Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB

ilustraciones, diagramas

Autores:
Serrato Gutiérrez, Mayling Gisette
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85381
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85381
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Estrés de sequia
Zea mays
Biotecnología
drought stress
Zea mays
biotechnology
Sequía
Polietilenglicol
Ajuste osmótico
Antioxidantes
Caribe seco
Zea mays
Drought
Polyethylene glycol
Antioxidants
Osmotic adjustment
Dry caribbean
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_4d0499bee3b02394e5abdbbd4cbac890
oai_identifier_str oai:repositorio.unal.edu.co:unal/85381
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB
dc.title.translated.eng.fl_str_mv Mitigating water deficit stress in forage maize through the use of PGPB
title Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB
spellingShingle Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB
570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Estrés de sequia
Zea mays
Biotecnología
drought stress
Zea mays
biotechnology
Sequía
Polietilenglicol
Ajuste osmótico
Antioxidantes
Caribe seco
Zea mays
Drought
Polyethylene glycol
Antioxidants
Osmotic adjustment
Dry caribbean
title_short Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB
title_full Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB
title_fullStr Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB
title_full_unstemmed Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB
title_sort Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB
dc.creator.fl_str_mv Serrato Gutiérrez, Mayling Gisette
dc.contributor.advisor.spa.fl_str_mv Uribe Vélez, Daniel
Estrada Bonilla, Germán Andrés
dc.contributor.author.spa.fl_str_mv Serrato Gutiérrez, Mayling Gisette
dc.contributor.researchgroup.spa.fl_str_mv Microbiologia Agricola
dc.subject.ddc.spa.fl_str_mv 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Estrés de sequia
Zea mays
Biotecnología
drought stress
Zea mays
biotechnology
Sequía
Polietilenglicol
Ajuste osmótico
Antioxidantes
Caribe seco
Zea mays
Drought
Polyethylene glycol
Antioxidants
Osmotic adjustment
Dry caribbean
dc.subject.agrovoc.spa.fl_str_mv Estrés de sequia
Zea mays
Biotecnología
dc.subject.agrovoc.eng.fl_str_mv drought stress
Zea mays
biotechnology
dc.subject.proposal.spa.fl_str_mv Sequía
Polietilenglicol
Ajuste osmótico
Antioxidantes
Caribe seco
dc.subject.proposal.other.fl_str_mv Zea mays
dc.subject.proposal.eng.fl_str_mv Drought
Polyethylene glycol
Antioxidants
Osmotic adjustment
Dry caribbean
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-07
dc.date.accessioned.none.fl_str_mv 2024-01-19T14:59:46Z
dc.date.available.none.fl_str_mv 2024-01-19T14:59:46Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85381
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85381
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv Abdelaal, K., Alkahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. Biology, 10(6), 520. https://doi.org/10.3390/BIOLOGY10060520
Abrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. Methods in Molecular Biology (Clifton, N.J.), 639, 317–331. https://doi.org/10.1007/978-1-60761-702-0_20/COVER/
Ahmad Ansari, F., Ahmad, I., & Pichtel, J. (2023). Synergistic effects of biofilm-producing PGPR strains on wheat plant colonization, growth and soil resilience under drought stress. Saudi Journal of Biological Sciences, 30(6), 103664. https://doi.org/10.1016/J.SJBS.2023.103664
Akhtar, S. S., Amby, D. B., Hegelund, J. N., Fimognari, L., Großkinsky, D. K., Westergaard, J. C., Müller, R., Moelbak, L., Liu, F., & Roitsch, T. (2020). Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Frontiers in Plant Science, 11, 297. https://doi.org/10.3389/fpls.2020.00297
Ali, S., & Khan, N. (2021). Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiological Research, 249, 126771. https://doi.org/10.1016/j.micres.2021.126771
Ali, S. Z., Sandhya, V., & Rao, L. V. (2014). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64(2), 493–502. https://doi.org/10.1007/S13213-013-0680-3/FIGURES/6
Allard-Massicotte, R., Tessier, L., Lécuyer, F., Lakshmanan, V., Lucier, J. F., Garneau, D., Caudwell, L., Vlamakis, H., Bais, H. P., & Beauregard, P. B. (2016). Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio, 7(6). https://doi.org/10.1128/mBio.01664-16
Almansouri, M., Kinet, J.-M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231, 243–254.
Amaya-Gómez, C. V, Porcel, M., Mesa-Garriga, L., Gómez-Álvarez, M. I., Zhou, N.-Y., & Tong, S. J. (2020). A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Applied and Environmental Microbiology, 86(14).
Anjum, S. A., Tanveer, M., Ashraf, U., Hussain, S., Shahzad, B., Khan, I., & Wang, L. (2016). Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research 2016 23:17, 23(17), 17132–17141. https://doi.org/10.1007/S11356-016-6894-8
Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8(FEBRUARY), 69. https://doi.org/10.3389/FPLS.2017.00069/BIBTEX
Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034
Anjum, S. A., Xie, X.-Y., Wang, L.-C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032. https://doi.org/10.5897/AJAR10.027
Ansari, F. A., Jabeen, M., & Ahmad, I. (2021). Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. International Journal of Environmental Science and Technology, 1–16. https://doi.org/10.1007/s13762-020-03045-9
Armada, E., Roldán, A., & Azcon, R. (2014). Differential Activity of Autochthonous Bacteria in Controlling Drought Stress in Native Lavandula and Salvia Plants Species Under Drought Conditions in Natural Arid Soil. Microbial Ecology, 67(2), 410–420. https://doi.org/10.1007/S00248-013-0326-9/FIGURES/4
Aroca, R. (2012). Plant Responses to Drought Stress. In R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to Molecular Features (Issue October 2012). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0
Arzanesh, M. H., Alikhani, H. A., Khavazi, K., Rahimian, H. A., & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27(2), 197–205. https://doi.org/10.1007/S11274-010-0444-1/TABLES/7
Asghari, B., Khademian, R., & Sedaghati, B. (2020). Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Scientia Horticulturae, 263(July 2019), 109132. https://doi.org/10.1016/j.scienta.2019.109132
Ashry, N. M., Alaidaroos, B. A., Mohamed, S. A., Badr, O. A. M., El-Saadony, M. T., & Esmael, A. (2022). Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR). Saudi Journal of Biological Sciences, 29(3), 1760–1769. https://doi.org/10.1016/J.SJBS.2021.10.054
Aslam, M., Maqpool, M., & Cengiz, R. (2015). Drought stress in maize (Zea Mays L.): effects, resistance mechanisms, global achievements, and biological strategies. In Springer Briefs in Agriculture (Vol. 8, Issue December). https://doi.org/10.1007/978-3-319-25442-5
Avramova, V., Abdelgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., & Beemster, G. T. S. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169(2), 1382–1396. https://doi.org/10.1104/pp.15.00276
Avramova, V., Nagel, K. A., Abdelgawad, H., Bustos, D., Duplessis, M., Fiorani, F., & Beemster, G. T. S. (2016). Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453–2466. https://doi.org/10.1093/JXB/ERW055
Azeem, M., Haider, M. Z., Javed, S., Saleem, M. H., & Alatawi, A. (2022). Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains under Sterile Soil Conditions. Agriculture, 12(1), 50. https://doi.org/10.3390/AGRICULTURE12010050
Bakhshandeh, E., Gholamhosseini, M., Yaghoubian, Y., & Pirdashti, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation, 90(1), 123–136. https://doi.org/10.1007/S10725-019-00556-5/FIGURES/3
Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11–38. https://doi.org/10.1111/J.1365-3040.2007.01727.X
Bashan, Y., Holguin, G., & De-Bashan, L. E. (2004). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Https://Doi.Org/10.1139/W04-035, 50(8), 521–577. https://doi.org/10.1139/W04-035
Bashan, Y., Kamnev, A. A., & de-Bashan, L. E. (2012). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils 2012 49:4, 49(4), 465–479. https://doi.org/10.1007/S00374-012-0737-7
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports 2020 10:1, 10(1), 1–19. https://doi.org/10.1038/s41598-020-73489-z
Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 110(17), E1621–E1630. https://doi.org/10.1073/PNAS.1218984110/SUPPL_FILE/PNAS.201218984SI.PDF
Bewleyl, J. D. (1997). Seed Germination and Dormancy. The Plant Cell, 9, 1055–1056.
Bhatt, R. M., Selvakumar, G., Upreti, K. K., & Boregowda, P. C. (2015). Effect of Biopriming with Enterobacter Strains on Seed Germination and Seedling Growth of Tomato (Solanum lycopersicum L.) Under Osmotic Stress. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 85(1), 63–69. https://doi.org/10.1007/s40011-014-0333-8
Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., & Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli’s defences to stress. Archives of Microbiology, 185(5), 373–382. https://doi.org/10.1007/S00203-006-0103-Y/TABLES/5
Borrell, A. K., Hammer, G. L., & Douglas, A. C. L. (2000). Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Science, 40(4), 1026–1037. https://doi.org/10.2135/cropsci2000.4041026x
Bouremani, N., Cherif-Silini, H., Silini, A., Bouket, A. C., Luptakova, L., Alenezi, F. N., Baranov, O., & Belbahri, L. (2023). Plant Growth-Promoting Rhizobacteria (PGPR): A Rampart against the Adverse Effects of Drought Stress. Water, 15(3), 418. https://doi.org/10.3390/w15030418
Carlson, R., Tugizimana, F., Steenkamp, P. A., Dubery, I. A., Hassen, A. I., & Labuschagne, N. (2020). Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiological Research, 232, 126388. https://doi.org/10.1016/j.micres.2019.126388
Cassel, D. K., & Nielsen, D. R. (1986). Field Capacity and Available Water Capacity. In A. Klute (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods (2nd ed., Vol. 9, Issue 9, pp. 901–926). American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c36
Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4 Suppl), 1011. https://doi.org/10.1590/S1415-47572012000600016
Cesari, A., Paulucci, N., López-Gómez, M., Hidalgo-Castellanos, J., Plá, C. L., & Dardanelli, M. S. (2019). Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Plant Physiology and Biochemistry, 142, 519–527. https://doi.org/10.1016/j.plaphy.2019.08.015
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. In Annals of Botany (Vol. 103, Issue 4, pp. 551–560). Oxford Academic. https://doi.org/10.1093/aob/mcn125
Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25(9), 1007–1014. https://doi.org/10.1038/nbt1325
Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4(NOV), 442. https://doi.org/10.3389/FPLS.2013.00442/BIBTEX
Cortés-Patiño, S., Vargas, C., Álvarez-Flórez, F., Bonilla, R., & Estrada-Bonilla, G. (2021). Potential of herbaspirillum and azospirillum consortium to promote growth of perennial ryegrass under water deficit. Microorganisms, 9(1), 1–16. https://doi.org/10.3390/microorganisms9010091
Creus, C. M., Sueldo, R. J., & Barassi, C. A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82(2), 273–281. https://doi.org/10.1139/b03-119
Cruz, C., Gomez, L., & Uribe, D. (2017). Bio-based management of rice straw under different C:N ratios using microbial co-inocula and plant growth promoters. Revista Colombiana de Biotecnol, 19, 47–62. https://doi.org/10.5446/rev.colomb.biote.v19n2.70168
Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species. Plant Signaling & Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536
DANE. (2019). Encuesta Nacional Agropecuaria (ENA): Serie histórica por departamento cultivos transitorios (2012 - II semestre 2019). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena
Danish, S., Zafar-Ul-Hye, M., Mohsin, F., & Hussain, M. (2020). ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE, 15(4). https://doi.org/10.1371/journal.pone.0230615
Daryanto, S., Wang, L., & Jacinthe, P.-A. (2016). Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS ONE, 11(5), e0156362. https://doi.org/10.1371/journal.pone.0156362
Dasgupta, D., Paul, A., Acharya, K., Minkina, T., Mandzhieva, S., Gorovtsov, A. V., Chakraborty, N., & Keswani, C. (2023). Bioinoculant mediated regulation of signalling cascades in various stress responses in plants. Heliyon, 9(1), e12953. https://doi.org/10.1016/J.HELIYON.2023.E12953
de Carvalho, R. C., Cunha, A., & da Silva, J. M. (2011). Photosynthesis by six Portuguese maize cultivars during drought stress and recovery. Acta Physiologiae Plantarum, 33(2), 359–374. https://doi.org/10.1007/S11738-010-0555-1/FIGURES/10
De Micco, V., & Aronne, G. (2012). Morpho-Anatomical Traits for Plant Adaptation to Drought. In R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to Molecular Features (Issue June 2015, pp. 1–466). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0
Devarajan, A. K., Muthukrishanan, G., Truu, J., Truu, M., Ostonen, I., Subramanian Kizhaeral, S., Panneerselvam, P., & Gopalasubramanian, S. K. (2021). The Foliar Application of Rice Phyllosphere Bacteria induces Drought-Stress Tolerance in Oryza sativa (L.). Plants 2021, Vol. 10, Page 387, 10(2), 387. https://doi.org/10.3390/PLANTS10020387
Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment, 32(12), 1682–1694. https://doi.org/10.1111/J.1365-3040.2009.02028.X
Donot, F., Fontana, A., Baccou, J. C., & Schorr-Galindo, S. (2012). Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951–962. https://doi.org/10.1016/J.CARBPOL.2011.08.083
Drobot, R., Draghia, A. F., Sîrbu, N., & Dinu, C. (2022). Synthetic Drought Hydrograph. Hydrology 2023, Vol. 10, Page 10, 10(1), 10. https://doi.org/10.3390/HYDROLOGY10010010
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
Edmeades, G. O. (2008). Drought Tolerance in Maize: an Emerging Reality. In James Clive. Global Status of Commercialized Biotech/GM Crops (Vol. 39, p. 12). ISAAA. http://www.isaaa.org
Embiale, A., Hussein, M., Husen, A., Sahile, S., & Mohammed, K. (2016). Differential Sensitivity of Pisum sativum L. Cultivars to Water-deficit Stress: Changes in Growth, Water Status, Chlorophyll Fluorescence and Gas Exchange Attributes. Journal of Agronomy, 15(2), 45–57. https://doi.org/10.3923/ja.2016.45.57
Estrada, G. A., Baldani, V. L. D., de Oliveira, D. M., Urquiaga, S., & Baldani, J. I. (2013). Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant and Soil, 369(1–2), 115–129. https://doi.org/10.1007/s11104-012-1550-7
Fadiji, A. E., Santoyo, G., Yadav, A. N., & Babalola, O. O. (2022). Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 13, 2943. https://doi.org/10.3389/fmicb.2022.962427
Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/S00018-014-1767-0/METRICS
Fang, Yan, Du, Y., Wang, J., Wu, A., Qiao, S., Xu, B., Zhang, S., Siddique, K. H. M., & Chen, Y. (2017). Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat. Frontiers in Plant Science, 8. https://doi.org/10.3389/FPLS.2017.00672
FAO. (2023a). FAOSTAT: Crops and livestock products, Production Quantity + Crops primary. https://www.fao.org/faostat/en/#data/QCL
FAO. (2023b). FAOSTAT: Food Balances. https://www.fao.org/faostat/en/#data/FBS
FAO, F. and A. O. of the U. N. (2017). The impact of disasters and crises on agriculture and food security. www.fao.org/publications
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. In Agronomy for Sustainable Development (Vol. 29, Issue 1, pp. 185–212). EDP Sciences. https://doi.org/10.1051/agro:2008021
FENALCE. (2011). ASPECTOS TÉCNICOS DE LA PRODUCCIÓN DE MAÍZ EN COLOMBIA. Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya. https://repository.agrosavia.co/bitstream/handle/20.500.12324/19418/45021_60774.pdf?sequence=1&isAllowed=y
FENALCE. (2021). Indicadores Cerealistas 2021B.
