Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure

ilustraciones

Autores:
Restrepo Barrientos, Pablo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86105
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86105
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera
380 - Comercio , comunicaciones, transporte::385 - Transporte ferroviario
Transporte ferroviario - Medellín (Colombia)
Vías férreas - Medellín (Colombia)
Ferrocarriles - Mantenimiento y reparación
Durmientes (Ferrocarriles)
Vehículo ferroviario
Modelamiento multicuerpo
Modelamiento dinámico
Simulación
Validación
Railway vehicle
Multibody modelling
Dynamic modelling
Simulation
Validation
Rights
closedAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_4d5c271808989ef8837a5377257e7977
oai_identifier_str oai:repositorio.unal.edu.co:unal/86105
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
dc.title.translated.spa.fl_str_mv Modelamiento dinámico de la interacción vía-vehículo en sistemas ferroviarios : efecto de propiedades elásticas de la vía y la subestructura
title Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
spellingShingle Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera
380 - Comercio , comunicaciones, transporte::385 - Transporte ferroviario
Transporte ferroviario - Medellín (Colombia)
Vías férreas - Medellín (Colombia)
Ferrocarriles - Mantenimiento y reparación
Durmientes (Ferrocarriles)
Vehículo ferroviario
Modelamiento multicuerpo
Modelamiento dinámico
Simulación
Validación
Railway vehicle
Multibody modelling
Dynamic modelling
Simulation
Validation
title_short Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
title_full Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
title_fullStr Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
title_full_unstemmed Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
title_sort Dynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructure
dc.creator.fl_str_mv Restrepo Barrientos, Pablo
dc.contributor.advisor.none.fl_str_mv Santa Marín, Juan Felipe
Arbeláez Toro, Juan José
Toro, Alejandro
dc.contributor.author.none.fl_str_mv Restrepo Barrientos, Pablo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Tribología y Superficies
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera
380 - Comercio , comunicaciones, transporte::385 - Transporte ferroviario
topic 620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera
380 - Comercio , comunicaciones, transporte::385 - Transporte ferroviario
Transporte ferroviario - Medellín (Colombia)
Vías férreas - Medellín (Colombia)
Ferrocarriles - Mantenimiento y reparación
Durmientes (Ferrocarriles)
Vehículo ferroviario
Modelamiento multicuerpo
Modelamiento dinámico
Simulación
Validación
Railway vehicle
Multibody modelling
Dynamic modelling
Simulation
Validation
dc.subject.lemb.none.fl_str_mv Transporte ferroviario - Medellín (Colombia)
Vías férreas - Medellín (Colombia)
Ferrocarriles - Mantenimiento y reparación
Durmientes (Ferrocarriles)
dc.subject.proposal.spa.fl_str_mv Vehículo ferroviario
Modelamiento multicuerpo
Modelamiento dinámico
Simulación
Validación
dc.subject.proposal.eng.fl_str_mv Railway vehicle
Multibody modelling
Dynamic modelling
Simulation
Validation
description ilustraciones
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-17T15:20:03Z
dc.date.available.none.fl_str_mv 2024-05-17T15:20:03Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86105
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86105
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Aldasoro, J. (2010). LISTA DE PARAMETROS MEDELLIN (bogie CAF).
Areiza, Y. A., Garcés, S. I., Santa, J. F., Vargas, G., & Toro, A. (2015). Field measurement of coefficient of friction in rails using a hand-pushed tribometer. Tribology International, 82(PB), 274–279. https://doi.org/10.1016/j.triboint.2014.08.009
Badorrey Jáudenes, I. (2015). MODELADO Y ENSAYO DEL BOGIE DE UN VEHÍCULO FERROVIARIO. Universidad Carlos III de Madrid.
Bosso, N., Gugliotta, A., & Zampieri, N. (2018). A Mixed Numerical Approach to Evaluate the Dynamic Behavior of Long Trains. Procedia Structural Integrity, 12, 330–343. https://doi.org/10.1016/j.prostr.2018.11.083
British Standard. (2017). Railway applications - Testing for the acceptance of running characteristics of railway vehicles - Testing of running behaviour and stationary tests. In BS EN 14363:2005.
