Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta

ilustraciones

Autores:
Barón Moreno, Jenny Astrid
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84187
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84187
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Taludes rocosos
Geología
Taludes (geografía física)
Rock slopes
Geology
Slopes (physical geography)
Rocas
Discontinuidades
Probabilidad conjunta
Análisis cinemático y cinético
Red estereográfica
Rocks
Discontinuities
Joint probability
Kinematic and kinetic analysis
Stereographic network
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_4e1ccca9d458e800905da0e952db62d4
oai_identifier_str oai:repositorio.unal.edu.co:unal/84187
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta
dc.title.translated.eng.fl_str_mv Evaluation of stability of faults with kinematic control in rock slopes by means of joint probability
title Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta
spellingShingle Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Taludes rocosos
Geología
Taludes (geografía física)
Rock slopes
Geology
Slopes (physical geography)
Rocas
Discontinuidades
Probabilidad conjunta
Análisis cinemático y cinético
Red estereográfica
Rocks
Discontinuities
Joint probability
Kinematic and kinetic analysis
Stereographic network
title_short Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta
title_full Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta
title_fullStr Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta
title_full_unstemmed Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta
title_sort Evaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjunta
dc.creator.fl_str_mv Barón Moreno, Jenny Astrid
dc.contributor.advisor.none.fl_str_mv Hernández Carrillo, Rodrigo
Beltrán Calvo, Gloria Inés
dc.contributor.author.none.fl_str_mv Barón Moreno, Jenny Astrid
dc.contributor.orcid.spa.fl_str_mv Barón Moreno, Jenny
dc.contributor.cvlac.spa.fl_str_mv Barón Moreno, Jenny
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Taludes rocosos
Geología
Taludes (geografía física)
Rock slopes
Geology
Slopes (physical geography)
Rocas
Discontinuidades
Probabilidad conjunta
Análisis cinemático y cinético
Red estereográfica
Rocks
Discontinuities
Joint probability
Kinematic and kinetic analysis
Stereographic network
dc.subject.lemb.spa.fl_str_mv Taludes rocosos
Geología
Taludes (geografía física)
dc.subject.lemb.eng.fl_str_mv Rock slopes
Geology
Slopes (physical geography)
dc.subject.proposal.spa.fl_str_mv Rocas
Discontinuidades
Probabilidad conjunta
Análisis cinemático y cinético
Red estereográfica
dc.subject.proposal.eng.fl_str_mv Rocks
Discontinuities
Joint probability
Kinematic and kinetic analysis
Stereographic network
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-17T17:00:19Z
dc.date.available.none.fl_str_mv 2023-07-17T17:00:19Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84187
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84187
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Admassu, Y., & Shakoor, A. (2013). DIPANALYST: A computer program for quantitative kinematic analysis of rock slope failures. Computers and Geosciences, 54, 196–202. https://doi.org/10.1016/j.cageo.2012.11.018
Bell, F.G. (1987). Ground engineer’s reference book. Oxford: Butterworth-Heinemann.
Bolle, A. (1987). A probabilistic approach of slope stability in fractured rock. 301–303.
Butler, R. (1992). Paleomagnetism : Magnetic Domains to Geologic PALEOMAGNETISM : Magnetic Domains to Geologic Terranes Electronic Edition , September 2004 University of Portland. October.
Carter, B. J., & Lajtai, E. Z. (1991). Rock slope stability and distributed joint systems. Canadian Geotechnical Journal, 29(1), 53–60. https://doi.org/10.1139/t92-006
Duzgun, H. S. B., Yucemen, M. S., & Karpuz, C. (2002). A probabilistic model for the assessment of uncertainties in the shear strength of rock dicontinuities. International Journal of Rock Mechanics and Mining Sciences, 39(6), 743–754. https://doi.org/10.1016/S1365-1609(02)00050-3
Einstein, H. H., & Baecher, G. B. (1983). Probabilistic and statistical methods in engineering geology - Specific methods and examples part I: Exploration. Rock Mechanics and Rock Engineering, 16(1), 39–72. https://doi.org/10.1007/BF01030217
Fisher, R. (n.d.). Dispersion on a sphere.
Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130), 295–305. https://doi.org/10.1098/rspa.1953.0064
Gibson, W. (2011). Probabilistic methods for slope analysis and design. Australian Geomechanics Journal, 46(3), 1–12
Glynn, E. F. (1979). A probabilistic approach to the stability of rock slopes. Massachusetts Institute of Technology
Gokceoglu, C., Sonmez, H., & Ercanoglu, M. (2000). Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. In Engineering Geology (Vol. 55). www.elsevier.nl/locate/enggeo
Gonzalez de Vallejo, L., Ferrer, M., Ortuño, L., & Oteo, C. (2004). Ingenieria Geologica
Goodman, R. E. (1989). Introduction to Rock Mechanics
Granados, A. (2009). Probabilidad de falla de cuñas en roca. In IV Jornadas académicas de ingeniería de rocas. Universidad nacional de Colombia. (p. 8)
Griffiths, D. V., & Fenton, G. A. (2007). Probabilistic Methods in Geotechnical Engineering. Environmental & Engineering Geoscience, I(1), 345. https://doi.org/10.2113/gseegeosci.i.1.122
Hammah, R. E., Yacoub, T. E., Curran, J. K., & . (2009). Probabilistic Slope Analysis with the Finite Element Method. American Rock Mechanics Association, 09, 1–19
Hernandez- Carrillo y Beltran. (2017). Reliability Assessment of Rock Slope Stability by Dempster-Shafer Theory. National University of Colombia Bogotá campus Colombia
Hernandez-Carrillo R, Peñuela J y Beltran G. (2019). Characterization of Rock Masses by Three-Dimensional Image Processing Technique. Universidad Nacional de Colombia sede Bogotá. Geotechnical Engineering in the XXI Century: Lessons learned and future challenges
Hernandez- Carrillo y Beltran. (2019). Updating the probability of failure of rock wedges. Universidad Nacional de Colombia. Earth Sciences Research Journal
Hoek, E. (1998a). Technical note Reliability of Hoek-Brown Estimates of Rock Mass Properties and their Impact on Design
Hoek, E. (1998b). Technical note Reliability of Hoek-Brown Estimates of Rock Mass Properties and their Impact on Design EVERT HOEK INTRODUCTION. In J. Rock Mech. Min. Scr (Vol. 35, Issue I). Ekvier Saence Ltd
Hoek, E., & Bray, J. W. (1981). ROCK SLOPES : Design , Excavation , Stabilization (Issue September)
Jimenez-Rodriguez, R., Sitar, N., & Chacón, J. (2006). System reliability approach to rock slope stability. International Journal of Rock Mechanics and Mining Sciences, 43(6), 847–859. https://doi.org/10.1016/j.ijrmms.2005.11.011
Johari, A., & Mehrabani Iari, A. (2016). System reliability analysis of rock wedge stability considering correlated failure modes using sequential compounding method. International Journal of Rock Mechanics and Mining Sciences, 82, 61–70. https://doi.org/10.1016/j.ijrmms.2015.12.002
Johari, A., & Mehrabani Lari, A. (2017a). System probabilistic model of rock slope stability considering correlated failure modes. Computers and Geotechnics, 81, 26–38. https://doi.org/10.1016/j.compgeo.2016.07.010
Johari, A., & Mehrabani Lari, A. (2017b). System probabilistic model of rock slope stability considering correlated failure modes. Computers and Geotechnics, 81, 26–38. https://doi.org/10.1016/j.compgeo.2016.07.010
Jordá-Bordehore, L., Jordá-Bordehore, R., & Romero-Crespo, P. L. (2016). Kinematic Assessment of Multi-Face Round Slopes Using Hemispherical Projection Methods (HPM).
