mixotrophic culture for nutrients recycling and biomass / lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere, 244, 125509. https://doi.org/10.1016/j.chemosphere.2019.125509Tantiphiphatthana, M., Peng, L., Jitrwung, R., & Yoshikawa, K. (2015). Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae. International Scholarly and Scientific Research & Innovation, 9(5), 503–511.Taylor, P., Wang, Q., Lv, Y., Zhang, R., & Bi, J. (2013). Desalination and Water Treatment Treatment of cotton printing and dyeing wastewater by supercritical water oxidation. Desalination and Water Treatment, 51(12), 37–41. https://doi.org/10.1080/19443994.2013.792164Terry, K. L., & Raymond, L. P. (1985). System design for the autotrophic production of microalgae. Enzyme and Microbial Technology, 7(10), 474–487. https://doi.org/10.1016/0141-0229(85)90148-6Teymouri, A., Barbera, E., Sforza, E., Morosinotto, T., Bertucco, A., & Kumar, S. (2016). Integration of Biofuels Intermediates Production and Nutrients Recycling in the Processing of a Marine Algae. AIChE Journal, 59(6), 663–667. https://doi.org/10.1002/aic.Tian, C., Li, B., Liu, Z., Zhang, Y., & Lu, H. (2014). Hydrothermal liquefaction for algal biorefinery: A critical review. Renewable and Sustainable Energy Reviews, 38, 933–950. https://doi.org/10.1016/j.rser.2014.07.030Timmons, M. B., & Losordo, T. (1994). Aquaculture water reuse systems : Engineering design and management. Elsevier Science.Tommaso, G., Chen, W., Li, P., Schideman, L., & Zhang, Y. (2015). Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresource Technology, 178, 139–146. https://doi.org/10.1016/j.biortech.2014.10.011Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342. https://doi.org/10.1016/j.energy.2011.03.013United Nations. (2000). United Nations Millennium Declaration: Resolution adapted by the General Assembly. General Assembly, September, 9. http://www.un.org/en/events/pastevents/millennium_summit.shtmlUPME, & BID. (2015). Integración de las energías renovables no convencionales en Colombia. http://www.upme.gov.co/Estudios/2015/Integracion_Energias_Renovables/INTEGRACION_ENERGIAS_RENOVANLES_WEB.pdfValdez, P. J., Dickinson, J. G., & Savage, P. E. (2011). Characterization of Product Fractions from Hydrothermal Liquefaction of Nannochloropsis sp . and the Influence of Solvents. Energy and Fuels, 25, 3235–3243.Valdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N., & Savage, P. E. (2012). Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 46, 317–331. https://doi.org/10.1016/j.biombioe.2012.08.009Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012Wang, J., Zhou, W., Chen, H., Zhan, J., He, C., & Wang, Q. (2019). Ammonium Nitrogen Tolerant Chlorella Strain Screening and Its Damaging Effects on Photosynthesis. Frontiers in Microbiology, 9(January), 1–13. https://doi.org/10.3389/fmicb.2018.03250Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., & Ruan, R. (2010). Cultivation of Green Algae Chlorella sp . in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162, 1174–1186. https://doi.org/10.1007/s12010-009-8866-7Widjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13–20. https://doi.org/10.1016/j.jtice.2008.07.007Wiel, J. B. Vander, Mikulicz, J. D., Boysen, M. R., Hashemi, N., Kalgren, P., Nauman, L. M., Baetzold, S. J., Powell, G. G., & Nastaran, N. (2017). Characterization of Chlorella vulgaris and Chlorella protothecoides using multi-pixel photon counters in a 3D focusing opto fl uidic system. Royal Society of Chemistry Advances, 4402–4408. https://doi.org/10.1039/c6ra25837aWymer, P. E. O., & Thake, B. (1980). The Importance of Phosphorus in Microalgal Growth and Species Composition in Mixed Populations : Experiments and Simulations. Proceedings of the Royal Society of London, 209, 333–353. https://doi.org/10.1098/rspb.1980.0099Xu, C., & Lad, N. (2008). Production of Heavy Oils with High Caloric Values by Direct Liquefaction of Woody Biomass in Sub / Near-critical Water. Energy and Fuels, 22(10), 635–642.Xu, P., Janex, M. L., Savoye, P., Cockx, A., & Lazarova, V. (2002). Wastewater disinfection by ozone: Main parameters for process design. Water Research, 36(4), 1043–1055. https://doi.org/10.1016/S0043-1354(01)00298-6Xu, Y., Zheng, X., Yu, H., & Hu, X. (2014). Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Bioresource Technology, 156, 1–5. https://doi.org/10.1016/j.biortech.2014.01.010Yang, B., Cheng, Z., Tang, Q., & Shen, Z. (2018). Nitrogen transformation of 41 organic compounds during SCWO: A study on TN degradation rate, N-containing species distribution and molecular characteristics. Water Research. https://doi.org/10.1016/j.watres.2017.12.080Yang, B., Cheng, Z., Yuan, T., & Shen, Z. (2018). Denitrification of ammonia and nitrate through supercritical water oxidation ( SCWO ): A study on the e ff ect of NO3− / NH4+ ratios , catalysts and auxiliary fuels. The Journal of Supercritical Fluids, 138(January), 56–62. https://doi.org/10.1016/j.supflu.2018.03.021Yang, J. H., Shin, H. Y., Ryu, Y. J., & Lee, C. G. (2018). Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery. Journal of Industrial and Engineering Chemistry, 68, 267–273. https://doi.org/10.1016/j.jiec.2018.07.053Yang, Y. F., Feng, C. P., Inamori, Y., & Maekawa, T. (2004). Analysis of energy conversion characteristics in liquefaction of algae. Resources Conservation & Recycling, 43, 21–33. https://doi.org/10.1016/j.resconrec.2004.03.003Yeh, K., & Chang, J. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120–127. https://doi.org/10.1016/j.biortech.2011.11.103Yong, G., Ying, S., Loke, P., Tao, Y., & Lim, C. (2019). Reports Recent advances in algae biodiesel production : From upstream cultivation to downstream processing. Bioresource Technology Reports, 7(April), 100227. https://doi.org/10.1016/j.biteb.2019.100227Yu, G, Zhang, Y., Schideman, L., Funk, T. L., & Wang, Z. (2011). Hydrothermal Liquefaction of Low Lipid Content Microalgae inot Biocrude Oil. American Society of Agricultural Engineers, 54(1), 239–246.Yu, Guo, Zhang, Y., Guo, B., Funk, T., & Schideman, L. (2014). Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae. Bioenergy Research, 7(4), 1317–1328. https://doi.org/10.1007/s12155-014-9471-3Yu, Guo, Zhang, Y., Schideman, L., Funk, T., & Wang, Z. (2011). Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy and Environmental Science, 4(11), 4587–4595. https://doi.org/10.1039/c1ee01541aZhang, H., Zhang, X., & Ding, L. (2020). Partial oxidation of phenol in supercritical water with NaOH and H 2 O 2 : Hydrogen production and polymer formation. Science of the Total Environment, 722, 137985. https://doi.org/10.1016/j.scitotenv.2020.137985Zhang, L., Lu, H., Zhang, Y., Li, B., Liu, Z., Duan, N., & Liu, M. (2016). Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. Journal of Applied Phycology, 28(2), 1031–1039. https://doi.org/10.1007/s10811-015-0640-3Zhu, Y., Albrecht, K. O., Elliott, D. C., Hallen, R. T., & Jones, S. B. (2013). Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Research, 2(4), 455–464. https://doi.org/10.1016/j.algal.2013.07.003Zhu, Y., Biddy, M. J., Jones, S. B., Elliott, D. C., & Schmidt, A. J. (2014). Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction ( HTL ) and upgrading. Applied Energy, 129, 384–394. https://doi.org/10.1016/j.apenergy.2014.03.053Zhu, Z., Rosendahl, L., Sohail, S., Yu, D., & Chen, G. (2015). Hydrothermal liquefaction of barley straw to bio-crude oil : Effects of reaction temperature and aqueous phase recirculation. APPLIED ENERGY, 137, 183–192. https://doi.org/10.1016/j.apenergy.2014.10.005Zhuang, X., Zhan, H., Song, Y., He, C., Huang, Y., & Yin, X. (2019). Insights into the evolution of chemical structures in lignocellulose and non- lignocellulose biowastes during hydrothermal carbonization ( HTC ). Fuel, 236(June 2018), 960–974. https://doi.org/10.1016/j.fuel.2018.09.019Zimmermann, F. (1954). Waste disposal (Patent No. 2,665,249). United States Patent Office.Zou, S., Wu, Y., Yang, M., Li, C., & Tong, J. (2009). Thermochemical catalytic liquefaction of the marine microalgae dunaliella tertiolecta and characterization of bio-oils. Energy and Fuels, 23(7), 3753–3758. https://doi.org/10.1021/ef9000105EspecializadaUniversidad Nacional de ColombiaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79961/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1032454795.2021.pdf1032454795.2021.pdfTesis de Maestría en Ingeniería Químicaapplication/pdf4305690https://repositorio.unal.edu.co/bitstream/unal/79961/3/1032454795.2021.pdf8969c5992c13f21f8236286d943d8c63MD53THUMBNAIL1032454795.2021.pdf.jpg1032454795.2021.pdf.jpgGenerated Thumbnailimage/jpeg5433https://repositorio.unal.edu.co/bitstream/unal/79961/4/1032454795.2021.pdf.jpg4fa22dff3e49f0f98eae0129b0c58824MD54unal/79961oai:repositorio.unal.edu.co:unal/799612024-07-27 00:13:39.918Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |