Weighted composition operators on multidimensional Lorentz spaces and a glimpse on multipliers between bounded p-variation spaces
In this thesis we study the multidimensional Lorentz spaces via the two-dimensional decreasing rearrangement. In particular, results of interpolation, quasinormability and completeness are stablished, and weights that define a norm are characterized. The boundedness, compactness and closed range of...
- Autores:
-
Chaparro Gutiérrez, Héctor Camilo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/64024
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/64024
http://bdigital.unal.edu.co/64726/
- Palabra clave:
- 5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Decreasing rearrangement
Composition operator
Multipliers
Multidimensional rearrangement
Lorentz spaces
Reordenamiento decreciente
Reordenamiento multidimensional
Multiplicadores
Operador compacto
Espacios de Lorentz
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In this thesis we study the multidimensional Lorentz spaces via the two-dimensional decreasing rearrangement. In particular, results of interpolation, quasinormability and completeness are stablished, and weights that define a norm are characterized. The boundedness, compactness and closed range of the weighted composition operator defined on those spaces are also characterized. Finally, we present the Bounded $p$-variation spaces in the Wiener's sense, and then we characterize the set of multipliers between them. |
---|