Kerguelen, A. (2009). Análisis de la estabilidad de taludes mineros por métodos numéricos. 1–155
Leung, C. F., & Quek, S. T. (1995). Probabilistic stability analysis of excavations in jointed rock. Canadian Geotechnical Journal, 32(3), 397–407. https://doi.org/10.1139/t95-044
Lisle, R. J. (2004). Calculation of the daylight envelope for plane failure of rock slopes. Geotechnique, 54(4), 279–280. https://doi.org/10.1680/geot.2004.54.4.279
Lisle, R. J. & Leyshon, P. R. (2004). Stereographic techniques for geologists and civil engineers, 2nd edn. Cambridge: Cambridge University Press
Low, B. K. (2008). Efficient probabilistic algorithm illustrated for a rock slope. Rock Mechanics and Rock Engineering, 41(5), 715–734. https://doi.org/10.1007/s00603-007-0146-7
Marek, J. M., & Savely, P. (1978). Probabilistic analysis of the plane shear failure mode. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(1), A15. https://doi.org/10.1016/0148-9062(79)90903-3
Mat Radhi, M. S., Mohd Pauzi, N. I., & Omar, H. (2008). Probabilistic Approach of Rock Slope Stability Analysis Using Monte Carlo Simulation. Iccbt, 37, 449–468. https://www.researchgate.net/profile/Nur_Pauzi/publication/263351304_Probabilistic_Approach_of_Rock_Slope_Stability_using_Monte_Carlo_Simulation/links/00b7d53aa2e50e6793000000/Probabilistic-Approach-of-Rock-Slope-Stability-using-Monte-Carlo-Simulation
Miller, S. M. (1983). Probabilistic Analysis of Bench Stability For Use In Designing Open Pit Mine Slope. 621–630.
Miller, S. M. (1984). Probabilistic rock slope engineering
Müller, S. (1982). Ingenieurgeologie und Geomechanik als Grundlagen des Felsbaues / Engineering Geology and Geomechanics as Fundamentals of Rock Engineering. In Ingenieurgeologie und Geomechanik als Grundlagen des Felsbaues / Engineering Geology and Geomechanics as Fundamentals of Rock Engineering. https://doi.org/10.1007/978-3-7091-8665-7
Nadim, F., Einstein, H., & Roberds, W. (2005). State of the Art Paper 3 Probabilistic stability analysis for individual slopes in soil and rock.
Nilsen, B. (2000a). New trends in rock slope stability analyses. Bulletin of Engineering Geology and the Environment, 58(3), 173–178. https://doi.org/10.1007/s100640050072
Nilsen, B. (2000b). New trends in rock slope stability analyses. In Bull Eng Geol Env (Vol. 58). Springer-Verlag
Obregon, C., & Mitri, H. (2019). Probabilistic approach for open pit bench slope stability analysis – A mine case study. International Journal of Mining Science and Technology, 29(4), 629–640. https://doi.org/10.1016/j.ijmst.2019.06.017
Park, H., & West, T. R. (2000). Development of a probabilistic approach for rock wedge failure. Engineering Geology, 59(3–4), 233–251. https://doi.org/10.1016/S0013-7952(00)00076-4
Park, H.-J. (2000). Probabilistic Approach of Stability Analysis for Rock Wedge Failure. Economic and Environmental Geology, 33(4), 295–307.
Pathak, S., Poudel, R. K., & Kansakar, B. R. (2006). Application of Probabilistic Approach in Rock Slope Stability Analysis-AN Experience from Nepal. Universal Academy Press, 1(Tokyo, Japan), 797–802
Peñuela, J.L., Beltran-Calvo G., Hernandez-Carrillo, R. (2019). Adquisición y evaluación de datos geométricos de macizos rocosos a partir de imágenes tridimensionales para su uso en análisis geotécnicos. Universidad EAFIT. Ingeniería y Ciencia
Read & Stacey, (2009). Guidelines for Open Pit Slope Design. CSIRO. Australia. 221- 235
Robertson, a. M. (1970). The interpretation of geological factors for use in slope theory. Planning Open Pit Mines, Proceedings, Johannesburg, 55–71.