FENALCE. (2023a). Histórico de área, producción y rendimiento Cereales y leguminosas. https://app.powerbi.com/view?r=eyJrIjoiM2FiYzM5ZTAtNjFmNi00MGQyLWFiYzYtNGI0YTJiZTcwZWQwIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9
FENALCE. (2023b). Importaciones de cereales y leguminosas. https://app.powerbi.com/view?r=eyJrIjoiZjBjODljNTktZTdiMy00OWNlLTk5OGEtMWY2ZDM3NTczZWZhIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9&pageName=ReportSection639662e3be90024da888
Flexas, J., & Medrano, H. (2002). Drought‐inhibition of Photosynthesis in C3 Plants: Stomatal and Non‐stomatal Limitations Revisited. Annals of Botany, 89(2), 183–189. https://doi.org/10.1093/AOB/MCF027
Forni, C., Duca, D., & Glick, B. R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 410(1–2), 335–356. https://doi.org/10.1007/s11104-016-3007-x
García, J. E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J. A., & Groppa, M. D. (2017). In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202, 21–29. https://doi.org/10.1016/j.micres.2017.04.007
Garrard, A. (1954). THE EFFECTS OF β -INDOLYLACETIC ACID ON THE GERMINATION AND ROOT GROWTH OF CERTAIN MEMBERS OF THE CRUCIFERAE. New Phytologist, 53(2), 165–176. https://doi.org/10.1111/J.1469-8137.1954.TB05234.X
Ge, T., Sui, F., Bai, L., Tong, C., & Sun, N. (2012). Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiologiae Plantarum, 34(3), 1043–1053. https://doi.org/10.1007/S11738-011-0901-Y/TABLES/3
Ghannoum, O. (2009). C4 Photosynthesis and water stress. Ann Bot, 103(4), 635–644. https://doi.org/10.1093/aob/mcn093
Ghosh, A., Biswas, D. R., Das, S., Das, T. K., Bhattacharyya, R., Alam, K., & Rahman, M. M. (2023). Rice straw incorporation mobilizes inorganic soil phosphorus by reorienting hysteresis effect under varying hydrothermal regimes in a humid tropical Inceptisol. Soil and Tillage Research, 225, 105531. https://doi.org/10.1016/J.STILL.2022.105531
Ghosh, D., Gupta, A., & Mohapatra, S. (2019). A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World Journal of Microbiology and Biotechnology, 35(6), 1–15. https://doi.org/10.1007/S11274-019-2659-0/FIGURES/7
Ghosh, D., Sen, S., & Mohapatra, S. (2018). Drought-mitigating Pseudomonas putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis thaliana under water stress. Annals of Microbiology, 68(9), 579–594. https://doi.org/10.1007/S13213-018-1366-7/FIGURES/5
Ghosh, D., Sen, S., & Mohapatra, S. (2017). Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Annals of Microbiology, 67(10), 655–668. https://doi.org/10.1007/s13213-017-1294-y
Gill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., & Tuteja, N. (2013). Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. In Plant Physiology and Biochemistry (Vol. 70, pp. 204–212). Elsevier Masson. https://doi.org/10.1016/j.plaphy.2013.05.032
Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1–15. https://doi.org/10.6064/2012/963401
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009
Glick, B. R. (2020). Beneficial plant-bacterial interactions. In Beneficial Plant-Bacterial Interactions. https://doi.org/10.1007/978-3-030-44368-9
Gomez-Ramirez, L. F., & Uribe-Velez, D. (2021). Phosphorus Solubilizing and Mineralizing Bacillus spp. Contribute to Rice Growth Promotion Using Soil Amended with Rice Straw. Current Microbiology, 78(3), 932–943. https://doi.org/10.1007/S00284-021-02354-7/TABLES/3
Goswami, D., Vaghela, H., Parmar, S., Dhandhukia, P., & Thakker, J. N. (2013). Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. Journal of Plant Interactions, 8(4), 281–290. https://doi.org/10.1080/17429145.2013.768360
Govaerts, B., Vega, D., Chávez, X., Narro, L., San Vicente, F., Palacios, N., González, G., Ortega, P., Carvajar, A., Arcos, A., Bolaños, J., Romero, N., Bolaños, J., & Vanegas, Y. (2019). Maíz para Colombia: Visión 2030. In CYMMIT CIAT. CYMMIT - CIAT. https://www.fenalce.org/archivos/maiz2030.pdf
Grote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Frontiers in Sustainable Food Systems, 4, 317. https://doi.org/10.3389/FSUFS.2020.617009/BIBTEX
Gupta, A., Rico, A., & Caño, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614
Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., & Park, S. W. (2013). Plant Growth-Promoting Rhizobacteria Enhance Abiotic Stress Tolerance in Solanum tuberosum Through Inducing Changes in the Expression of ROS-Scavenging Enzymes and Improved Photosynthetic Performance. Journal of Plant Growth Regulation, 32(2), 245–258. https://doi.org/10.1007/s00344-012-9292-6
Hagaggi, N. S. A., & Abdul-Raouf, U. M. (2022). Drought-tolerant Sphingobacterium changzhouense Alv associated with Aloe vera mediates drought tolerance in maize (Zea mays). World Journal of Microbiology and Biotechnology 2022 38:12, 38(12), 1–11. https://doi.org/10.1007/S11274-022-03441-Y
Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681
Henry, A., Doucette, W., Norton, J., & Bugbee, B. (2007). Changes in Crested Wheatgrass Root Exudation Caused by Flood, Drought, and Nutrient Stress. Journal of Environmental Quality, 36(3), 904–912. https://doi.org/10.2134/JEQ2006.0425SC
Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334. https://doi.org/10.1139/b79-163
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2nd edit). https://www.cabdirect.org/cabdirect/abstract/19500302257
Hoben, H. J., & Somasegaran, P. (1982). Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Applied and Environmental Microbiology, 44(5), 1246–1247. https://doi.org/10.1128/AEM.44.5.1246-1247.1982
Hossain, M. M., Lam, H. M., & Zhang, J. (2015). Responses in gas exchange and water status between drought-tolerant and -susceptible soybean genotypes with ABA application. The Crop Journal, 3(6), 500–506. https://doi.org/10.1016/J.CJ.2015.09.001
Hsiao, T. C. (1973). Plant Responses to Water Stress. Annual Review of Plant Physiology, 24(1), 519–570. https://doi.org/10.1146/annurev.pp.24.060173.002511
Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51(350), 1595–1616. https://doi.org/10.1093/JEXBOT/51.350.1595
Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393
Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Https://Doi.Org/10.1094/MPMI-20-6-0619, 20(6), 619–626. https://doi.org/10.1094/MPMI-20-6-0619
Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A., & Ullah, A. (2021). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation, 40(3), 926–944. https://doi.org/10.1007/s00344-020-10174-5
Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R. Z., Khan, W., Enshasy, H. A. El, Dailin, D. J., Elsayed, E. A., & Ali, Z. (2020). Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. Sustainability, 12(21), 8876. https://doi.org/10.3390/su12218876
Imran, M., Mpovo, C. L., Aaqil Khan, M., Shaffique, S., Ninson, D., Bilal, S., Khan, M., Kwon, E. H., Kang, S. M., Yun, B. W., & Lee, I. J. (2023). Synergistic Effect of Melatonin and Lysinibacillus fusiformis L. (PLT16) to Mitigate Drought Stress via Regulation of Hormonal, Antioxidants System, and Physio-Molecular Responses in Soybean Plants. International Journal of Molecular Sciences, 24(10), 8489. https://doi.org/10.3390/IJMS24108489/S1
Integrated Taxonomic Information System (ITIS). (2023). ITIS - Report: Zea mays. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=42269#null
Kamara, A. Y., Menkir, A., Badu-Apraku, B., & Ibikunle, O. (2003). The influence of drought stress on growth, yield and yield components of selected maize genotypes. The Journal of Agricultural Science, 141(1), 43–50. https://doi.org/10.1017/S0021859603003423
Karimzadeh, J., Alikhani, H. A., Etesami, H., & Pourbabaei, A. A. (2021). Improved Phosphorus Uptake by Wheat Plant (Triticum aestivum L.) with Rhizosphere Fluorescent Pseudomonads Strains Under Water-Deficit Stress. Journal of Plant Growth Regulation, 40(1), 162–178. https://doi.org/10.1007/S00344-020-10087-3/FIGURES/7
Karlowsky, S., Augusti, A., Ingrisch, J., Akanda, M. K. U., Bahn, M., & Gleixner, G. (2018). Drought-Induced Accumulation of Root Exudates Supports Post-drought Recovery of Microbes in Mountain Grassland. Frontiers in Plant Science, 9, 402696. https://doi.org/10.3389/fpls.2018.01593
Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61(2), 217–227. https://doi.org/10.1016/J.AOAS.2016.07.003
Kaushal, M., & Wani, S. P. (2016a). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35–42. https://doi.org/10.1007/S13213-015-1112-3/METRICS
Kaushal, M., & Wani, S. P. (2016b). Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. In Agriculture, Ecosystems and Environment (Vol. 231, pp. 68–78). Elsevier B.V. https://doi.org/10.1016/j.agee.2016.06.031
Keskin, A., Tumer, E. I., & Birinci, A. (2010). Analysis of the factors affecting the instrument and machinery assets in enterprises that deal with agricultural production: The case of erzurum province. African Journal of Agricultural Research, 5(8), 600–605. https://doi.org/10.5897/AJAR10.027
Khabbaz, S. E., Ladhalakshmi, D., Babu, M., Kandan, A., Ramamoorthy, V., Saravanakumar, D., Al-Mughrabi, T., & Kandasamy, S. (2019). Plant Growth Promoting Bacteria (PGPB) - A Versatile Tool for Plant Health Management. Canadian Journal of Pesticides & Pest Management, 1(1), 1. https://doi.org/10.34195/can.j.ppm.2019.05.001
Khan, A., & Singh, A. V. (2021). Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World Journal of Microbiology and Biotechnology, 37(12), 1–17. https://doi.org/10.1007/S11274-021-03166-4/FIGURES/4
Khoshru, B., Mitra, D., Khoshmanzar, E., Myo, E. M., Uniyal, N., Mahakur, B., Mohapatra, P. K. Das, Panneerselvam, P., Boutaj, H., Alizadeh, M., Cely, M. V. T., Senapati, A., & Rani, A. (2020). Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition, 43(20), 3062–3092. https://doi.org/10.1080/01904167.2020.1799004
Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. In Nature (Vol. 286, Issue 5776, pp. 885–886). https://doi.org/10.1038/286885a0
Knights, H. E., Jorrin, B., Haskett, T. L., & Poole, P. S. (2021). Deciphering bacterial mechanisms of root colonization. Environmental Microbiology Reports, 13(4), 428–444. https://doi.org/10.1111/1758-2229.12934
Kour, D., Rana, K. L., Sheikh, I., Kumar, V., Yadav, A. N., Dhaliwal, H. S., & Saxena, A. K. (2020). Alleviation of Drought Stress and Plant Growth Promotion by Pseudomonas libanensis EU-LWNA-33, a Drought-Adaptive Phosphorus-Solubilizing Bacterium. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(4), 785–795. https://doi.org/10.1007/S40011-019-01151-4/FIGURES/4
Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23(December 2019), 101487. https://doi.org/10.1016/j.bcab.2019.101487
Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, V., Kumar, A., Sayyed, R. Z., Hesham, A. E.-L., Dhaliwal, H. S., & Saxena, A. K. (2019). Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. In N. K. Arora (Ed.), Plant Growth Promoting Rhizobacteria for Sustainable Stress Management (pp. 255–308). Springer. https://doi.org/10.1007/978-981-13-6536-2_13
Kränzlein, M., Geilfus, C. M., Franzisky, B. L., Zhang, X., Wimmer, M. A., & Zörb, C. (2021). Physiological Responses of Contrasting Maize (Zea mays L.) Hybrids to Repeated Drought. Journal of Plant Growth Regulation, 41(7), 2708–2718. https://doi.org/10.1007/S00344-021-10468-2/FIGURES/5
Kravchenko, L. V., Azarova, T. S., Makarova, N. M., & Tikhonovich, I. A. (2004). The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology, 73(2), 156–158. https://doi.org/10.1023/B:MICI.0000023982.76684.9D/METRICS
Kumar, V., & Narula, N. (1999). Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils, 28(3), 301–305. https://doi.org/10.1007/S003740050497/METRICS
Lara-Bosso, L. S. (2007). Determinación del potencial agronómico de aislamientos nativos de Pseudomonas fluorescens en términos de su capacidad solubilizadora de fosfatos y antagonista contra Rhizoctonia solani. Universidad Nacional de Colombia.
