Maximal virtual schottky groups: explicit constructions

A Schottky group of rank $g$ is a purely loxodromic Kleinian group, with non-empty region of discontinuity, isomorphic to the free group of rank $g$.A virtual Schottky group is a Kleinian group $K$ containing a Schottky group $\Gamma$ as a finite index subgroup. In this case, let $g$ be the rank of...

Full description

Autores:
Hidalgo, Rubén A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2010
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/39799
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/39799
http://bdigital.unal.edu.co/29896/
Palabra clave:
Schottky groups
Kleinian groups
Automorphisms
Riemann surface
30F10
30F40
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_4e674c5e58c94a93fadeefdf570949d1
oai_identifier_str oai:repositorio.unal.edu.co:unal/39799
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hidalgo, Rubén A.79d83c82-d73b-498c-b109-eec296011a8c3002019-06-28T04:28:20Z2019-06-28T04:28:20Z2010https://repositorio.unal.edu.co/handle/unal/39799http://bdigital.unal.edu.co/29896/A Schottky group of rank $g$ is a purely loxodromic Kleinian group, with non-empty region of discontinuity, isomorphic to the free group of rank $g$.A virtual Schottky group is a Kleinian group $K$ containing a Schottky group $\Gamma$ as a finite index subgroup. In this case, let $g$ be the rank of $\Gamma$. The group $K$ is an elementary Kleinian group if and only if $g \in \{0,1\}$. Moreover, for each $g \in \{0,1\}$ and for every integer $n \geq 2$, it is possible to find $K$ and $\Gamma$ as above for which the index of $\Gamma$ in $K$ is $n$. If $g \geq 2$, then the index of $\Gamma$ in $K$ is at most $12(g-1)$. If $K$ contains a Schottky subgroup of rank $g \geq 2$ and index $12(g-1)$, then $K$ is called a maximal virtual Schottky group. We provide explicit examples of maximal virtual Schottky groups and corresponding explicit Schottky normal subgroups of rank $g \geq 2$ of lowest rank and index $12(g-1)$. Every maximal Schottky extension Schottky group is quasiconformally conjugate to one of these explicit examples. Schottky space of rank $g$, denoted by $\mathcal{S}_{g}$, is a finite dimensional complex manifold that parametrizes quasiconformal deformations of Schottky groups of rank $g$. If $g \geq 2$, then $\mathcal{S}_{g}$ has dimension $3(g-1)$. Each virtual Schottky group, containing a Schottky group of rank $g$ as a finite index subgroup, produces a sublocus in $\mathcal{S}_{g}$, called a Schottky strata. The maximal virtual Schottky groups produce the maximal Schottky strata. As a consequence of the results, we see that the maximal Schottky strata is the disjoint union of properly embedded quasiconformal deformation spaces of maximal virtual Schottky groups.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/28593Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426Hidalgo, Rubén A. (2010) Maximal virtual schottky groups: explicit constructions. Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426 .Maximal virtual schottky groups: explicit constructionsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTSchottky groupsKleinian groupsAutomorphismsRiemann surface30F1030F40ORIGINAL28593-102394-1-PB.pdfapplication/pdf241242https://repositorio.unal.edu.co/bitstream/unal/39799/1/28593-102394-1-PB.pdf685869891ecd1ba744f7af2c65db74ecMD5128593-142426-1-PB.htmltext/html9261https://repositorio.unal.edu.co/bitstream/unal/39799/2/28593-142426-1-PB.html3e1dae4e8529ddf90a8a5df14737880cMD52THUMBNAIL28593-102394-1-PB.pdf.jpg28593-102394-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4913https://repositorio.unal.edu.co/bitstream/unal/39799/3/28593-102394-1-PB.pdf.jpg6dab5b93404ed74077722605a58ec15fMD53unal/39799oai:repositorio.unal.edu.co:unal/397992023-01-25 23:05:12.088Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Maximal virtual schottky groups: explicit constructions
title Maximal virtual schottky groups: explicit constructions
spellingShingle Maximal virtual schottky groups: explicit constructions
Schottky groups
Kleinian groups
Automorphisms
Riemann surface
30F10
30F40
title_short Maximal virtual schottky groups: explicit constructions
title_full Maximal virtual schottky groups: explicit constructions
title_fullStr Maximal virtual schottky groups: explicit constructions
title_full_unstemmed Maximal virtual schottky groups: explicit constructions
title_sort Maximal virtual schottky groups: explicit constructions
dc.creator.fl_str_mv Hidalgo, Rubén A.
dc.contributor.author.spa.fl_str_mv Hidalgo, Rubén A.
dc.subject.proposal.spa.fl_str_mv Schottky groups
Kleinian groups
Automorphisms
Riemann surface
30F10
30F40
topic Schottky groups
Kleinian groups
Automorphisms
Riemann surface
30F10
30F40
description A Schottky group of rank $g$ is a purely loxodromic Kleinian group, with non-empty region of discontinuity, isomorphic to the free group of rank $g$.A virtual Schottky group is a Kleinian group $K$ containing a Schottky group $\Gamma$ as a finite index subgroup. In this case, let $g$ be the rank of $\Gamma$. The group $K$ is an elementary Kleinian group if and only if $g \in \{0,1\}$. Moreover, for each $g \in \{0,1\}$ and for every integer $n \geq 2$, it is possible to find $K$ and $\Gamma$ as above for which the index of $\Gamma$ in $K$ is $n$. If $g \geq 2$, then the index of $\Gamma$ in $K$ is at most $12(g-1)$. If $K$ contains a Schottky subgroup of rank $g \geq 2$ and index $12(g-1)$, then $K$ is called a maximal virtual Schottky group. We provide explicit examples of maximal virtual Schottky groups and corresponding explicit Schottky normal subgroups of rank $g \geq 2$ of lowest rank and index $12(g-1)$. Every maximal Schottky extension Schottky group is quasiconformally conjugate to one of these explicit examples. Schottky space of rank $g$, denoted by $\mathcal{S}_{g}$, is a finite dimensional complex manifold that parametrizes quasiconformal deformations of Schottky groups of rank $g$. If $g \geq 2$, then $\mathcal{S}_{g}$ has dimension $3(g-1)$. Each virtual Schottky group, containing a Schottky group of rank $g$ as a finite index subgroup, produces a sublocus in $\mathcal{S}_{g}$, called a Schottky strata. The maximal virtual Schottky groups produce the maximal Schottky strata. As a consequence of the results, we see that the maximal Schottky strata is the disjoint union of properly embedded quasiconformal deformation spaces of maximal virtual Schottky groups.
publishDate 2010
dc.date.issued.spa.fl_str_mv 2010
dc.date.accessioned.spa.fl_str_mv 2019-06-28T04:28:20Z
dc.date.available.spa.fl_str_mv 2019-06-28T04:28:20Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/39799
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/29896/
url https://repositorio.unal.edu.co/handle/unal/39799
http://bdigital.unal.edu.co/29896/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/28593
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426
dc.relation.references.spa.fl_str_mv Hidalgo, Rubén A. (2010) Maximal virtual schottky groups: explicit constructions. Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/39799/1/28593-102394-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/39799/2/28593-142426-1-PB.html
https://repositorio.unal.edu.co/bitstream/unal/39799/3/28593-102394-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 685869891ecd1ba744f7af2c65db74ec
3e1dae4e8529ddf90a8a5df14737880c
6dab5b93404ed74077722605a58ec15f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089440271794176