CAF. (n.d.). METRO MEDELLIN. Https://Www.Caf.Net/Es/Soluciones/Proyectos/Proyecto-Detalle.Php?P=27.
CAF. (2010). Cálculos dinámicos METRO MEDELLÍN.
Cannon, D. F., Edel, K.-O., Grassie, S. L., & Sawley, K. (2003). Rail defects: an overview.
Costa, J. N., Antunes, P., Magalhães, H., Pombo, J., & Ambrósio, J. (2021). A finite element methodology to model flexible tracks with arbitrary geometry for railway dynamics applications. Computers & Structures, 254, 106519. https://doi.org/https://doi.org/10.1016/j.compstruc.2021.106519
Egana, J. I., Vinolas, J., & Seco, M. (2006). Investigation of the influence of rail pad stiffness on rail corrugation on a transit system. Wear, 261(2), 216–224. https://doi.org/10.1016/j.wear.2005.10.004
Elkhoury, N., Hitihamillage, L., Moridpour, S., & Robert, D. (2018). Degradation Prediction of Rail Tracks: A Review of the Existing Literature. The Open Transportation Journal, 12(1), 88–104. https://doi.org/10.2174/1874447801812010088
Esmaeili, M., & Noghabi, H. H. (2013). Investigating Seismic Behavior of Ballasted Railway Track in Earthquake Excitation Using Finite-Element Model in Three-Dimensional Space. https://doi.org/10.1061/(ASCE)
Gallou, M. (2018). The assessment of track deflection and rail joint performance.
Ghofrani, F., Pathak, A., Mohammadi, R., Aref, A., & He, Q. (2020). Predicting rail defect frequency: An integrated approach using fatigue modeling and data analytics. Computer-Aided Civil and Infrastructure Engineering, 35(2), 101–115. https://doi.org/10.1111/mice.12453
Grassie, S. L. (2005). Rolling contact fatigue on the British railway system: Treatment. Wear, 258(7–8), 1310–1318. https://doi.org/10.1016/j.wear.2004.03.065
Grassie, S. L. (2009). Rail corrugation: Characteristics, causes, and treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(6), 581–596. https://doi.org/10.1243/09544097JRRT264
Grassie, S. L. (2016). Studs and squats: The evolving story. Wear, 366–367, 194–199. https://doi.org/10.1016/j.wear.2016.03.021
Grassie, S. L., Kalousek, J., & Magel, E. E. (1999). Treatment of Raíl Corrugation and Problems of Wheel and Raíl Damage.
Grupo de Estudios en Mantenimiento Industrial – GEMI. (n.d.). Manual de Operación y procedimiento SPD Trenes serie MAN y CAF (Hardware) SPD-TMC-03A.
Hasan, N. (2019). Rail Pad Stiffness and Classification System. Journal of Transportation Engineering, Part A: Systems, 145(5), 04019012. https://doi.org/10.1061/jtepbs.0000231
Hecht, M., Mahr, A., Schmidt, L.-M., Wolfgang Grönlund, Yu, M., & WaBmann, R. (1998). Mediciones experimentales de esfuerzos dinámicos en marcha 1997 - Metro Medellín -.
Iwnicki, S. , S. M. , C. C. , & M. T. (2019). Handbook of Railway Vehicle Dynamics (Taylor & Francis, Ed.).
Jans Bertilsson, M. (2015). Verification of Simulated Wheel-Rail Forces with Measured Data. KTH Royal Institute of Technology.