Latif, M., Bukhari, S. A. H., Alrajhi, A. A., Alotaibi, F. S., Ahmad, M., Shahzad, A. N., Dewidar, A. Z., & Mattar, M. A. (2022). Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy 2022, Vol. 12, Page 1140, 12(5), 1140. https://doi.org/10.3390/AGRONOMY12051140
Laverde-Robayo, P. (2016). CARACTERIZACIÓN FENOTÍPICA DE AISLAMIENTOS NATIVOS DE Pseudomonas spp. CON POTENCIAL BIOCONTROLADOR DE AGENTES FITOPATÓGENOS ASOCIADOS AL CULTIVO DE PAPA. Pontificia Universidad Javeriana.
Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 2019, Vol. 8, Page 94, 8(4), 94. https://doi.org/10.3390/ANTIOX8040094
Leal-Medina, G. I. (2018). Selección de bacterias aerobias formadoras de Endospora (BAFEs) con capacidad de promoción de crecimiento vegetal, provenientes de cultivos de caña panelera con manejos agronómicos contrastantes [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/63901
Lephatsi, M., Nephali, L., Meyer, V., Piater, L. A., Buthelezi, N., Dubery, I. A., Opperman, H., Brand, M., Huyser, J., & Tugizimana, F. (2022). Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Scientific Reports 2022 12:1, 12(1), 1–18. https://doi.org/10.1038/s41598-022-14570-7
Li, L., Gu, W., Li, J., Li, C., Xie, T., Qu, D., Meng, Y., Li, C., & Wei, S. (2018). Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiology and Biochemistry, 129, 35–55. https://doi.org/10.1016/J.PLAPHY.2018.05.017
Lichtenthaler, H. K. (1996). Vegetation Stress: an Introduction to the Stress Concept in Plants. Journal of Plant Physiology, 148(1–2), 4–14. https://doi.org/10.1016/S0176-1617(96)80287-2
Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L., & Yang, R. (2010). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 71, 174–183. https://doi.org/10.1016/j.envexpbot.2010.11.012
Lopes, M. S., Araus, J. L., van Heerden, P. D. R., & Foyer, C. H. (2011). Enhancing drought tolerance in C4 crops. Journal of Experimental Botany, 62(9), 3135–3153. https://doi.org/10.1093/jxb/err105
Loscos-Aranda, D. J. (2007). Metabolismo de Ascorbato y Tioles en Leguminosas [Consejo Superior de Investigaciones Científicas CSIC]. https://digital.csic.es/bitstream/10261/3020/1/2007-TesisJorgeLoscos.pdf
Lu, Y., Li, Y., Zhang, J., Xiao, Y., Yue, Y., Duan, L., Zhang, M., & Li, Z. (2013). Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.). PLoS ONE, 8(1), e52126. https://doi.org/10.1371/journal.pone.0052126
Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
Ma, X., Sukiran, N. L., Ma, H., & Su, Z. (2014). Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis. BMC Plant Biology, 14(1), 1–16. https://doi.org/10.1186/1471-2229-14-164/FIGURES/6
Maazou, A.-R. S., Tu, J., Qiu, J., Liu, Z., Maazou, A.-R. S., Tu, J., Qiu, J., & Liu, Z. (2016). Breeding for Drought Tolerance in Maize (Zea mays L.). American Journal of Plant Sciences, 7(14), 1858–1870. https://doi.org/10.4236/AJPS.2016.714172
MacAlister, D., Muasya, A. M., Crespo, O., Ogola, J. B. O., Maseko, S., Valentine, A. J., Ottosen, C. O., Rosenqvist, E., & Chimphango, S. B. M. (2020). Stress tolerant traits and root proliferation of Aspalathus linearis (Burm.f.) R. Dahlgren grown under differing moisture regimes and exposed to drought. South African Journal of Botany, 131, 342–350. https://doi.org/10.1016/J.SAJB.2020.03.003
Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water Scarcity and Future Challenges for Food Production. Water, 7(3), 975–992. https://doi.org/10.3390/W7030975
Marasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H., Zocchi, G., & Daffonchio, D. (2013). Are drought-resistance promoting bacteria cross-compatible with different plant models? Https://Doi.Org/10.4161/Psb.26741, 8(10). https://doi.org/10.4161/PSB.26741
Marulanda, A., Barea, J. M., & Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28(2), 115–124. https://doi.org/10.1007/S00344-009-9079-6/TABLES/3
Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2), 525–530. https://doi.org/10.1016/j.plantsci.2003.10.025
McAdam, S. A. M., & Brodribb, T. J. (2016). Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants. Plant Physiology, 171(3), 2008–2016. https://doi.org/10.1104/PP.16.00380
Mejía, D. (2003). Maize: Post-harvest Operations. Food and Agriculture Organization of the United Nations (FAO).
Mejri, M., Siddique, K. H. M., Saif, T., Abdelly, C., & Hessini, K. (2016). Comparative effect of drought duration on growth, photosynthesis, water relations, and solute accumulation in wild and cultivated barley species. Journal of Plant Nutrition and Soil Science, 179(3), 327–335. https://doi.org/10.1002/jpln.201500547
Melgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Suaréz, D., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia.
Mendoza-Labrador, J., Romero-Perdomo, F., Abril, J., Hernández, J.-P., Uribe-Vélez, D., & Buitrago, R. B. (2021). Bacillus strains immobilized in alginate macrobeads enhance drought stress adaptation of Guinea grass. Rhizosphere, 19, 100385. https://doi.org/10.1016/j.rhisph.2021.100385
Michel, B. E., & Kaufmann, M. R. (1973). The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiology, 51(5), 914–916. https://doi.org/10.1104/pp.51.5.914
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33(4), 453–467. https://doi.org/10.1111/J.1365-3040.2009.02041.X
MinAmbiente, M. de A. y D. S. (2015). PLAN INTEGRAL DE GESTIÓN DEL CAMBIO CLIMÁTICO TERRITORIAL DEL DEPARTAMENTO DEL CESAR. https://www.minambiente.gov.co/images/cambioclimatico/pdf/aproximacion__al_territorio/Cesar_pag_ind.pdf
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012
Morcillo, R. J. L., & Manzanera, M. (2021). The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. 11, 1–19. https://doi.org/10.3390/metabo11060337
Moreno-Galván, A., Cortés-Patiño, S., Romero-Perdomo, F., Uribe-Vélez, D., Bashan, Y., & Bonilla, R. (2020). Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. Applied Soil Ecology, 147(September), 103367. https://doi.org/10.1016/j.apsoil.2019.103367
Moreno-Galván, A., Romero-Perdomo, F. A., Estrada-Bonilla, G., Meneses, C. H. S. G., & Bonilla, R. R. (2020). Dry-Caribbean Bacillus spp. Strains Ameliorate Drought Stress in Maize by a Strain-Specific Antioxidant Response Modulation. Microorganisms 2020, Vol. 8, Page 823, 8(6), 823. https://doi.org/10.3390/MICROORGANISMS8060823
Moreno, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomia Colombiana, 27(2), 179–191.
Murshed, R., Lopez-Lauri, F., & Sallanon, H. (2008). Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Analytical Biochemistry, 383(2), 320–322. https://doi.org/10.1016/j.ab.2008.07.020
Musimwa, T. R., Molnar, T. L., Dutta, S., Dhliwayo, T., Trachsel, S., & Lee, M. (2023). Phenotypic assessment of genetic gain from selection for improved drought tolerance in semi-tropical maize populations. Journal of Agronomy and Crop Science, 209(1), 71–82. https://doi.org/10.1111/JAC.12592
Nadeem, S. M., Ahmad, M., Tufail, M. A., Asghar, H. N., Nazli, F., & Zahir, Z. A. (2021). Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiologia Plantarum, 172(2), 463–476. https://doi.org/10.1111/PPL.13212
Nakano, Y., & Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009–1022. https://doi.org/10.1002/jobm.201800309
Naseem, H., & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689–701. https://doi.org/10.1080/17429145.2014.902125
Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/J.1574-6968.1999.TB13383.X
Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014
Naylor, D., & Coleman-Derr, D. (2018). Drought Stress and Root-Associated Bacterial Communities. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02223
Nayyar, H., & Gupta, D. (2006). Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany, 58(1–3), 106–113. https://doi.org/10.1016/j.envexpbot.2005.06.021
Ngumbi, E., & Kloepper, J. (2016). Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105, 109–125. https://doi.org/10.1016/j.apsoil.2016.04.009
Nieves-Cordones, M., García-Sánchez, F., Pérez-Pérez, J. G., Colmenero-Flores, J. M., Rubio, F., & Rosales, M. A. (2019). Coping With Water Shortage: An Update on the Role of K+, Cl-, and Water Membrane Transport Mechanisms on Drought Resistance. Frontiers in Plant Science, 10, 1619. https://doi.org/10.3389/FPLS.2019.01619/BIBTEX
Nio, S. A., Cawthray, G. R., Wade, L. J., & Colmer, T. D. (2011). Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiology and Biochemistry, 49(10), 1126–1137. https://doi.org/10.1016/j.plaphy.2011.05.011
Niu, X., Song, L., Xiao, Y., & Ge, W. (2018). Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress. Frontiers in Microbiology, 8(JAN), 2580. https://doi.org/10.3389/fmicb.2017.02580
Noctor, G., & Foyer, C. H. (1998). ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 249–279. https://doi.org/10.1146/annurev.arplant.49.1.249
Noctor, G., Mhamdi, A., & Foyer, C. H. (2016). Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant, Cell & Environment, 39(5), 1140–1160. https://doi.org/10.1111/pce.12726
Noctor, G., Mhandi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., & Foyer, C. H. (2012). Glutathione in plants: an integrated overview. Plant, Cell & Environment, 35(2), 454–484. https://doi.org/10.1111/j.1365-3040.2011.02400.x
Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V., & Chenu, C. (2017). Effects of habitat constraints on soil microbial community function. Scientific Reports 2017 7:1, 7(1), 1–10. https://doi.org/10.1038/s41598-017-04485-z
Ogbaga, C. C., Stepien, P., & Johnson, G. N. (2014). Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiologia Plantarum, 152(2), 389–401. https://doi.org/10.1111/PPL.12196
Ordoñez, Y. M., Fernandez, B. R., Lara, L. S., Rodriguez, A., Uribe-Vélez, D., & Sanders, I. R. (2016). Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities. PLOS ONE, 11(6), e0154438. https://doi.org/10.1371/journal.pone.0154438
Osmolovskaya, N., Shumilina, J., Kim, A., Didio, A., Grishina, T., Bilova, T., Keltsieva, O. A., Zhukov, V., Tikhonovich, I., Tarakhovskaya, E., Frolov, A., & Wessjohann, L. A. (2018). Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. International Journal of Molecular Sciences 2018, Vol. 19, Page 4089, 19(12), 4089. https://doi.org/10.3390/IJMS19124089
Paliwal, R. L., Granados, G., Lafitte, H. R., & Violic, A. D. (2001). EL MAÍZ EN LOS TRÓPICOS: Mejoramiento y producción. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/x7650s/x7650s00.htm#toc
Palmer, W. C. (1965). Meteorological Drought (W. B. U.S. Department of Commerce (ed.); Vol. 30). https://books.google.com.co/books?id=kyYZgnEk-L8C&lr=&hl=es&source=gbs_navlinks_s
Pandey, V., & Shukla, A. (2015). Acclimation and Tolerance Strategies of Rice under Drought Stress. Rice Science, 22(4), 147–161. https://doi.org/10.1016/J.RSCI.2015.04.001
Patiño-Torres, C., & Sanclemente, O. (2014). Los Microorganismos solubilizadores de Fosforo (MSF): Una Alternativa Biotecnológica Para Una Agricultura Sostenible. Entramado, 10(2), 288–297. http://www.scielo.org.co/pdf/entra/v10n2/v10n2a18.pdf
Pedraza-Herrera, L. A., Bautista, J. P., Cruz-Ramírez, C. A., & Uribe-Vélez, D. (2021). IBUN2755 Bacillus strain controls seedling root and bacterial panicle blight caused by Burkholderia glumae. Biological Control, 153, 104494. https://doi.org/10.1016/j.biocontrol.2020.104494
Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
Perea-Molina, P. A., Pedraza-Herrera, L. A., Beauregard, P. B., & Uribe-Vélez, D. (2022). A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biological Control, 176, 105067. https://doi.org/10.1016/j.biocontrol.2022.105067
Pereira, S. I. A., & Castro, P. M. L. (2014). Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering, 73, 526–535. https://doi.org/10.1016/J.ECOLENG.2014.09.060
PIDARET. (2019). PLAN INTEGRAL DE DESARROLLO AGROPECUARIO Y RURAL CON ENFOQUE TERRITORIAL TOMO II DEPARTAMENTO DEL CESAR. https://www.adr.gov.co/servicios/pidaret/CESAR TOMO II.pdf
Piña, R. G., & Cervantes, C. (1996). Microbial interactions with aluminium. BioMetals, 9(3), 311–316. https://doi.org/10.1007/BF00817932/METRICS
Prasanna, B. M., Cairns, J. E., Zaidi, P. H., Beyene, Y., Makumbi, D., Gowda, M., Magorokosho, C., Zaman-Allah, M., Olsen, M., Das, A., Worku, M., Gethi, J., Vivek, B. S., Nair, S. K., Rashid, Z., Vinayan, M. T., Issa, A. R. B., San Vicente, F., Dhliwayo, T., & Zhang, X. (2021). Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 134(6), 1729–1752. https://doi.org/10.1007/S00122-021-03773-7
Praveen Kumar, G., Mir Hassan Ahmed, S. K., Desai, S., Leo Daniel Amalraj, E., & Rasul, A. (2014). In Vitro Screening for Abiotic Stress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp. . International Journal of Bacteriology, 2014, 1–6. https://doi.org/10.1155/2014/195946
Qurashi, A. W., & Sabri, A. N. (2012). Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels. Journal of Basic Microbiology, 52(5), 566–572. https://doi.org/10.1002/JOBM.201100253
Riva, V., Mapelli, F., Dragonetti, G., Elfahl, M., Vergani, L., Crepaldi, P., La Maddalena, N., & Borin, S. (2021). Bacterial Inoculants Mitigating Water Scarcity in Tomato: The Importance of Long-Term in vivo Experiments. Frontiers in Microbiology, 12, 1328. https://doi.org/10.3389/fmicb.2021.675552
Rolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P., & Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany, 110, 27–35. https://doi.org/10.1016/j.envexpbot.2014.09.006
Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Pierotti Cei, F., Borin, S., Sorlini, C., Zocchi, G., & Daffonchio, D. (2015). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17(2), 316–331. https://doi.org/10.1111/1462-2920.12439
Rozo-Leguizamón, Y., Tofiño- Rivera, A. P., Gómez-Latorre, D. A., Gómez-Ramírez, L. F., & Tamayo-Molano, P. J. (2018). Modelo productivo del fríjol para el Caribe seco colombiano. In L. Gaona-García (Ed.), Modelo productivo para el cultivo de cacao (Theobroma cacao) para el departamento de Santander. Corporación Colombiana de Investigación Agropecuaria. http://editorial.agrosavia.co/index.php/publicaciones/catalog/download/29/20/361-1?inline=1
Sade, N., Galkin, E., & Moshelion, M. (2015). Measuring Arabidopsis, Tomato and Barley Leaf Relative Water Content (RWC). BIO-PROTOCOL, 5(8). https://doi.org/10.21769/bioprotoc.1451
Saeid, A., Prochownik, E., & Dobrowolska-Iwanek, J. (2018). Phosphorus Solubilization by Bacillus Species. Molecules, 23(11). https://doi.org/10.3390/MOLECULES23112897
Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C., Rana, M., & Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59689-7
Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., & Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8(1), 3560. https://doi.org/10.1038/s41598-018-21921-w
Saleem, M., Nawaz, F., Hussain, M. B., & Ikram, R. M. (2021). Comparative Effects of Individual and Consortia Plant Growth Promoting Bacteria on Physiological and Enzymatic Mechanisms to Confer Drought Tolerance in Maize (Zea mays L.). Journal of Soil Science and Plant Nutrition, 21(4), 3461–3476. https://doi.org/10.1007/S42729-021-00620-Y/TABLES/3
Samarah, N., & Alqudah, A. (2009). Effects of late-terminal drought stress on seed germination and vigor of barley (Hordeum vulgare L.). Archives of Agronomy and Soil Science, 57(1), 27–32. https://doi.org/10.1080/03650340903191663
Samarah, N. (2005). Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25(1), 145–149. https://doi.org/10.1051/AGRO:2004064
Sánchez-Rodríguez, E., del Mar Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J., Leyva, R., Romero, L., & Ruiz, J. M. (2010). Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant and Soil, 335(1), 339–347. https://doi.org/10.1007/S11104-010-0422-2/METRICS
Sandhya, V., & Ali, S. Z. (2015). The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology (Russian Federation), 84(4), 512–519. https://doi.org/10.1134/S0026261715040153/METRICS
Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation 2010 62:1, 62(1), 21–30. https://doi.org/10.1007/S10725-010-9479-4
Sandhya, V., Shrivastava, M., Ali, S. Z., & Sai Shiva Krishna Prasad, V. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43(1), 22–34. https://doi.org/10.3103/s1068367417010165
Sandhya, V., Z., A. S., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46(1), 17–26. https://doi.org/10.1007/S00374-009-0401-Z
Sati, D., Pande, V., Pandey, S. C., & Samant, M. (2022). Recent Advances in PGPR and Molecular Mechanisms Involved in Drought Stress Resistance. Journal of Soil Science and Plant Nutrition 2021 23:1, 23(1), 106–124. https://doi.org/10.1007/S42729-021-00724-5
Scarpellini, M., Franzetti, L., & Galli, A. (2004). Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiology Letters, 236(2), 257–260. https://doi.org/10.1111/J.1574-6968.2004.TB09655.X
Scharwies, J. D., & Dinneny, J. R. (2019). Water transport, perception, and response in plants. Journal of Plant Research 2019 132:3, 132(3), 311–324. https://doi.org/10.1007/S10265-019-01089-8
Secretaría Distrital de Ambiente. (2021a). Informe Mensual de Calidad del Aire de Bogotá - Junio 2021 (Issue 00716). http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe mensual Junio 2021.pdf
Secretaría Distrital de Ambiente. (2021b). Informe Mensual de Calidad del Aire de Bogotá - Noviembre 2021. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe mensual Noviembre 2021 vf.pdf
Selvakumar, G., Bindu, G. H., Panneerselvam, P., & Ganeshamurthy, A. N. (2017). Potential and prospects of aerobic endospore-forming bacteria (AEFB) in crop production. In Bacilli and Agrobiotechnology (pp. 213–236). Springer International Publishing. https://doi.org/10.1007/978-3-319-44409-3_10
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037
Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216. https://doi.org/10.1111/pbi.12603
Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327. https://doi.org/10.1007/S12571-011-0140-5/TABLES/3
Shirinbayan, S., Khosravi, H., & Malakouti, M. J. (2019). Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, 133, 138–145. https://doi.org/10.1016/j.apsoil.2018.09.015
Shulse, C. N., Chovatia, M., Agosto, C., Yoshikuni, G. Y., Hamilton, M., Deutsch, S., Yoshikuni, Y., & Blow, M. J. (2019). Engineered root bacteria release plant-available phosphate from phytate. Applied and Environmental Microbiology, 85(18). https://doi.org/10.1128/AEM.01210-19
Singh, D. P., Singh, V., Gupta, V. K., Shukla, R., Prabha, R., Sarma, B. K., & Patel, J. S. (2020). Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Scientific Reports, 10(1), 4818. https://doi.org/10.1038/s41598-020-61140-w
Singh, H. B., Vaishnav, A., & Sayyed, R. Z. (2021). Antioxidants in Plant-Microbe Interaction. In Harikesh Bahadur Singh, A. Vaishnav, & R. Z. Sayyed (Eds.), Antioxidants in Plant-Microbe Interaction. Springer Singapore. https://doi.org/10.1007/978-981-16-1350-0
Smirnoff, N. (2005). Antioxidants and Reactive Oxygen Species in Plants. In Nicholas Smirnoff (Ed.), Antioxidants and Reactive Oxygen Species in Plants. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470988565
Smith, I. K., Vierheller, T. L., & Thorne, C. A. (1988). Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 175(2), 408–413. https://doi.org/10.1016/0003-2697(88)90564-7
Smith, R. H., Bhaskaran, S., & Miller, F. R. (1985). Screening for drought tolerance in Sorghum using cell culture. In Vitro Cellular Amp; Developmental Biology 1985 21:10, 21(10), 541–545. https://doi.org/10.1007/BF02620883
Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
Suárez, J. C., Anzola, J. A., Contreras, A. T., Salas, D. L., Vanegas, J. I., Urban, M. O., Beebe, S. E., & Rao, I. M. (2022). Photosynthetic and grain yield responses to intercropping of two common bean lines with maize under two types of fertilizer applications in the colombian amazon region. Scientia Horticulturae, 301, 111108. https://doi.org/10.1016/j.scienta.2022.111108
Sun, C., Gao, X., Chen, X., Fu, J., & Zhang, Y. (2016). Metabolic and growth responses of maize to successive drought and re-watering cycles. Agricultural Water Management, 172, 62–73. https://doi.org/10.1016/j.agwat.2016.04.016
Taiz, L., & Zeiger, E. (2003). Plant physiology. In Annals of Botany (3 edition, Vol. 91, Issue 6). https://doi.org/10.1093/aob/mcg079
Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science, 11, 1407. https://doi.org/10.3389/fpls.2020.556972
Tanumihardjo, S. A., McCulley, L., Roh, R., Lopez-Ridaura, S., Palacios-Rojas, N., & Gunaratna, N. S. (2020). Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Global Food Security, 25, 100327. https://doi.org/10.1016/J.GFS.2019.100327
Tiwari, G., Duraivadivel, P., Sharma, S., & Hariprasad, P. (2018). 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Scientific Reports 2018 8:1, 8(1), 1–12. https://doi.org/10.1038/s41598-018-35565-3
Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108–117. https://doi.org/10.1016/j.plaphy.2015.11.001
Tiwari, S., Prasad, V., Chauhan, P. S., & Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science, 8, 283109. https://doi.org/10.3389/FPLS.2017.01510/BIBTEX
Ullah, A., Sun, H., Yang, X., & Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal, 15(3), 271–284. https://doi.org/10.1111/pbi.12688
UN, U. N. D. of E. and S. A. (2019). World Population Prospects 2019 Highlights. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
Vaishnav, A., & Choudhary, D. K. (2019). Regulation of Drought-Responsive Gene Expression in Glycine max L. Merrill is Mediated Through Pseudomonas simiae Strain AU. Journal of Plant Growth Regulation, 38(1), 333–342. https://doi.org/10.1007/s00344-018-9846-3
Vardharajula, S., Zulfikar, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact, 6(1), 1–14.
