Maximal virtual schottky groups: explicit constructions
A Schottky group of rank $g$ is a purely loxodromic Kleinian group, with non-empty region of discontinuity, isomorphic to the free group of rank $g$.A virtual Schottky group is a Kleinian group $K$ containing a Schottky group $\Gamma$ as a finite index subgroup. In this case, let $g$ be the rank of...
- Autores:
-
Hidalgo, Rubén A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2010
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/39799
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/39799
http://bdigital.unal.edu.co/29896/
- Palabra clave:
- Schottky groups
Kleinian groups
Automorphisms
Riemann surface
30F10
30F40
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4e674c5e58c94a93fadeefdf570949d1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/39799 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hidalgo, Rubén A.79d83c82-d73b-498c-b109-eec296011a8c3002019-06-28T04:28:20Z2019-06-28T04:28:20Z2010https://repositorio.unal.edu.co/handle/unal/39799http://bdigital.unal.edu.co/29896/A Schottky group of rank $g$ is a purely loxodromic Kleinian group, with non-empty region of discontinuity, isomorphic to the free group of rank $g$.A virtual Schottky group is a Kleinian group $K$ containing a Schottky group $\Gamma$ as a finite index subgroup. In this case, let $g$ be the rank of $\Gamma$. The group $K$ is an elementary Kleinian group if and only if $g \in \{0,1\}$. Moreover, for each $g \in \{0,1\}$ and for every integer $n \geq 2$, it is possible to find $K$ and $\Gamma$ as above for which the index of $\Gamma$ in $K$ is $n$. If $g \geq 2$, then the index of $\Gamma$ in $K$ is at most $12(g-1)$. If $K$ contains a Schottky subgroup of rank $g \geq 2$ and index $12(g-1)$, then $K$ is called a maximal virtual Schottky group. We provide explicit examples of maximal virtual Schottky groups and corresponding explicit Schottky normal subgroups of rank $g \geq 2$ of lowest rank and index $12(g-1)$. Every maximal Schottky extension Schottky group is quasiconformally conjugate to one of these explicit examples. Schottky space of rank $g$, denoted by $\mathcal{S}_{g}$, is a finite dimensional complex manifold that parametrizes quasiconformal deformations of Schottky groups of rank $g$. If $g \geq 2$, then $\mathcal{S}_{g}$ has dimension $3(g-1)$. Each virtual Schottky group, containing a Schottky group of rank $g$ as a finite index subgroup, produces a sublocus in $\mathcal{S}_{g}$, called a Schottky strata. The maximal virtual Schottky groups produce the maximal Schottky strata. As a consequence of the results, we see that the maximal Schottky strata is the disjoint union of properly embedded quasiconformal deformation spaces of maximal virtual Schottky groups.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/28593Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426Hidalgo, Rubén A. (2010) Maximal virtual schottky groups: explicit constructions. Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426 .Maximal virtual schottky groups: explicit constructionsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTSchottky groupsKleinian groupsAutomorphismsRiemann surface30F1030F40ORIGINAL28593-102394-1-PB.pdfapplication/pdf241242https://repositorio.unal.edu.co/bitstream/unal/39799/1/28593-102394-1-PB.pdf685869891ecd1ba744f7af2c65db74ecMD5128593-142426-1-PB.htmltext/html9261https://repositorio.unal.edu.co/bitstream/unal/39799/2/28593-142426-1-PB.html3e1dae4e8529ddf90a8a5df14737880cMD52THUMBNAIL28593-102394-1-PB.pdf.jpg28593-102394-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4913https://repositorio.unal.edu.co/bitstream/unal/39799/3/28593-102394-1-PB.pdf.jpg6dab5b93404ed74077722605a58ec15fMD53unal/39799oai:repositorio.unal.edu.co:unal/397992023-01-25 23:05:12.088Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Maximal virtual schottky groups: explicit constructions |
title |
Maximal virtual schottky groups: explicit constructions |
spellingShingle |
Maximal virtual schottky groups: explicit constructions Schottky groups Kleinian groups Automorphisms Riemann surface 30F10 30F40 |
title_short |
Maximal virtual schottky groups: explicit constructions |
title_full |
Maximal virtual schottky groups: explicit constructions |
title_fullStr |
Maximal virtual schottky groups: explicit constructions |
title_full_unstemmed |
Maximal virtual schottky groups: explicit constructions |
title_sort |
Maximal virtual schottky groups: explicit constructions |
dc.creator.fl_str_mv |
Hidalgo, Rubén A. |
dc.contributor.author.spa.fl_str_mv |
Hidalgo, Rubén A. |
dc.subject.proposal.spa.fl_str_mv |
Schottky groups Kleinian groups Automorphisms Riemann surface 30F10 30F40 |
topic |
Schottky groups Kleinian groups Automorphisms Riemann surface 30F10 30F40 |
description |
A Schottky group of rank $g$ is a purely loxodromic Kleinian group, with non-empty region of discontinuity, isomorphic to the free group of rank $g$.A virtual Schottky group is a Kleinian group $K$ containing a Schottky group $\Gamma$ as a finite index subgroup. In this case, let $g$ be the rank of $\Gamma$. The group $K$ is an elementary Kleinian group if and only if $g \in \{0,1\}$. Moreover, for each $g \in \{0,1\}$ and for every integer $n \geq 2$, it is possible to find $K$ and $\Gamma$ as above for which the index of $\Gamma$ in $K$ is $n$. If $g \geq 2$, then the index of $\Gamma$ in $K$ is at most $12(g-1)$. If $K$ contains a Schottky subgroup of rank $g \geq 2$ and index $12(g-1)$, then $K$ is called a maximal virtual Schottky group. We provide explicit examples of maximal virtual Schottky groups and corresponding explicit Schottky normal subgroups of rank $g \geq 2$ of lowest rank and index $12(g-1)$. Every maximal Schottky extension Schottky group is quasiconformally conjugate to one of these explicit examples. Schottky space of rank $g$, denoted by $\mathcal{S}_{g}$, is a finite dimensional complex manifold that parametrizes quasiconformal deformations of Schottky groups of rank $g$. If $g \geq 2$, then $\mathcal{S}_{g}$ has dimension $3(g-1)$. Each virtual Schottky group, containing a Schottky group of rank $g$ as a finite index subgroup, produces a sublocus in $\mathcal{S}_{g}$, called a Schottky strata. The maximal virtual Schottky groups produce the maximal Schottky strata. As a consequence of the results, we see that the maximal Schottky strata is the disjoint union of properly embedded quasiconformal deformation spaces of maximal virtual Schottky groups. |
publishDate |
2010 |
dc.date.issued.spa.fl_str_mv |
2010 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T04:28:20Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T04:28:20Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/39799 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/29896/ |
url |
https://repositorio.unal.edu.co/handle/unal/39799 http://bdigital.unal.edu.co/29896/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/28593 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Hidalgo, Rubén A. (2010) Maximal virtual schottky groups: explicit constructions. Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 41-57 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/39799/1/28593-102394-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/39799/2/28593-142426-1-PB.html https://repositorio.unal.edu.co/bitstream/unal/39799/3/28593-102394-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
685869891ecd1ba744f7af2c65db74ec 3e1dae4e8529ddf90a8a5df14737880c 6dab5b93404ed74077722605a58ec15f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089440271794176 |