Rosada, Omar (2021). Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance. Universidad Nacional de Colombia
Tang, W. H., Yucemen, M. S., & Ang, A. H.-S. (1976). Probability-based short term design of soil slopes. Canadian Geotechnical Journal, 13(3), 201–215. https://doi.org/10.1139/t76-024
Tatone, B. S. A., & Grasselli, G. (2010). ROCKTOPPLE: A spreadsheet-based program for probabilistic block-toppling analysis. Computers and Geosciences, 36(1), 98–114. https://doi.org/10.1016/j.cageo.2009.04.014
Ya-Fen Lee; Yun-Yao Chi; C. Hsein Juang, F.ASCE; & Der-Her Lee (2012). Reliability Analysis of Rock Wedge Stability: Knowledge-Based Clustered Partitioning Approach. Journal of geotechnical and geoenvironmental engineering.
Zheng, J., Kulatilake, P. H. S. W., Shu, B., Sherizadeh, T., & Deng, J. (2014a). Probabilistic block theory analysis for a rock slope at an open pit mine in USA. Computers and Geotechnics, 61, 254–265. https://doi.org/10.1016/j.compgeo.2014.06.002
Zheng, J., Kulatilake, P. H. S. W., Shu, B., Sherizadeh, T., & Deng, J. (2014b). Probabilistic block theory analysis for a rock slope at an open pit mine in USA. Computers and Geotechnics, 61, 254–265. https://doi.org/10.1016/j.compgeo.2014.06.002
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 258 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84187/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84187/2/1049610244.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84187/3/1049610244.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
1e48f04af32a1f0297885ec1138021ae
b0419e23707d15e5d0225f1aa8180c4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089384201289728
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernández Carrillo, Rodrigo8c381f181bd16e10ca0e96bee4b948efBeltrán Calvo, Gloria Inés4a4f90ae99921dbf6770cc4c964b5803Barón Moreno, Jenny Astride09ddb0c83194d16b2fa65d718bf688fBarón Moreno, JennyBarón Moreno, Jenny2023-07-17T17:00:19Z2023-07-17T17:00:19Z2023https://repositorio.unal.edu.co/handle/unal/84187Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEn el análisis de estabilidad cinemática en taludes en roca son varias las propuestas que se han perfeccionado, es el caso de los análisis con enfoque estadístico y probabilístico que permiten el estudio de la incertidumbre y variabilidad de los parámetros inherentes a la estabilidad como son la orientación de las discontinuidades y los parámetros de resistencia. La implementación de metodologías que presenten de forma gráfica la probabilidad de falla en taludes en roca no ha sido ampliamente desarrollada. En esta tesis se presenta una metodología para el cálculo de la probabilidad de falla con análisis de la variabilidad de orientación de discontinuidades y del ángulo de fricción de manera probabilística para diferentes mecanismos de falla en taludes en roca; con la aplicación de las funciones de densidad de probabilidad de variables se proyecta el cálculo de la probabilidad de falla mediante la probabilidad conjunta y la representación gráfica en 2D en herramientas normalmente usadas en el estudio de estabilidad cinemática como es la red estereográfica para los diferentes mecanismos de falla. Luego el análisis cinético de confiabilidad es presentado como complemento a la metodología con el cual se sugiere un tratamiento a través de probabilidad conjunta de variables específicas y la construcción de graficas 3D o volúmenes de probabilidad para cada mecanismo de falla a estudiar. Se desarrolla una herramienta de cálculo para este trabajo en lenguaje de programación Python en su aplicación PyCharm Community Edition y se implementa con datos de una mina a cielo abierto. (Texto tomado de la fuente)In the analysis of kinematic stability in rock slopes, there are several proposals that have been perfected, this is the case of analyzes with a statistical and probabilistic approach that allow the study of uncertainty and scarcity of parameters inherent to stability such as orientation. of the