Kalker, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1–13. https://doi.org/10.1080/00423118208968684
Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact (Vol. 2). Springer Netherlands. https://doi.org/10.1007/978-94-015-7889-9
Kurzeck, B., & Hecht, M. (2010). Dynamic simulation of friction-induced vibrations in a light railway bogie while curving compared with measurement results. Vehicle System Dynamics, 48(SUPPL. 1), 121–138. https://doi.org/10.1080/00423111003669045
Maes, J., Sol, H., & Guillaume, P. (2006). Measurements of the dynamic railpad properties. Journal of Sound and Vibration, 293(3–5), 557–565. https://doi.org/10.1016/j.jsv.2005.08.042
Magel, E., & Kalousek, J. (2017). Designing and assessing wheel/rail profiles for improved rolling contact fatigue and wear performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(7), 805–818. https://doi.org/10.1177/0954409717708079
METRO DE MEDELLÍN. (2005). PERFIL DE RUEDA NRC.
Metro de Medellín Ltda. (n.d.-a). Manual Descriptivo Sección 3 Acoplamiento.
Metro de Medellín Ltda. (n.d.). Manual Descriptivo Sección 4 Bogies.
Metro de Medellín Ltda. (n.d.-b). RECOPILACION DE DATOS DE LOS INFORMES HISTORICOS REALIZADOS AL METRO DE MEDELLIN.
Mills, R. (2023). Columbia_tests.vi. Laboratory for Verification and Validation.
NEXTSENSE. (2023). RAIL CROSS PROFILE MEASUREMENT WITHOUT SURFACE CONTACT. Https://Www.Nextsense-Worldwide.Com/En/Industries/Railway/Rail-Cross-Profile-Measurement.Html.
Skrinjar, L., Slavič, J., & Boltežar, M. (2018). A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 145, 171–187. https://doi.org/10.1016/j.ijmecsci.2018.07.010
Sol-Sánchez, M., Moreno-Navarro, F., & Rubio-Gámez, M. C. (2015). The use of elastic elements in railway tracks: A state of the art review. In Construction and Building Materials (Vol. 75, pp. 293–305). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2014.11.027
Steišunas, S., Dižo, J., Bureika, G., & Žuraulis, V. (2017). Examination of Vertical Dynamics of Passenger Car with Wheel Flat Considering Suspension Parameters. Procedia Engineering, 187, 235–241. https://doi.org/10.1016/j.proeng.2017.04.370
Sushila, R. (2018). AN EXPERIMENTAL INVESTIGATION OF CANTILEVER BEAM USING IMPULSE MODAL ANALYSIS TECHNIQUE (Vol. 6, Issue 1). www.ijcrt.org
Tang, Z., Yuan, X., Xie, X., Jiang, J., & Zhang, J. (2019). Implementing railway vehicle dynamics simulation in general-purpose multibody simulation software packages. Advances in Engineering Software, 131, 153–165. https://doi.org/10.1016/j.advengsoft.2018.12.003
Thompson, D. (2009). Track Vibration. In Railway Noise and Vibration (pp. 29–95). Elsevier. https://doi.org/10.1016/b978-0-08-045147-3.00003-7
Vossloh. (2022). Rail defects. Https://Www.Vossloh.Com/En/Products-and-Solutions/Products-at-a-Glance/Rail-Turnouts.Maintenance/Schienenfehler.Html#:~:Text=Rail%20defects%20can%20be%20roughly,But%20also%20on%20its%20severity.
Wang, P. (2015). Track Stiffness Design. In Design of High-Speed Railway Turnouts (pp. 163–189). Elsevier. https://doi.org/10.1016/b978-0-323-39617-2.00005-9
Wei, X., Yin, X., Hu, Y., He, Y., & Jia, L. (2020). Squats and corrugation detection of railway track based on time-frequency analysis by using bogie acceleration measurements. Vehicle System Dynamics, 58(8), 1167–1188. https://doi.org/10.1080/00423114.2019.1610181
Yang, Y. B., Wang, Z. L., Shi, K., Xu, H., Mo, X. Q., & Wu, Y. T. (2020). Two-axle test vehicle for damage detection for railway tracks modeled as simply supported beams with elastic foundation. Engineering Structures, 219. https://doi.org/10.1016/j.engstruct.2020.110908
Yin, X., Wei, X., & Jia, L. (2015). Detection of Railway Track Squats by Using Bogie Acceleration Measurement.
Zhai, W. (2019). Vehicle–Track Coupled Dynamics (Springer Publishing, Ed.).