discontinuities and resistance parameters. The implementation of methodologies that graphically present the probability of failure in rock slopes has not been widely developed. This thesis presents a methodology for calculating the probability of failure with analysis of the variability of orientation of discontinuities and of the friction angle in a probabilistic way for different failure mechanisms in rock slopes, which with the application of the functions of probability density of variables, the calculation of the probability of failure is projected through the joint probability and the 2D graphic representation in tools normally used in the study of kinematic stability, such as the stereographic network for the different failure mechanisms. Then the kinetic reliability analysis is presented as a complement to the methodology with which treatment is suggested through the joint probability of specific variables and the construction of 3D graphs or probability volumes for each failure mechanism to be studied. A calculation tool for this work is developed in the Python programming language in its PyCharm Community Edition application and implemented with data from an open pit mine.MaestríaMagíster en Ingeniería - GeotecniaAnálisis de confiabilidad y riesgos asociados al entorno geotécnicoxv, 258 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaFacultad de IngenieríaBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilTaludes rocososGeologíaTaludes (geografía física)Rock slopesGeologySlopes (physical geography)RocasDiscontinuidadesProbabilidad conjuntaAnálisis cinemático y cinéticoRed estereográficaRocksDiscontinuitiesJoint probabilityKinematic and kinetic analysisStereographic networkEvaluación de estabilidad de fallas con control cinemático en taludes rocosos mediante probabilidad conjuntaEvaluation of stability of faults with kinematic control in rock slopes by means of joint probabilityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdmassu, Y., & Shakoor, A. (2013). DIPANALYST: A computer program for quantitative kinematic analysis of rock slope failures. Computers and Geosciences, 54, 196–202. https://doi.org/10.1016/j.cageo.2012.11.018Bell, F.G. (1987). Ground engineer’s reference book. Oxford: Butterworth-Heinemann.Bolle, A. (1987). A probabilistic approach of slope stability in fractured rock. 301–303.Butler, R. (1992). Paleomagnetism : Magnetic Domains to Geologic PALEOMAGNETISM : Magnetic Domains to Geologic Terranes Electronic Edition , September 2004 University of Portland. October.Carter, B. J., & Lajtai, E. Z. (1991). Rock slope stability and distributed joint systems. Canadian Geotechnical Journal, 29(1), 53–60. https://doi.org/10.1139/t92-006Duzgun, H. S. B., Yucemen, M. S., & Karpuz, C. (2002). A probabilistic model for the assessment of uncertainties in the shear strength of rock dicontinuities. International Journal of Rock Mechanics and Mining Sciences, 39(6), 743–754. https://doi.org/10.1016/S1365-1609(02)00050-3Einstein, H. H., & Baecher, G. B. (1983). Probabilistic and statistical methods in engineering geology - Specific methods and examples part I: Exploration. Rock Mechanics and Rock Engineering, 16(1), 39–72. https://doi.org/10.1007/BF01030217Fisher, R. (n.d.). Dispersion on a sphere.Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130), 295–305. https://doi.org/10.1098/rspa.1953.0064Gibson, W. (2011). Probabilistic methods for slope analysis and design. Australian Geomechanics Journal, 46(3), 1–12Glynn, E. F. (1979). A probabilistic approach to the stability of rock slopes. Massachusetts Institute of TechnologyGokceoglu, C., Sonmez, H., & Ercanoglu, M. (2000). Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. In Engineering Geology (Vol. 55). www.elsevier.nl/locate/enggeoGonzalez de Vallejo, L., Ferrer, M., Ortuño, L., & Oteo, C. (2004). Ingenieria GeologicaGoodman, R. E. (1989). Introduction to Rock MechanicsGranados, A. (2009). Probabilidad de falla de cuñas en roca. In IV Jornadas académicas de ingeniería de rocas. Universidad nacional de Colombia. (p. 8)Griffiths, D. V., & Fenton, G. A. (2007). Probabilistic Methods in Geotechnical Engineering. Environmental & Engineering Geoscience, I(1), 345. https://doi.org/10.2113/gseegeosci.i.1.122Hammah, R. E., Yacoub, T. E., Curran, J. K., & . (2009). Probabilistic Slope Analysis with the Finite Element Method. American Rock Mechanics Association, 09, 1–19Hernandez- Carrillo y Beltran. (2017). Reliability Assessment of Rock Slope Stability by Dempster-Shafer Theory. National University of Colombia Bogotá campus ColombiaHernandez-Carrillo R, Peñuela J y Beltran G. (2019). Characterization of Rock Masses by Three-Dimensional Image Processing Technique. Universidad Nacional de Colombia sede Bogotá. Geotechnical Engineering in the XXI Century: Lessons learned and future challengesHernandez- Carrillo y Beltran. (2019). Updating the probability of failure of rock wedges. Universidad Nacional de Colombia. Earth Sciences Research JournalHoek, E. (1998a). Technical note Reliability of Hoek-Brown Estimates of Rock Mass Properties and their Impact on DesignHoek, E. (1998b). Technical note Reliability of Hoek-Brown Estimates of Rock Mass Properties and their Impact on Design EVERT HOEK INTRODUCTION. In J. Rock Mech. Min. Scr (Vol. 35, Issue I). Ekvier Saence LtdHoek, E., & Bray, J. W. (1981). ROCK SLOPES : Design , Excavation , Stabilization (Issue September)Jimenez-Rodriguez, R., Sitar, N., & Chacón, J. (2006). System reliability approach to rock slope stability. International Journal of Rock Mechanics and Mining Sciences, 43(6), 847–859. https://doi.org/10.1016/j.ijrmms.2005.11.011Johari, A., & Mehrabani Iari, A. (2016). System reliability analysis of rock wedge stability considering correlated failure modes using sequential compounding method. International Journal of Rock Mechanics and Mining Sciences, 82, 61–70. https://doi.org/10.1016/j.ijrmms.2015.12.002Johari, A., & Mehrabani Lari, A. (2017a). System probabilistic model of rock slope stability considering correlated failure modes. Computers and Geotechnics, 81, 26–38. https://doi.org/10.1016/j.compgeo.2016.07.010Johari, A., & Mehrabani Lari, A. (2017b). System probabilistic model of rock slope stability considering correlated failure modes. Computers and Geotechnics, 81, 26–38. https://doi.org/10.1016/j.compgeo.2016.07.010Jordá-Bordehore, L., Jordá-Bordehore, R., & Romero-Crespo, P. L. (2016). Kinematic Assessment of Multi-Face Round Slopes Using Hemispherical Projection Methods (HPM).Kerguelen, A. (2009). Análisis de la estabilidad de taludes mineros por métodos numéricos. 1–155Leung, C. F., & Quek, S. T. (1995). Probabilistic stability analysis of excavations in jointed rock. Canadian Geotechnical Journal, 32(3), 397–407. https://doi.org/10.1139/t95-044Lisle, R. J. (2004). Calculation of the daylight envelope for plane failure of rock slopes. Geotechnique, 54(4), 279–280. https://doi.org/10.1680/geot.2004.54.4.279Lisle, R. J. & Leyshon, P. R. (2004). Stereographic techniques for geologists and civil engineers, 2nd edn. Cambridge: Cambridge University PressLow, B. K. (2008). Efficient probabilistic algorithm illustrated for a rock slope. Rock Mechanics and Rock Engineering, 41(5), 715–734. https://doi.org/10.1007/s00603-007-0146-7Marek, J. M., & Savely, P. (1978). Probabilistic analysis of the plane shear failure mode. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(1), A15. https://doi.org/10.1016/0148-9062(79)90903-3Mat Radhi, M. S., Mohd Pauzi, N. I., & Omar, H. (2008). Probabilistic Approach of Rock Slope Stability Analysis Using Monte Carlo Simulation. Iccbt, 37, 449–468. https://www.researchgate.net/profile/Nur_Pauzi/publication/263351304_Probabilistic_Approach_of_Rock_Slope_Stability_using_Monte_Carlo_Simulation/links/00b7d53aa2e50e6793000000/Probabilistic-Approach-of-Rock-Slope-Stability-using-Monte-Carlo-SimulationMiller, S. M. (1983). Probabilistic Analysis of Bench Stability For Use In Designing Open Pit Mine Slope. 