Zhai, W. (2020). Vehicle–Track Coupled Dynamics Models. In W. Zhai (Ed.), Vehicle–Track Coupled Dynamics: Theory and Applications (pp. 17–149). Springer Singapore. https://doi.org/10.1007/978-981-32-9283-3_2
Zhang, W. (2020). Dynamic modeling of coupled systems in the high-speed train. In Dynamics of Coupled Systems in High-Speed Railways (pp. 55–181). Elsevier. https://doi.org/10.1016/b978-0-12-813375-0.00002-9
Zhang, X., Thompson, D. J., Li, Q., Kostovasilis, D., Toward, M. G. R., Squicciarini, G., & Ryue, J. (2019). A model of a discretely supported railway track based on a 2.5D finite element approach. Journal of Sound and Vibration, 438, 153–174. https://doi.org/10.1016/j.jsv.2018.09.026
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 93 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86105/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86105/2/1020490792.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86105/3/1020490792.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
acfe8ab733e2dc14e1ba2b98ca98b7fa
e9a9afc92e1210ea5d3077c571f78545
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090121909108736
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbSanta Marín, Juan Felipe30f321423032a600a1187f1d8ce07534Arbeláez Toro, Juan José27050f2896e7bcf9f96ed394ee718258Toro, Alejandrocaada36313e95f5bd4f0bac9cc17128aRestrepo Barrientos, Pabloba65a4f40fcdf3b44c6d914db9204b3cGrupo de Tribología y Superficies2024-05-17T15:20:03Z2024-05-17T15:20:03Z2024https://repositorio.unal.edu.co/handle/unal/86105Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesIn Metro de Medellín as well as in several railway systems around the world, the presence of defects has generated a high cost associated with the maintenance and replacement of track components. These problems have been approached from different methods in the literature, in this case the analysis of the elastic properties of the track is proposed from the multibody modelling methodology. In this work the modelling of the CAF train of Metro de Medellín was carried out. The main components that affect the dynamic performance of the vehicle and its mechanical and geometric properties are identified, for the implementation of track model the elastic characterization of the track components is performed, and a discrete model that allows separating the stiffness of the pad and the ballast is proposed. With this, the analysis of how the elastic properties of the track affect the dynamic performance of the vehicle is proposed. The CAF train vehicle was modeled and validated through different methods including previous reports, vehicle accelerations in a specific area of the system, force distribution, among others. After validation, the elastic properties of the track were evaluated considering the measurements taken for its characterization, parameters such as accelerations in the wheelset, system frequencies, accelerations in the sleeper, among others, were evaluated. The results of this work correspond with typical behaviors found in recent studies. The comparison between the frequencies obtained from the model and the measured data shows a maximum difference of 10%. Finally, the results of the stiffness characterizations of the track are 57 kN/mm, which corresponds with the theoretical value reported in the literature of 50 kN/mm. (Tomado de la fuente)En el Metro de Medellín, así como en diversos sistemas ferroviarios alrededor del mundo, la presencia de defectos ha generado un alto costo asociado al mantenimiento y reemplazo de componentes de la via. Esta problemática ha sido abordada desde distintos métodos en la literatura y en este trabajo se realizaron simulaciones multicuerpo para realizar el análisis de las propiedades elásticas de la vía. En este trabajo se realizó el modelamiento del tren CAF del Metro de Medellín. Para esto se realizó la identificación de los principales componentes que afectan el desempeño dinámico del vehículo y sus propiedades mecánicas y geométricas. Se implementó un modelo completo que incluyó la caracterización elástica de los componentes de la vía, y se planteó un modelo discreto que permitió separar la rigidez del pad y del balasto. Con este modelo se realizó el análisis del efecto de las propiedades elásticas de la vía en el desempeño dinámico del vehículo. Se realizó el modelamiento del vehículo del tren CAF y la validación a través de distintos métodos incluyendo reportes previos, aceleraciones del vehículo en una zona determinada, distribución de fuerzas, entre otros. Luego de realizar la validación, se hizo la evaluación de las propiedades elásticas de la vía considerando las mediciones realizadas para la caracterización. Se evaluó la aceleración en el wheelset, las frecuencias del sistema, las aceleraciones en el durmiente, entre otros. Los resultados de este trabajo coinciden con los comportamientos típicos encontrados en estudios recientes, las comparativa entre las frecuencias obtenidas del modelo y los datos medidos en el sistema tienen una diferencia máxima del 10%, ademas, los resultados de las caracterizaciones de rigidez de la vía dan un promedio de 57kN/mm que se asemeja al valor teórico reportado en el estado del arte de 50 kN/mm.MaestríaMagíster en Ingeniería - Materiales y ProcesosMateriales Y Nanotecnología.Sede Medellín93 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera380 - Comercio , comunicaciones, transporte::385 - Transporte ferroviarioTransporte ferroviario - Medellín (Colombia)Vías férreas - Medellín (Colombia)Ferrocarriles - Mantenimiento y reparaciónDurmientes (Ferrocarriles)Vehículo ferroviarioModelamiento multicuerpoModelamiento dinámicoSimulaciónValidaciónRailway vehicleMultibody modellingDynamic modellingSimulationValidationDynamic modelling of track-vehicle interaction in railway systems: effect of elastic properties of the track and substructureModelamiento dinámico de la interacción vía-vehículo en sistemas ferroviarios : efecto de propiedades elásticas de la vía y la subestructuraTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAldasoro, J. (2010). LISTA DE PARAMETROS MEDELLIN (bogie CAF).Areiza, Y. A., Garcés, S. I., Santa, J. F., Vargas, G., & Toro, A. (2015). Field measurement of coefficient of friction in rails using a hand-pushed tribometer. Tribology International, 82(PB), 274–279. https://doi.org/10.1016/j.triboint.2014.08.009Badorrey Jáudenes, I. (2015). MODELADO Y ENSAYO DEL BOGIE DE UN VEHÍCULO FERROVIARIO. Universidad Carlos III de Madrid.Bosso, N., Gugliotta, A., & Zampieri, N. (2018). A Mixed Numerical Approach to Evaluate the Dynamic Behavior of Long Trains. Procedia Structural Integrity, 12, 330–343. https://doi.org/10.1016/j.prostr.2018.11.083British Standard. (2017). Railway applications - Testing for the acceptance of running characteristics of railway vehicles - Testing of running behaviour and stationary tests. In BS EN 14363:2005.CAF. (n.d.). METRO MEDELLIN. Https://Www.Caf.Net/Es/Soluciones/Proyectos/Proyecto-Detalle.Php?P=27.CAF. (2010). Cálculos dinámicos METRO MEDELLÍN.Cannon, D. F., Edel, K.