621–630.Miller, S. M. (1984). Probabilistic rock slope engineeringMüller, S. (1982). Ingenieurgeologie und Geomechanik als Grundlagen des Felsbaues / Engineering Geology and Geomechanics as Fundamentals of Rock Engineering. In Ingenieurgeologie und Geomechanik als Grundlagen des Felsbaues / Engineering Geology and Geomechanics as Fundamentals of Rock Engineering. https://doi.org/10.1007/978-3-7091-8665-7Nadim, F., Einstein, H., & Roberds, W. (2005). State of the Art Paper 3 Probabilistic stability analysis for individual slopes in soil and rock.Nilsen, B. (2000a). New trends in rock slope stability analyses. Bulletin of Engineering Geology and the Environment, 58(3), 173–178. https://doi.org/10.1007/s100640050072Nilsen, B. (2000b). New trends in rock slope stability analyses. In Bull Eng Geol Env (Vol. 58). Springer-VerlagObregon, C., & Mitri, H. (2019). Probabilistic approach for open pit bench slope stability analysis – A mine case study. International Journal of Mining Science and Technology, 29(4), 629–640. https://doi.org/10.1016/j.ijmst.2019.06.017Park, H., & West, T. R. (2000). Development of a probabilistic approach for rock wedge failure. Engineering Geology, 59(3–4), 233–251. https://doi.org/10.1016/S0013-7952(00)00076-4Park, H.-J. (2000). Probabilistic Approach of Stability Analysis for Rock Wedge Failure. Economic and Environmental Geology, 33(4), 295–307.Pathak, S., Poudel, R. K., & Kansakar, B. R. (2006). Application of Probabilistic Approach in Rock Slope Stability Analysis-AN Experience from Nepal. Universal Academy Press, 1(Tokyo, Japan), 797–802Peñuela, J.L., Beltran-Calvo G., Hernandez-Carrillo, R. (2019). Adquisición y evaluación de datos geométricos de macizos rocosos a partir de imágenes tridimensionales para su uso en análisis geotécnicos. Universidad EAFIT. Ingeniería y CienciaRead & Stacey, (2009). Guidelines for Open Pit Slope Design. CSIRO. Australia. 221- 235Robertson, a. M. (1970). The interpretation of geological factors for use in slope theory. Planning Open Pit Mines, Proceedings, Johannesburg, 55–71.Rosada, Omar (2021). Propuesta metodológica para el ajuste de una red de fracturas discretas (DFN) a partir de fotogrametría de corto alcance. Universidad Nacional de ColombiaTang, W. H., Yucemen, M. S., & Ang, A. H.-S. (1976). Probability-based short term design of soil slopes. Canadian Geotechnical Journal, 13(3), 201–215. https://doi.org/10.1139/t76-024Tatone, B. S. A., & Grasselli, G. (2010). ROCKTOPPLE: A spreadsheet-based program for probabilistic block-toppling analysis. Computers and Geosciences, 36(1), 98–114. https://doi.org/10.1016/j.cageo.2009.04.014Ya-Fen Lee; Yun-Yao Chi; C. Hsein Juang, F.ASCE; & Der-Her Lee (2012). Reliability Analysis of Rock Wedge Stability: Knowledge-Based Clustered Partitioning Approach. Journal of geotechnical and geoenvironmental engineering.Zheng, J., Kulatilake, P. H. S. W., Shu, B., Sherizadeh, T., & Deng, J. (2014a). Probabilistic block theory analysis for a rock slope at an open pit mine in USA. Computers and Geotechnics, 61, 254–265. https://doi.org/10.1016/j.compgeo.2014.06.002Zheng, J., Kulatilake, P. H. S. W., Shu, B., Sherizadeh, T., & Deng, J. (2014b). Probabilistic block theory analysis for a rock slope at an open pit mine in USA. Computers and Geotechnics, 61, 254–265. https://doi.org/10.1016/j.compgeo.2014.06.002EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84187/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1049610244.2023.pdf1049610244.2023.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf9707332https://repositorio.unal.edu.co/bitstream/unal/84187/2/1049610244.2023.pdf1e48f04af32a1f0297885ec1138021aeMD52THUMBNAIL1049610244.2023.pdf.jpg1049610244.2023.pdf.jpgGenerated Thumbnailimage/jpeg4419https://repositorio.unal.edu.co/bitstream/unal/84187/3/1049610244.2023.pdf.jpgb0419e23707d15e5d0225f1aa8180c4fMD53unal/84187oai:repositorio.unal.edu.co:unal/841872024-08-14 23:41:51.297Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=