-O., Grassie, S. L., & Sawley, K. (2003). Rail defects: an overview.Costa, J. N., Antunes, P., Magalhães, H., Pombo, J., & Ambrósio, J. (2021). A finite element methodology to model flexible tracks with arbitrary geometry for railway dynamics applications. Computers & Structures, 254, 106519. https://doi.org/https://doi.org/10.1016/j.compstruc.2021.106519Egana, J. I., Vinolas, J., & Seco, M. (2006). Investigation of the influence of rail pad stiffness on rail corrugation on a transit system. Wear, 261(2), 216–224. https://doi.org/10.1016/j.wear.2005.10.004Elkhoury, N., Hitihamillage, L., Moridpour, S., & Robert, D. (2018). Degradation Prediction of Rail Tracks: A Review of the Existing Literature. The Open Transportation Journal, 12(1), 88–104. https://doi.org/10.2174/1874447801812010088Esmaeili, M., & Noghabi, H. H. (2013). Investigating Seismic Behavior of Ballasted Railway Track in Earthquake Excitation Using Finite-Element Model in Three-Dimensional Space. https://doi.org/10.1061/(ASCE)Gallou, M. (2018). The assessment of track deflection and rail joint performance.Ghofrani, F., Pathak, A., Mohammadi, R., Aref, A., & He, Q. (2020). Predicting rail defect frequency: An integrated approach using fatigue modeling and data analytics. Computer-Aided Civil and Infrastructure Engineering, 35(2), 101–115. https://doi.org/10.1111/mice.12453Grassie, S. L. (2005). Rolling contact fatigue on the British railway system: Treatment. Wear, 258(7–8), 1310–1318. https://doi.org/10.1016/j.wear.2004.03.065Grassie, S. L. (2009). Rail corrugation: Characteristics, causes, and treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(6), 581–596. https://doi.org/10.1243/09544097JRRT264Grassie, S. L. (2016). Studs and squats: The evolving story. Wear, 366–367, 194–199. https://doi.org/10.1016/j.wear.2016.03.021Grassie, S. L., Kalousek, J., & Magel, E. E. (1999). Treatment of Raíl Corrugation and Problems of Wheel and Raíl Damage.Grupo de Estudios en Mantenimiento Industrial – GEMI. (n.d.). Manual de Operación y procedimiento SPD Trenes serie MAN y CAF (Hardware) SPD-TMC-03A.Hasan, N. (2019). Rail Pad Stiffness and Classification System. Journal of Transportation Engineering, Part A: Systems, 145(5), 04019012. https://doi.org/10.1061/jtepbs.0000231Hecht, M., Mahr, A., Schmidt, L.-M., Wolfgang Grönlund, Yu, M., & WaBmann, R. (1998). Mediciones experimentales de esfuerzos dinámicos en marcha 1997 - Metro Medellín -.Iwnicki, S. , S. M. , C. C. , & M. T. (2019). Handbook of Railway Vehicle Dynamics (Taylor & Francis, Ed.).Jans Bertilsson, M. (2015). Verification of Simulated Wheel-Rail Forces with Measured Data. KTH Royal Institute of Technology.Kalker, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1–13. https://doi.org/10.1080/00423118208968684Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact (Vol. 2). Springer Netherlands. https://doi.org/10.1007/978-94-015-7889-9Kurzeck, B., & Hecht, M. (2010). Dynamic simulation of friction-induced vibrations in a light railway bogie while curving compared with measurement results. Vehicle System Dynamics, 48(SUPPL. 1), 121–138. https://doi.org/10.1080/00423111003669045Maes, J., Sol, H., & Guillaume, P. (2006). Measurements of the dynamic railpad properties. Journal of Sound and Vibration, 293(3–5), 557–565. https://doi.org/10.1016/j.jsv.2005.08.042Magel, E., & Kalousek, J. (2017). Designing and assessing wheel/rail profiles for improved rolling contact fatigue and wear performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(7), 805–818. https://doi.org/10.1177/0954409717708079METRO DE MEDELLÍN. (2005). PERFIL DE RUEDA NRC.Metro de Medellín Ltda. (n.d.-a). Manual Descriptivo Sección 3 Acoplamiento.Metro de Medellín Ltda. (n.d.). Manual Descriptivo Sección 4 Bogies.Metro de Medellín Ltda. (n.d.-b). RECOPILACION DE DATOS DE LOS INFORMES HISTORICOS REALIZADOS AL METRO DE MEDELLIN.Mills, R. (2023). Columbia_tests.vi. Laboratory for Verification and Validation.NEXTSENSE. (2023). RAIL CROSS PROFILE MEASUREMENT WITHOUT SURFACE CONTACT. Https://Www.Nextsense-Worldwide.Com/En/Industries/Railway/Rail-Cross-Profile-Measurement.Html.Skrinjar, L., Slavič, J., & Boltežar, M. (2018). A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 145, 171–187. https://doi.org/10.1016/j.ijmecsci.2018.07.010Sol-Sánchez, M., Moreno-Navarro, F., & Rubio-Gámez, M. C. (2015). The use of elastic elements in railway tracks: A state of the art review. In Construction and Building Materials (Vol. 75, pp. 293–305). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2014.11.027Steišunas, S., Dižo, J., Bureika, G., & Žuraulis, V. (2017). Examination of Vertical Dynamics of Passenger Car with Wheel Flat Considering Suspension Parameters. Procedia Engineering, 187, 235–241. https://doi.org/10.1016/j.proeng.2017.04.370Sushila, R. (2018). AN EXPERIMENTAL INVESTIGATION OF CANTILEVER BEAM USING IMPULSE MODAL ANALYSIS TECHNIQUE (Vol. 6, Issue 1). www.ijcrt.orgTang, Z., Yuan, X., Xie, X., Jiang, J., & Zhang, J. (2019). Implementing railway vehicle dynamics simulation in general-purpose multibody simulation software packages. Advances in Engineering Software, 131, 153–165. https://doi.org/10.1016/j.advengsoft.2018.12.003Thompson, D. (2009). Track Vibration. In Railway Noise and Vibration (pp. 29–95). Elsevier. https://doi.org/10.1016/b978-0-08-045147-3.00003-7Vossloh. (2022). Rail defects. Https://Www.Vossloh.Com/En/Products-and-Solutions/Products-at-a-Glance/Rail-Turnouts.Maintenance/Schienenfehler.Html#:~:Text=Rail%20defects%20can%20be%20roughly,But%20also%20on%20its%20severity.Wang, P. (2015). Track Stiffness Design. In Design of High-Speed Railway Turnouts (pp. 163–189). Elsevier. https://doi.org/10.1016/b978-0-323-39617-2.00005-9Wei, X., Yin, X., Hu, Y., He, Y., & Jia, L. (2020). Squats and corrugation detection of railway track based on time-frequency analysis by using bogie acceleration measurements. Vehicle System Dynamics, 58(8), 1167–1188. https://doi.org/10.1080/00423114.2019.1610181Yang, Y. B., Wang, Z. L., Shi, K., Xu, H., Mo, X. Q., & Wu, Y. T. (2020). Two-axle test vehicle for damage detection for railway tracks modeled as simply supported beams with elastic foundation. Engineering Structures, 219. https://doi.org/10.1016/j.engstruct.2020.110908Yin, X., Wei, X., & Jia, L. (2015). Detection of Railway Track Squats by Using Bogie Acceleration Measurement.Zhai, W. (2019). Vehicle–Track Coupled Dynamics (Springer Publishing, Ed.).Zhai, W. (2020). Vehicle–Track Coupled Dynamics Models. In W. Zhai (Ed.), Vehicle–Track Coupled Dynamics: Theory and Applications (pp. 17–149). Springer Singapore. https://doi.org/10.1007/978-981-32-9283-3_2Zhang, W. (2020). Dynamic modeling of coupled systems in the high-speed train. In Dynamics of Coupled Systems in High-Speed Railways (pp. 55–181). Elsevier. https://doi.org/10.1016/b978-0-12-813375-0.00002-9Zhang, X., Thompson, D. J., Li, Q., Kostovasilis, D., Toward, M. G. R., Squicciarini, G., & Ryue, J. (2019). A model of a discretely supported railway track based on a 2.5D finite element approach. Journal of Sound and Vibration, 438, 153–174. https://doi.org/10.1016/j.jsv.2018.09.026Estudio de seguimiento y optimización de los perfiles de los rieles de la vía férrea y de su interacción con los vehículos férreos de las series MAN y CAF, para definir estrategias de mejoramiento de durabilidad y de optimización de labores de mantenimientoEstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86105/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020490792.2024.pdf1020490792.2024.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf4382435https://repositorio.unal.edu.co/bitstream/unal/86105/2/1020490792.2024.pdfacfe8ab733e2dc14e1ba2b98ca98b7faMD52THUMBNAIL1020490792.2024.pdf.jpg1020490792.2024.pdf.jpgGenerated Thumbnailimage/jpeg5414https://repositorio.unal.edu.co/bitstream/unal/86105/3/1020490792.2024.pdf.jpge9a9afc92e1210ea5d3077c571f78545MD53unal/86105oai:repositorio.unal.edu.co:unal/861052024-05-17 23:04:37.576Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=