Velázquez-Márquez, S., Conde-Martínez, V., Trejo, C., Delgado-Alvarado, A., Carballo, A., Suárez, R., Mascorro, J. O., & Trujillo, A. R. (2015). Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant Physiology and Biochemistry, 96, 29–37. https://doi.org/10.1016/j.plaphy.2015.07.006
Vieira, V. L., Araújo, P., Gomes, G., Fracetto, M., Marcos, A., Silva, M., Prudencio, A., Pereira, A., Gomes Freitas, C. C., Martins, F., Barros, R., Santana, C., Feiler, H. P., Pereira Matteoli, F., Cury Fracetto, F. J., Bran, E. J., & Cardoso, N. (2023). Potential of growth-promoting bacteria in maize (Zea mays L.) varies according to soil moisture. Microbiological Research, 271, 127352. https://doi.org/10.1016/j.micres.2023.127352
Vieira, V. L., Lira, M. A., Severino de Souza, V., Coelho de Araújo, J., Cury, F., Dini, F., Arthur, P. de A., Mendes, J., do Rêgo, F., & Monteiro, G. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564
Vílchez, J. I., García-Fontana, C., Román-Naranjo, D., González-López, J., & Manzanera, M. (2016). Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Frontiers in Microbiology, 7(SEP), 1577. https://doi.org/10.3389/FMICB.2016.01577/BIBTEX
Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. In Current Opinion in Biotechnology (Vol. 16, Issue 2, pp. 123–132). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2005.02.001
Vishnupradeep, R., Bruno, L. B., Taj, Z., Karthik, C., Challabathula, D., Tripti, Kumar, A., Freitas, H., & Rajkumar, M. (2022). Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology & Innovation, 25, 102154. https://doi.org/10.1016/J.ETI.2021.102154
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
Wang, C. J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., Wang, Y. P., & Guo, J. H. (2012). Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth-Promoting Rhizobacterium Strains. PLoS ONE, 7(12), 1–10. https://doi.org/10.1371/journal.pone.0052565
Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., Raza, A., Rehman, A., Hossain, A., & Sabagh, A. E. L. (2021). Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability 2021, Vol. 13, Page 4799, 13(9), 4799. https://doi.org/10.3390/SU13094799
Wellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
Wilhite, D. A., Glantz, M. H., & And Glantz, M. H. (1985). Understanding the Drought Phenomenon:The Role of Definitions. http://digitalcommons.unl.edu/droughtfacpubhttp://digitalcommons.unl.edu/droughtfacpub/20
Willey, J. M., Sherwood, L. M., & Woolverton, C. J. (2008). Prescott,Harley, and Klein’s Microbiology (7th ed.). Colin Wheatley/Janice Roerig-Blong.
Xiao, B., Chen, X., Xiang, C., Tang, N., & Zhang, Q. (2009). Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant, 2.
Xin, L., Zheng, H., Yang, Z., Guo, J., Liu, T., Sun, L., Xiao, Y., Yang, J., Yang, Q., & Guo, L. (2018). Physiological and proteomic analysis of maize seedling response to water deficiency stress. Journal of Plant Physiology, 228, 29–38. https://doi.org/10.1016/j.jplph.2018.05.005
Yan, M. (2015). Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. South African Journal of Botany, 99, 88–92. https://doi.org/10.1016/J.SAJB.2015.03.195
Yarzábal, L. A. (2010). Agricultural Development in Tropical Acidic Soils: Potential and Limits of Phosphate-Solubilizing Bacteria. 209–233. https://doi.org/10.1007/978-3-642-05076-3_10
Yevjevich, V. (1967). AN OBJECTI VE APPROACH TO DEFINITIONS AND INVESTIGATIONS OF CONTINENTAL HYDROLOG IC DROUGHT S AN OBJECTIVE APPROACH TO DEFINITIONS AND INVESTIGATIONS OF CONTINENTAL HYDROLOGIC DROUGHTS.
You, J., & Chan, Z. (2015). Ros regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6(DEC), 1–15. https://doi.org/10.3389/fpls.2015.01092
Zaman-Allah, M., Zaidi, P. H., Trachsel, S., Cairns, J. E., Vinayan, M. T., & Seetharam, K. (2016). PHENOTYPING FOR ABIOTIC STRESS TOLERANCE IN MAIZE: DROUGHT STRESS. CIMMYT. https://repository.cimmyt.org/handle/10883/17716?show=full
Zambrano-Moreno, D. C., Avellaneda-Franco, L., Zambrano, G., & Bonilla-Buitrago, R. R. (2016). Scientometric analysis of Colombian research on bio-inoculants for agricultural production. Universitas Scientiarum, 21(1), 63–81. https://doi.org/10.11144/JAVERIANA.SC21-1.SAOC
Zarei, T. (2022). Balancing water deficit stress with plant growth-promoting rhizobacteria: A case study in maize. Rhizosphere, 24, 100621. https://doi.org/10.1016/j.rhisph.2022.100621
Zarei, T., Moradi, A., Kazemeini, S. A., Akhgar, A., & Rahi, A. A. (2020). The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays L. var saccharata) productivity under limited availability of irrigation water. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/S41598-020-77305-6
Zeiger, E., & Taiz, L. (2007). Fisiología vegetal. Volumen 2. Universitat Jaume I.
Zhang, N., Yang, D., Wang, D., Miao, Y., Shao, J., Zhou, X., Xu, Z., Li, Q., Feng, H., Li, S., Shen, Q., & Zhang, R. (2015). Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics, 16(1), 685. https://doi.org/10.1186/s12864-015-1825-5
Zhang, Q., Acuña, J. J., Inostroza, N. G., Mora, M. L., Radic, S., Sadowsky, M. J., & Jorquera, M. A. (2019). Endophytic Bacterial Communities Associated with Roots and Leaves of Plants Growing in Chilean Extreme Environments. Scientific Reports 2019 9:1, 9(1), 1–12. https://doi.org/10.1038/S41598-019-41160-X
Zhao, T., Deng, X., Xiao, Q., Han, Y., Zhu, S., & Chen, J. (2020). IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Industrial Crops and Products, 155, 112788. https://doi.org/10.1016/j.indcrop.2020.112788
Zhao, X., Jiang, Y., Liu, Q., Yang, H., Wang, Z., & Zhang, M. (2020). Effects of Drought-Tolerant Ea-DREB2B Transgenic Sugarcane on Bacterial Communities in Soil. Frontiers in Microbiology, 11, 704. https://doi.org/10.3389/fmicb.2020.00704
Zia, A., Walker, B. J., Oung, H. M. O., Charuvi, D., Jahns, P., Cousins, A. B., Farrant, J. M., Reich, Z., & Kirchhoff, H. (2016). Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum. The Plant Journal, 87(6), 664–680. https://doi.org/10.1111/tpj.13227
Saravanakumar, D., Kavino, M., Raguchander, T., Subbian, P., & Samiyappan, R. (2011). Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiologiae Plantarum, 33(1), 203–209. https://doi.org/10.1007/s11738-010-0539-1
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 140 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85381/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85381/2/1144051124.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85381/3/1144051124.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0ed319920e300f3502dac62455cdca6b
c133cb270a8cc34832739ff748f9223d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089633404813312
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Uribe Vélez, Danielc0920b12ebab2c68a158bdb7410eaee1Estrada Bonilla, Germán Andrés714d3baacc98fc3b38b73b59433dbd41Serrato Gutiérrez, Mayling Gisette7bf664e12ad4e412c20d16a07b0e1b31Microbiologia Agricola2024-01-19T14:59:46Z2024-01-19T14:59:46Z2023-07https://repositorio.unal.edu.co/handle/unal/85381Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa escasez mundial de agua disponible para el riego representa una de las principales amenazas para la agricultura y la seguridad alimentaria. Se espera que la situación se agrave por períodos de sequía más recurrentes debido al cambio climático. Fortalecer la tolerancia de los cultivos a condiciones deficientes de agua y mejorar su eficiencia en el uso del recurso hídrico se convierte en uno de los mayores desafíos actuales. Las PGPB (Plant Growth-Promoting Bacteria) se presentan como una alternativa viable para reducir los efectos deletéreos de la sequía. Este estudio tuvo como objetivo evaluar el potencial de diez cepas de PGPB de los géneros Pseudomonas spp., Bacillus spp. y Lysinibacillus sp. pertenecientes a las colecciones del Instituto de Biotecnología de la Universidad Nacional (IBUN) y la Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), en la mitigación del déficit hídrico en plantas de maíz. Para ello, se realizaron ensayos en invernadero (Bogotá) y casa de malla (Cesar) utilizando inóculos individuales. Las plantas se cultivaron en condiciones de riego durante 20 días y luego se sometieron a 11 días de déficit hídrico. Después del período de estrés, se determinaron cambios en la biomasa seca (aérea y radical), contenido relativo hídrico (RWC), contenido de pigmentos fotosintéticos, acumulación de osmolitos y actividad enzimática antioxidante (GR y APX). La inoculación de las cepas XT14, MT1C8, PSL63 y MGC9 demostró atenuar los efectos perjudiciales de la sequía en el crecimiento del maíz, aumentando la biomasa seca aérea entre un 22% y 51% frente al control de estrés. Otras cepas como PSL80 y XT17 mejoraron el estado hídrico de la planta, manteniendo el RWC entre un 94% y 98%. Esto se logró principalmente mediante la modulación específica de cada cepa en la acumulación de osmolitos, la actividad antioxidante y el contenido de clorofila en las hojas. Posteriormente, las cepas PSL80, PSL63, XT14 y XT17 fueron seleccionadas para estudios adicionales a nivel de laboratorio, donde se determinaron características de promoción del crecimiento y tolerancia al estrés osmótico. Se observó que las cepas eran tolerantes al estrés osmótico inducido por la presencia de Polietilenglicol (PEG) 6000 en el medio de crecimiento y poseían múltiples rasgos de promoción, como la capacidad para sintetizar compuestos de tipo indol y exopolisacáridos (EPS), solubilizar y mineralizar fósforo, y establecerse en las raíces incluso en condiciones de estrés. Estos atributos podrían guardar relación con los beneficios observados en las plantas, al aumentar la biodisponibilidad de nutrientes, mantener la humedad en la rizósfera y estimular hormonalmente el crecimiento. Se concluyó que las cepas de Pseudomonas PSL80 y PSL63, y de Bacillus XT14, poseen potencial para mitigar el estrés por déficit hídrico en las plantas de maíz. (Texto tomado de la fuente).Global water scarcity for irrigation represents one of the main threats to agriculture and food security. It is expected to worsen due to more frequent drought periods resulting from climate change. Strengthening crop tolerance to water-deficient conditions and improving water use efficiency have become some of the greatest challenges today. Plant Growth-Promoting Bacteria (PGPB) emerge as a viable alternative to reduce the deleterious effects of drought. This study aimed to evaluate the potential of ten PGPB strains from the genera Pseudomonas spp., Bacillus spp., and Lysinibacillus sp., collected from Instituto de Biotecnología de la Universidad Nacional (IBUN) and Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), in mitigating water deficit in maize plants. Greenhouse (Bogotá) and mesh house (Cesar) assays were conducted using individual inocula. The plants were subjected to 20 days of watering and then exposed to 11 days of water deficit. After the stress period, changes in dry biomass (aboveground and root), relative water content (RWC), photosynthetic pigment content, osmolyte accumulation, and antioxidant enzyme activity (GR and APX) were determined. The inoculation of XT14, MT1C8, PSL63, and MGC9 strains demonstrated attenuation of detrimental effects of drought on maize growth, increasing stem dry biomass by 22% to 51% compared to the stressed control. Other strains like PSL80 and XT17 improved the plant's water status, maintaining RWC between 94% and 98%. This was achieved mainly through specific modulation by each strain in osmolyte accumulation, antioxidant activity, and chlorophyll content in the leaves. Subsequently, strains PSL80, PSL63, XT14, and XT17 were selected for additional laboratory-level studies, where growth promotion characteristics and tolerance to osmotic stress were determined. These strains were found to be osmotolerant induced by Polyethylene glycol (PEG) 6000 in the growth medium and had multiple promotion traits, such as the ability to synthesize indole-type compounds and exopolysaccharides (EPS), solubilize and mineralize phosphorus, establish themselves in the roots even under stressful conditions. These attributes may be related to the observed benefits in plants by increasing nutrient availability, maintaining moisture in the rhizosphere, and hormonally stimulating growth. It was concluded that the Pseudomonas PSL80 and PSL63 strains, and the Bacillus XT14 strain, have the potential to mitigate water deficit stress in maize plants.MaestríaMagíster en Ciencias - MicrobiologíaMicrobiologia agricolaxvi, 140 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesEstrés de sequiaZea maysBiotecnologíadrought stressZea maysbiotechnologySequíaPolietilenglicolAjuste osmóticoAntioxidantesCaribe secoZea maysDroughtPolyethylene glycolAntioxidantsOsmotic adjustmentDry caribbeanMitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPBMitigating water deficit stress in forage maize through the use of PGPBTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrosaviaAgrovocAbdelaal, K., Alkahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. Biology, 10(6), 520. https://doi.org/10.3390/BIOLOGY10060520Abrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. Methods in Molecular Biology (Clifton, N.J.), 639, 317–331. https://doi.org/10.1007/978-1-60761-702-0_20/COVER/Ahmad Ansari, F., Ahmad, I., & Pichtel, J. (2023). Synergistic effects of biofilm-producing PGPR strains on wheat plant colonization, growth and soil resilience under drought stress. Saudi Journal of Biological Sciences, 30(6), 103664. https://doi.org/10.1016/J.SJBS.2023.103664Akhtar, S. S., Amby, D. B., Hegelund, J. N., Fimognari, L., Großkinsky, D. K., Westergaard, J. C., Müller, R., Moelbak, L., Liu, F., & Roitsch, T. (2020). Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Frontiers in Plant Science, 11, 297. https://doi.org/10.3389/fpls.2020.00297Ali, S., & Khan, N. (2021). Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiological Research, 249, 126771. https://doi.org/10.1016/j.micres.2021.126771Ali, S. Z., Sandhya, V., & Rao, L. V. (2014). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64(2), 493–502. https://doi.org/10.1007/S13213-013-0680-3/FIGURES/6Allard-Massicotte, R., Tessier, L., Lécuyer, F., Lakshmanan, V., Lucier, J. F., Garneau, D., Caudwell, L., Vlamakis, H., Bais, H. P., & Beauregard, P. B. (2016). Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio, 7(6). https://doi.org/10.1128/mBio.01664-16Almansouri, M., Kinet, J.-M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231, 243–254.Amaya-Gómez, C. V, Porcel, M., Mesa-Garriga, L., Gómez-Álvarez, M. I., Zhou, N.-Y., & Tong, S. J. (2020). A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Applied and Environmental Microbiology, 86(14).Anjum, S. A., Tanveer, M., Ashraf, U., Hussain, S., Shahzad, B., Khan, I., & Wang, L. (2016). Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research 2016 23:17, 23(17), 17132–17141. https://doi.org/10.1007/S11356-016-6894-8Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8(FEBRUARY), 69. https://doi.org/10.3389/FPLS.2017.00069/BIBTEXAnjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034Anjum, S. A., Xie, X.-Y., Wang, L.-C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032. https://doi.org/10.5897/AJAR10.027Ansari, F. A., Jabeen, M., & Ahmad, I. (2021). Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. International Journal of Environmental Science and Technology, 1–16. https://doi.org/10.1007/s13762-020-03045-9Armada, E., Roldán, A., & Azcon, R. (2014). Differential Activity of Autochthonous Bacteria in Controlling Drought Stress in Native Lavandula and Salvia Plants Species Under Drought Conditions in Natural Arid Soil. Microbial Ecology, 67(2), 410–420. https://doi.org/10.1007/S00248-013-0326-9/FIGURES/4Aroca, R. (2012). Plant Responses to Drought Stress. In R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to Molecular Features (Issue October 2012). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0Arzanesh, M. H., Alikhani, H. A., Khavazi, K., Rahimian, H. A., & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27(2), 197–205. https://doi.org/10.1007/S11274-010-0444-1/TABLES/7Asghari, B., Khademian, R., & Sedaghati, B. (2020). Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Scientia Horticulturae, 263(July 2019), 109132. https://doi.org/10.1016/j.scienta.2019.109132Ashry, N. M., Alaidaroos, B. A., Mohamed, S. A., Badr, O. A. M., El-Saadony, M. T., & Esmael, A. (2022). Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR). Saudi Journal of Biological Sciences, 29(3), 1760–1769. https://doi.org/10.1016/J.SJBS.2021.10.054Aslam, M., Maqpool, M., & Cengiz, R. (2015). Drought stress in maize (Zea Mays L.): effects, resistance mechanisms, global achievements, and biological strategies. In Springer Briefs in Agriculture (Vol. 8, Issue December). https://doi.org/10.1007/978-3-319-25442-5Avramova, V., Abdelgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., & Beemster, G. T. S. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169(2), 1382–1396. https://doi.org/10.1104/pp.15.00276Avramova, V., Nagel, K. A., Abdelgawad, H., Bustos, D., Duplessis, M., Fiorani, F., & Beemster, G. T. S. (2016). Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453–2466. https://doi.org/10.1093/JXB/ERW055Azeem, M., Haider, M. Z., Javed, S., Saleem, M. H., & Alatawi, A. (2022). Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains under Sterile Soil Conditions. Agriculture, 12(1), 50. https://doi.org/10.3390/AGRICULTURE12010050Bakhshandeh, E., Gholamhosseini, M., Yaghoubian, Y., & Pirdashti, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation, 90(1), 123–136. https://doi.org/10.1007/S10725-019-00556-5/FIGURES/3Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11–38. https://doi.org/10.1111/J.1365-3040.2007.01727.XBashan, Y., Holguin, G., & De-Bashan, L. E. (2004). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Https://Doi.Org/10.1139/W04-035, 50(8), 521–577. https://doi.org/10.1139/W04-035Bashan, Y., Kamnev, A. A., & de-Bashan, L. E. (2012). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils 2012 49:4, 49(4), 465–479. https://doi.org/10.1007/S00374-012-0737-7Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports 2020 10:1, 10(1), 1–19. https://doi.org/10.1038/s41598-020-73489-zBeauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 110(17), E1621–E1630. https://doi.org/10.1073/PNAS.1218984110/SUPPL_FILE/PNAS.201218984SI.PDFBewleyl, J. D. (1997). Seed Germination and Dormancy. The Plant Cell, 9, 1055–1056.Bhatt, R. M., Selvakumar, G., Upreti, K. K., & Boregowda, P. C. (2015). Effect of Biopriming with Enterobacter Strains on Seed Germination and Seedling Growth of Tomato (Solanum lycopersicum L.) Under Osmotic Stress. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 85(1), 63–69. https://doi.org/10.1007/s40011-014-0333-8Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., & Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli’s defences to stress. Archives of Microbiology, 185(5), 373–382. https://doi.org/10.1007/S00203-006-0103-Y/TABLES/5Borrell, A. K., Hammer, G. L., & Douglas, A. C. L. (2000). Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Science, 40(4), 1026–1037. https://doi.org/10.2135/cropsci2000.4041026xBouremani, N., Cherif-Silini, H., Silini, A., Bouket, A. C., Luptakova, L., Alenezi, F. N., Baranov, O., & Belbahri, L. (2023). Plant Growth-Promoting Rhizobacteria (PGPR): A Rampart against the Adverse Effects of Drought Stress. Water, 15(3), 418. https://doi.org/10.3390/w15030418Carlson, R., Tugizimana, F., Steenkamp, P. A., Dubery, I. A., Hassen, A. I., & Labuschagne, N. (2020). Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiological Research, 232, 126388. https://doi.org/10.1016/j.micres.2019.126388Cassel, D. K., & Nielsen, D. R. (1986). Field Capacity and Available Water Capacity. In A. Klute (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods (2nd ed., Vol. 9, Issue 9, pp. 901–926). American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c36Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4 Suppl), 1011. https://doi.org/10.1590/S1415-47572012000600016Cesari, A., Paulucci, N., López-Gómez, M., Hidalgo-Castellanos, J., Plá, C. L., & Dardanelli, M. S. (2019). Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Plant Physiology and Biochemistry, 142, 519–527. https://doi.org/10.1016/j.plaphy.2019.08.015Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. In Annals of Botany (Vol. 103, Issue 4, pp. 551–560). Oxford Academic. https://doi.org/10.1093/aob/mcn125Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25(9), 1007–1014. https://doi.org/10.1038/nbt1325Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4(NOV), 442. https://doi.org/10.3389/FPLS.2013.00442/BIBTEXCortés-Patiño, S., Vargas, C., Álvarez-Flórez, F., Bonilla, R., & Estrada-Bonilla, G. (2021). Potential of herbaspirillum and azospirillum consortium to promote growth of perennial ryegrass under water deficit. Microorganisms, 9(1), 1–16. https://doi.org/10.3390/microorganisms9010091Creus, C. M., Sueldo, R. J., & Barassi, C. A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82(2), 273–281. https://doi.org/10.1139/b03-119Cruz, C., Gomez, L., & Uribe, D. (2017). Bio-based management of rice straw under different C:N ratios using microbial co-inocula and plant growth promoters. Revista Colombiana de Biotecnol, 19, 47–62. https://doi.org/10.5446/rev.colomb.biote.v19n2.70168Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species. Plant Signaling & Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536DANE. (2019). Encuesta Nacional Agropecuaria (ENA): Serie histórica por departamento cultivos transitorios (2012 - II semestre 2019). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-enaDanish, S., Zafar-Ul-Hye, M., Mohsin, F., & Hussain, M. (2020). ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE, 15(4). https://doi.org/10.1371/journal.pone.0230615Daryanto, S., Wang, L., & Jacinthe, P.-A. (2016). Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS ONE, 11(5), e0156362. https://doi.org/10.1371/journal.pone.0156362Dasgupta, D., Paul, A., Acharya, K., Minkina, T., Mandzhieva, S., Gorovtsov, A. V., Chakraborty, N., & Keswani, C. (2023). Bioinoculant mediated regulation of signalling cascades in various stress responses in plants. Heliyon, 9(1), e12953. https://doi.org/10.1016/J.HELIYON.2023.E12953de Carvalho, R. C., Cunha, A., & da Silva, J. M. (2011). Photosynthesis by six Portuguese maize cultivars during drought stress and recovery. Acta Physiologiae Plantarum, 33(2), 359–374. https://doi.org/10.1007/S11738-010-0555-1/FIGURES/10De Micco, V., & Aronne, G. (2012). Morpho-Anatomical Traits for Plant Adaptation to Drought. In R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to Molecular Features (Issue June 2015, pp. 1–466). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0Devarajan, A. K., Muthukrishanan, G., Truu, J., Truu, M., Ostonen, I., Subramanian Kizhaeral, S., Panneerselvam, P., & Gopalasubramanian, S. K. (2021). The Foliar Application of Rice Phyllosphere Bacteria induces Drought-Stress Tolerance in Oryza sativa (L.). Plants 2021, Vol. 10, Page 387, 10(2), 387. https://doi.org/10.3390/PLANTS10020387Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment, 32(12), 1682–1694. https://doi.org/10.1111/J.1365-3040.2009.02028.XDonot, F., Fontana, A., Baccou, J. C., & Schorr-Galindo, S. (2012). Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951–962. https://doi.org/10.1016/J.CARBPOL.2011.08.083Drobot, R., Draghia, A. F., Sîrbu, N., & Dinu, C. (2022). Synthetic Drought Hydrograph. Hydrology 2023, Vol. 10, Page 10, 10(1), 10. https://doi.org/10.3390/HYDROLOGY10010010Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017Edmeades, G. O. (2008). Drought Tolerance in Maize: an Emerging Reality. In James Clive. Global Status of Commercialized Biotech/GM Crops (Vol. 39, p. 12). ISAAA. http://www.isaaa.orgEmbiale, A., Hussein, M., Husen, A., Sahile, S., & Mohammed, K. (2016). Differential Sensitivity of Pisum sativum L. Cultivars to Water-deficit Stress: Changes in Growth, Water Status, Chlorophyll Fluorescence and Gas Exchange Attributes. Journal of Agronomy, 15(2), 45–57. https://doi.org/10.3923/ja.2016.45.57Estrada, G. A., Baldani, V. L. D., de Oliveira, D. M., Urquiaga, S., & Baldani, J. I. (2013). Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant and Soil, 369(1–2), 115–129. https://doi.org/10.1007/s11104-012-1550-7Fadiji, A. E., Santoyo, G., Yadav, A. N., & Babalola, O. O. (2022). Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 13, 2943. https://doi.org/10.3389/fmicb.2022.962427Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/S00018-014-1767-0/METRICSFang, Yan, Du, Y., Wang, J., Wu, A., Qiao, S., Xu, B., Zhang, S., Siddique, K. H. M., & Chen, Y. (2017). Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat. Frontiers in Plant Science, 8. https://doi.org/10.3389/FPLS.2017.00672FAO. (2023a). FAOSTAT: Crops and livestock products, Production Quantity + Crops primary. https://www.fao.org/faostat/en/#data/QCLFAO. (2023b). FAOSTAT: Food Balances. https://www.fao.org/faostat/en/#data/FBSFAO, F. and A. O. of the U. N. (2017). The impact of disasters and crises on agriculture and food security. www.fao.org/publicationsFarooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. In Agronomy for Sustainable Development (Vol. 29, Issue 1, pp. 185–212). EDP Sciences. https://doi.org/10.1051/agro:2008021FENALCE. (2011). ASPECTOS TÉCNICOS DE LA PRODUCCIÓN DE MAÍZ EN COLOMBIA. Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya. https://repository.agrosavia.co/bitstream/handle/20.500.12324/19418/45021_60774.pdf?sequence=1&isAllowed=yFENALCE. (2021). Indicadores Cerealistas 2021B.FENALCE. (2023a). Histórico de área, producción y rendimiento Cereales y leguminosas. https://app.powerbi.com/view?r=eyJrIjoiM2FiYzM5ZTAtNjFmNi00MGQyLWFiYzYtNGI0YTJiZTcwZWQwIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9FENALCE. (2023b). Importaciones de cereales y leguminosas. https://app.powerbi.com/view?r=eyJrIjoiZjBjODljNTktZTdiMy00OWNlLTk5OGEtMWY2ZDM3NTczZWZhIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9&pageName=ReportSection639662e3be90024da888Flexas, J., & Medrano, H. (2002). Drought‐inhibition of Photosynthesis in C3 Plants: Stomatal and Non‐stomatal Limitations Revisited. Annals of Botany, 89(2), 183–189. https://doi.org/10.1093/AOB/MCF027Forni, C., Duca, D., & Glick, B. R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 410(1–2), 335–356. https://doi.org/10.1007/s11104-016-3007-xGarcía, J. E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J. A., & Groppa, M. D. (2017). In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202, 21–29. https://doi.org/10.1016/j.micres.2017.04.007Garrard, A. (1954). THE EFFECTS OF β -INDOLYLACETIC ACID ON THE GERMINATION AND ROOT GROWTH OF CERTAIN MEMBERS OF THE CRUCIFERAE. New Phytologist, 53(2), 165–176. https://doi.org/10.1111/J.1469-8137.1954.TB05234.XGe, T., Sui, F., Bai, L., Tong, C., & Sun, N. (2012). Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiologiae Plantarum, 34(3), 1043–1053. https://doi.org/10.1007/S11738-011-0901-Y/TABLES/3Ghannoum, O. (2009). C4 Photosynthesis and water stress. Ann Bot, 103(4), 635–644. https://doi.org/10.1093/aob/mcn093Ghosh, A., Biswas, D. R., Das, S., Das, T. K., Bhattacharyya, R., Alam, K., & Rahman, M. M. (2023). Rice straw incorporation mobilizes inorganic soil phosphorus by reorienting hysteresis effect under varying hydrothermal regimes in a humid tropical Inceptisol. Soil and Tillage Research, 225, 105531. https://doi.org/10.1016/J.STILL.2022.105531Ghosh, D., Gupta, A., & Mohapatra, S. (2019). A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World Journal of Microbiology and Biotechnology, 35(6), 1–15. https://doi.org/10.1007/S11274-019-2659-0/FIGURES/7Ghosh, D., Sen, S., & Mohapatra, S. (2018). Drought-mitigating Pseudomonas putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis thaliana under water stress. Annals of Microbiology, 68(9), 579–594. https://doi.org/10.1007/S13213-018-1366-7/FIGURES/5Ghosh, D., Sen, S., & Mohapatra, S. (2017). Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Annals of Microbiology, 67(10), 655–668. https://doi.org/10.1007/s13213-017-1294-yGill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., & Tuteja, N. (2013). Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. In Plant Physiology and Biochemistry (Vol. 70, pp. 204–212). Elsevier Masson. https://doi.org/10.1016/j.plaphy.2013.05.032Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1–15. https://doi.org/10.6064/2012/963401Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009Glick, B. R. (2020). Beneficial plant-bacterial interactions. In Beneficial Plant-Bacterial Interactions. https://doi.org/10.1007/978-3-030-44368-9Gomez-Ramirez, L. F., & Uribe-Velez, D. (2021). Phosphorus Solubilizing and Mineralizing Bacillus spp. Contribute to Rice Growth Promotion Using Soil Amended with Rice Straw. Current Microbiology, 78(3), 932–943. https://doi.org/10.1007/S00284-021-02354-7/TABLES/3Goswami, D., Vaghela, H., Parmar, S., Dhandhukia, P., & Thakker, J. N. (2013). Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. Journal of Plant Interactions, 8(4), 281–290. https://doi.org/10.1080/17429145.2013.768360Govaerts, B., Vega, D., Chávez, X., Narro, L., San Vicente, F., Palacios, N., González, G., Ortega, P., Carvajar, A., Arcos, A., Bolaños, J., Romero, N., Bolaños, J., & Vanegas, Y. (2019). Maíz para Colombia: Visión 2030. In CYMMIT CIAT. CYMMIT - CIAT. https://www.fenalce.org/archivos/maiz2030.pdfGrote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Frontiers in Sustainable Food Systems, 4, 317. https://doi.org/10.3389/FSUFS.2020.617009/BIBTEXGupta, A., Rico, A., & Caño, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., & Park, S. W. (2013). Plant Growth-Promoting Rhizobacteria Enhance Abiotic Stress Tolerance in Solanum tuberosum Through Inducing Changes in the Expression of ROS-Scavenging Enzymes and Improved Photosynthetic Performance. Journal of Plant Growth Regulation, 32(2), 245–258. https://doi.org/10.1007/s00344-012-9292-6Hagaggi, N. S. A., & Abdul-Raouf, U. M. (2022). Drought-tolerant Sphingobacterium changzhouense Alv associated with Aloe vera mediates drought tolerance in maize (Zea mays). World Journal of Microbiology and Biotechnology 2022 38:12, 38(12), 1–11. https://doi.org/10.1007/S11274-022-03441-YHasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681Henry, A., Doucette, W., Norton, J., & Bugbee, B. (2007). Changes in Crested Wheatgrass Root Exudation Caused by Flood, Drought, and Nutrient Stress. Journal of Environmental Quality, 36(3), 904–912. https://doi.org/10.2134/JEQ2006.0425SCHiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334. https://doi.org/10.1139/b79-163Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2nd edit). https://www.cabdirect.org/cabdirect/abstract/19500302257Hoben, H. J., & Somasegaran, P. (1982). Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Applied and Environmental Microbiology, 44(5), 1246–1247. https://doi.org/10.1128/AEM.44.5.1246-1247.1982Hossain, M. M., Lam, H. M., & Zhang, J. (2015). Responses in gas exchange and water status between drought-tolerant and -susceptible soybean genotypes with ABA application. The Crop Journal, 3(6), 500–506. https://doi.org/10.1016/J.CJ.2015.09.001Hsiao, T. C. (1973). Plant Responses to Water Stress. Annual Review of Plant Physiology, 24(1), 519–570. https://doi.org/10.1146/annurev.pp.24.060173.002511Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51(350), 1595–1616. https://doi.org/10.1093/JEXBOT/51.350.1595Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Https://Doi.Org/10.1094/MPMI-20-6-0619, 20(6), 619–626. https://doi.org/10.1094/MPMI-20-6-0619Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A., & Ullah, A. (2021). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation, 40(3), 926–944. https://doi.org/10.1007/s00344-020-10174-5Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R. Z., Khan, W., Enshasy, H. A. El, Dailin, D. J., Elsayed, E. A., & Ali, Z. (2020). Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. Sustainability, 12(21), 8876. https://doi.org/10.3390/su12218876Imran, M., Mpovo, C. L., Aaqil Khan, M., Shaffique, S., Ninson, D., Bilal, S., Khan, M., Kwon, E. H., Kang, S. M., Yun, B. W., & Lee, I. J. (2023). Synergistic Effect of Melatonin and Lysinibacillus fusiformis L. (PLT16) to Mitigate Drought Stress via Regulation of Hormonal, Antioxidants System, and Physio-Molecular Responses in Soybean Plants. International Journal of Molecular Sciences, 24(10), 8489. https://doi.org/10.3390/IJMS24108489/S1Integrated Taxonomic Information System (ITIS). (2023). ITIS - Report: Zea mays. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=42269#nullKamara, A. Y., Menkir, A., Badu-Apraku, B., & Ibikunle, O. (2003). The influence of drought stress on growth, yield and yield components of selected maize genotypes. The Journal of Agricultural Science, 141(1), 43–50. https://doi.org/10.1017/S0021859603003423Karimzadeh, J., Alikhani, H. A., Etesami, H., & Pourbabaei, A. A. (2021). Improved Phosphorus Uptake by Wheat Plant (Triticum aestivum L.) with Rhizosphere Fluorescent Pseudomonads Strains Under Water-Deficit Stress. Journal of Plant Growth Regulation, 40(1), 162–178. https://doi.org/10.1007/S00344-020-10087-3/FIGURES/7Karlowsky, S., Augusti, A., Ingrisch, J., Akanda, M. K. U., Bahn, M., & Gleixner, G. (2018). Drought-Induced Accumulation of Root Exudates Supports Post-drought Recovery of Microbes in Mountain Grassland. Frontiers in Plant Science, 9, 402696. https://doi.org/10.3389/fpls.2018.01593Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61(2), 217–227. https://doi.org/10.1016/J.AOAS.2016.07.003Kaushal, M., & Wani, S. P. (2016a). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35–42. https://doi.org/10.1007/S13213-015-1112-3/METRICSKaushal, M., & Wani, S. P. (2016b). Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. In Agriculture, Ecosystems and Environment (Vol. 231, pp. 68–78). Elsevier B.V. https://doi.org/10.1016/j.agee.2016.06.031Keskin, A., Tumer, E. I., & Birinci, A. (2010). Analysis of the factors affecting the instrument and machinery assets in enterprises that deal with agricultural production: The case of erzurum province. African Journal of Agricultural Research, 5(8), 600–605. https://doi.org/10.5897/AJAR10.027Khabbaz, S. E., Ladhalakshmi, D., Babu, M., Kandan, A., Ramamoorthy, V., Saravanakumar, D., Al-Mughrabi, T., & Kandasamy, S. (2019). Plant Growth Promoting Bacteria (PGPB) - A Versatile Tool for Plant Health Management. Canadian Journal of Pesticides & Pest Management, 1(1), 1. https://doi.org/10.34195/can.j.ppm.2019.05.001Khan, A., & Singh, A. V. (2021). Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World Journal of Microbiology and Biotechnology, 37(12), 1–17. https://doi.org/10.1007/S11274-021-03166-4/FIGURES/4Khoshru, B., Mitra, D., Khoshmanzar, E., Myo, E. M., Uniyal, N., Mahakur, B., Mohapatra, P. K. Das, Panneerselvam, P., Boutaj, H., Alizadeh, M., Cely, M. V. T., Senapati, A., & Rani, A. (2020). Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition, 43(20), 3062–3092. https://doi.org/10.1080/01904167.2020.1799004Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. In Nature (Vol. 286, Issue 5776, pp. 885–886). https://doi.org/10.1038/286885a0Knights, H. E., Jorrin, B., Haskett, T. L., & Poole, P. S. (2021). Deciphering bacterial mechanisms of root colonization. Environmental Microbiology Reports, 13(4), 428–444. https://doi.org/10.1111/1758-2229.12934Kour, D., Rana, K. L., Sheikh, I., Kumar, V., Yadav, A. N., Dhaliwal, H. S., & Saxena, A. K. (2020). Alleviation of Drought Stress and Plant Growth Promotion by Pseudomonas libanensis EU-LWNA-33, a Drought-Adaptive Phosphorus-Solubilizing Bacterium. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(4), 785–795. https://doi.org/10.1007/S40011-019-01151-4/FIGURES/4Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23(December 2019), 101487. https://doi.org/10.1016/j.bcab.2019.101487Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, V., Kumar, A., Sayyed, R. Z., Hesham, A. E.-L., Dhaliwal, H. S., & Saxena, A. K. (2019). Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. In N. K. Arora (Ed.), Plant Growth Promoting Rhizobacteria for Sustainable Stress Management (pp. 255–308). Springer. https://doi.org/10.1007/978-981-13-6536-2_13Kränzlein, M., Geilfus, C. M., Franzisky, B. L., Zhang, X., Wimmer, M. A., & Zörb, C. (2021). Physiological Responses of Contrasting Maize (Zea mays L.) Hybrids to Repeated Drought. Journal of Plant Growth Regulation, 41(7), 2708–2718. https://doi.org/10.1007/S00344-021-10468-2/FIGURES/5Kravchenko, L. V., Azarova, T. S., Makarova, N. M., & Tikhonovich, I. A. (2004). The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology, 73(2), 156–158. https://doi.org/10.1023/B:MICI.0000023982.76684.9D/METRICSKumar, V., & Narula, N. (1999). Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils, 28(3), 301–305. https://doi.org/10.1007/S003740050497/METRICSLara-Bosso, L. S. (2007). Determinación del potencial agronómico de aislamientos nativos de Pseudomonas fluorescens en términos de su capacidad solubilizadora de fosfatos y antagonista contra Rhizoctonia solani. Universidad Nacional de Colombia.Latif, M., Bukhari, S. A. H., Alrajhi, A. A., Alotaibi, F. S., Ahmad, M., Shahzad, A. N., Dewidar, A. Z., & Mattar, M. A. (2022). Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy 2022, Vol. 12, Page 1140, 12(5), 1140. https://doi.org/10.3390/AGRONOMY12051140Laverde-Robayo, P. (2016). CARACTERIZACIÓN FENOTÍPICA DE AISLAMIENTOS NATIVOS DE Pseudomonas spp. CON POTENCIAL BIOCONTROLADOR DE AGENTES FITOPATÓGENOS ASOCIADOS AL CULTIVO DE PAPA. Pontificia Universidad Javeriana.Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 2019, Vol. 8, Page 94, 8(4), 94. https://doi.org/10.3390/ANTIOX8040094Leal-Medina, G. I. (2018). Selección de bacterias aerobias formadoras de Endospora (BAFEs) con capacidad de promoción de crecimiento vegetal, provenientes de cultivos de caña panelera con manejos agronómicos contrastantes [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/63901Lephatsi, M., Nephali, L., Meyer, V., Piater, L. A., Buthelezi, N., Dubery, I. A., Opperman, H., Brand, M., Huyser, J., & Tugizimana, F. (2022). Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Scientific Reports 2022 12:1, 12(1), 1–18. https://doi.org/10.1038/s41598-022-14570-7Li, L., Gu, W., Li, J., Li, C., Xie, T., Qu, D., Meng, Y., Li, C., & Wei, S. (2018). Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiology and Biochemistry, 129, 35–55. https://doi.org/10.1016/J.PLAPHY.2018.05.017Lichtenthaler, H. K. (1996). Vegetation Stress: an Introduction to the Stress Concept in Plants. Journal of Plant Physiology, 148(1–2), 4–14. https://doi.org/10.1016/S0176-1617(96)80287-2Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L., & Yang, R. (2010). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 71, 174–183. https://doi.org/10.1016/j.envexpbot.2010.11.012Lopes, M. S., Araus, J. L., van Heerden, P. D. R., & Foyer, C. H. (2011). Enhancing drought tolerance in C4 crops. Journal of Experimental Botany, 62(9), 3135–3153. https://doi.org/10.1093/jxb/err105Loscos-Aranda, D. J. (2007). Metabolismo de Ascorbato y Tioles en Leguminosas [Consejo Superior de Investigaciones Científicas CSIC]. https://digital.csic.es/bitstream/10261/3020/1/2007-TesisJorgeLoscos.pdfLu, Y., Li, Y., Zhang, J., Xiao, Y., Yue, Y., Duan, L., Zhang, M., & Li, Z. (2013). Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.). PLoS ONE, 8(1), e52126. https://doi.org/10.1371/journal.pone.0052126Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918Ma, X., Sukiran, N. L., Ma, H., & Su, Z. (2014). Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis. BMC Plant Biology, 14(1), 1–16. https://doi.org/10.1186/1471-2229-14-164/FIGURES/6Maazou, A.-R. S., Tu, J., Qiu, J., Liu, Z., Maazou, A.-R. S., Tu, J., Qiu, J., & Liu, Z. (2016). Breeding for Drought Tolerance in Maize (Zea mays L.). American Journal of Plant Sciences, 7(14), 1858–1870. https://doi.org/10.4236/AJPS.2016.714172MacAlister, D., Muasya, A. M., Crespo, O., Ogola, J. B. O., Maseko, S., Valentine, A. J., Ottosen, C. O., Rosenqvist, E., & Chimphango, S. B. M. (2020). Stress tolerant traits and root proliferation of Aspalathus linearis (Burm.f.) R. Dahlgren grown under differing moisture regimes and exposed to drought. South African Journal of Botany, 131, 342–350. https://doi.org/10.1016/J.SAJB.2020.03.003Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water Scarcity and Future Challenges for Food Production. Water, 7(3), 975–992. https://doi.org/10.3390/W7030975Marasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H., Zocchi, G., & Daffonchio, D. (2013). Are drought-resistance promoting bacteria cross-compatible with different plant models? Https://Doi.Org/10.4161/Psb.26741, 8(10). https://doi.org/10.4161/PSB.26741Marulanda, A., Barea, J. M., & Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28(2), 115–124. https://doi.org/10.1007/S00344-009-9079-6/TABLES/3Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2), 525–530. https://doi.org/10.1016/j.plantsci.2003.10.025McAdam, S. A. M., & Brodribb, T. J. (2016). Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants. Plant Physiology, 171(3), 2008–2016. https://doi.org/10.1104/PP.16.00380Mejía, D. (2003). Maize: Post-harvest Operations. Food and Agriculture Organization of the United Nations (FAO).Mejri, M., Siddique, K. H. M., Saif, T., Abdelly, C., & Hessini, K. (2016). Comparative effect of drought duration on growth, photosynthesis, water relations, and solute accumulation in wild and cultivated barley species. Journal of Plant Nutrition and Soil Science, 179(3), 327–335. https://doi.org/10.1002/jpln.201500547Melgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Suaréz, D., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia.Mendoza-Labrador, J., Romero-Perdomo, F., Abril, J., Hernández, J.-P., Uribe-Vélez, D., & Buitrago, R. B. (2021). Bacillus strains immobilized in alginate macrobeads enhance drought stress adaptation of Guinea grass. Rhizosphere, 19, 100385. https://doi.org/10.1016/j.rhisph.2021.100385Michel, B. E., & Kaufmann, M. R. (1973). The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiology, 51(5), 914–916. https://doi.org/10.1104/pp.51.5.914Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33(4), 453–467. https://doi.org/10.1111/J.1365-3040.2009.02041.XMinAmbiente, M. de A. y D. S. (2015). PLAN INTEGRAL DE GESTIÓN DEL CAMBIO CLIMÁTICO TERRITORIAL DEL DEPARTAMENTO DEL CESAR. https://www.minambiente.gov.co/images/cambioclimatico/pdf/aproximacion__al_territorio/Cesar_pag_ind.pdfMishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012Morcillo, R. J. L., & Manzanera, M. (2021). The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. 11, 1–19. https://doi.org/10.3390/metabo11060337Moreno-Galván, A., Cortés-Patiño, S., Romero-Perdomo, F., Uribe-Vélez, D., Bashan, Y., & Bonilla, R. (2020). Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. Applied Soil Ecology, 147(September), 103367. https://doi.org/10.1016/j.apsoil.2019.103367Moreno-Galván, A., Romero-Perdomo, F. A., Estrada-Bonilla, G., Meneses, C. H. S. G., & Bonilla, R. R. (2020). Dry-Caribbean Bacillus spp. Strains Ameliorate Drought Stress in Maize by a Strain-Specific Antioxidant Response Modulation. Microorganisms 2020, Vol. 8, Page 823, 8(6), 823. https://doi.org/10.3390/MICROORGANISMS8060823Moreno, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomia Colombiana, 27(2), 179–191.Murshed, R., Lopez-Lauri, F., & Sallanon, H. (2008). Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Analytical Biochemistry, 383(2), 320–322. https://doi.org/10.1016/j.ab.2008.07.020Musimwa, T. R., Molnar, T. L., Dutta, S., Dhliwayo, T., Trachsel, S., & Lee, M. (2023). Phenotypic assessment of genetic gain from selection for improved drought tolerance in semi-tropical maize populations. Journal of Agronomy and Crop Science, 209(1), 71–82. https://doi.org/10.1111/JAC.12592Nadeem, S. M., Ahmad, M., Tufail, M. A., Asghar, H. N., Nazli, F., & Zahir, Z. A. (2021). Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiologia Plantarum, 172(2), 463–476. https://doi.org/10.1111/PPL.13212Nakano, Y., & Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009–1022. https://doi.org/10.1002/jobm.201800309Naseem, H., & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689–701. https://doi.org/10.1080/17429145.2014.902125Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/J.1574-6968.1999.TB13383.XNaveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014Naylor, D., & Coleman-Derr, D. (2018). Drought Stress and Root-Associated Bacterial Communities. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02223Nayyar, H., & Gupta, D. (2006). Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany, 58(1–3), 106–113. https://doi.org/10.1016/j.envexpbot.2005.06.021Ngumbi, E., & Kloepper, J. (2016). Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105, 109–125. https://doi.org/10.1016/j.apsoil.2016.04.009Nieves-Cordones, M., García-Sánchez, F., Pérez-Pérez, J. G., Colmenero-Flores, J. M., Rubio, F., & Rosales, M. A. (2019). Coping With Water Shortage: An Update on the Role of K+, Cl-, and Water Membrane Transport Mechanisms on Drought Resistance. Frontiers in Plant Science, 10, 1619. https://doi.org/10.3389/FPLS.2019.01619/BIBTEXNio, S. A., Cawthray, G. R., Wade, L. J., & Colmer, T. D. (2011). Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiology and Biochemistry, 49(10), 1126–1137. https://doi.org/10.1016/j.plaphy.2011.05.011Niu, X., Song, L., Xiao, Y., & Ge, W. (2018). Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress. Frontiers in Microbiology, 8(JAN), 2580. https://doi.org/10.3389/fmicb.2017.02580Noctor, G., & Foyer, C. H. (1998). ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 249–279. https://doi.org/10.1146/annurev.arplant.49.1.249Noctor, G., Mhamdi, A., & Foyer, C. H. (2016). Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant, Cell & Environment, 39(5), 1140–1160. https://doi.org/10.1111/pce.12726Noctor, G., Mhandi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., & Foyer, C. H. (2012). Glutathione in plants: an integrated overview. Plant, Cell & Environment, 35(2), 454–484. https://doi.org/10.1111/j.1365-3040.2011.02400.xNunan, N., Leloup, J., Ruamps, L. S., Pouteau, V., & Chenu, C. (2017). Effects of habitat constraints on soil microbial community function. Scientific Reports 2017 7:1, 7(1), 1–10. https://doi.org/10.1038/s41598-017-04485-zOgbaga, C. C., Stepien, P., & Johnson, G. N. (2014). Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiologia Plantarum, 152(2), 389–401. https://doi.org/10.1111/PPL.12196Ordoñez, Y. M., Fernandez, B. R., Lara, L. S., Rodriguez, A., Uribe-Vélez, D., & Sanders, I. R. (2016). Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities. PLOS ONE, 11(6), e0154438. https://doi.org/10.1371/journal.pone.0154438Osmolovskaya, N., Shumilina, J., Kim, A., Didio, A., Grishina, T., Bilova, T., Keltsieva, O. A., Zhukov, V., Tikhonovich, I., Tarakhovskaya, E., Frolov, A., & Wessjohann, L. A. (2018). Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. International Journal of Molecular Sciences 2018, Vol. 19, Page 4089, 19(12), 4089. https://doi.org/10.3390/IJMS19124089Paliwal, R. L., Granados, G., Lafitte, H. R., & Violic, A. D. (2001). EL MAÍZ EN LOS TRÓPICOS: Mejoramiento y producción. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/x7650s/x7650s00.htm#tocPalmer, W. C. (1965). Meteorological Drought (W. B. U.S. Department of Commerce (ed.); Vol. 30). https://books.google.com.co/books?id=kyYZgnEk-L8C&lr=&hl=es&source=gbs_navlinks_sPandey, V., & Shukla, A. (2015). Acclimation and Tolerance Strategies of Rice under Drought Stress. Rice Science, 22(4), 147–161. https://doi.org/10.1016/J.RSCI.2015.04.001Patiño-Torres, C., & Sanclemente, O. (2014). Los Microorganismos solubilizadores de Fosforo (MSF): Una Alternativa Biotecnológica Para Una Agricultura Sostenible. Entramado, 10(2), 288–297. http://www.scielo.org.co/pdf/entra/v10n2/v10n2a18.pdfPedraza-Herrera, L. A., Bautista, J. P., Cruz-Ramírez, C. A., & Uribe-Vélez, D. (2021). IBUN2755 Bacillus strain controls seedling root and bacterial panicle blight caused by Burkholderia glumae. Biological Control, 153, 104494. https://doi.org/10.1016/j.biocontrol.2020.104494Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.xPerea-Molina, P. A., Pedraza-Herrera, L. A., Beauregard, P. B., & Uribe-Vélez, D. (2022). A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biological Control, 176, 105067. https://doi.org/10.1016/j.biocontrol.2022.105067Pereira, S. I. A., & Castro, P. M. L. (2014). Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering, 73, 526–535. https://doi.org/10.1016/J.ECOLENG.2014.09.060PIDARET. (2019). PLAN INTEGRAL DE DESARROLLO AGROPECUARIO Y RURAL CON ENFOQUE TERRITORIAL TOMO II DEPARTAMENTO DEL CESAR. https://www.adr.gov.co/servicios/pidaret/CESAR TOMO II.pdfPiña, R. G., & Cervantes, C. (1996). Microbial interactions with aluminium. BioMetals, 9(3), 311–316. https://doi.org/10.1007/BF00817932/METRICSPrasanna, B. M., Cairns, J. E., Zaidi, P. H., Beyene, Y., Makumbi, D., Gowda, M., Magorokosho, C., Zaman-Allah, M., Olsen, M., Das, A., Worku, M., Gethi, J., Vivek, B. S., Nair, S. K., Rashid, Z., Vinayan, M. T., Issa, A. R. B., San Vicente, F., Dhliwayo, T., & Zhang, X. (2021). Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 134(6), 1729–1752. https://doi.org/10.1007/S00122-021-03773-7Praveen Kumar, G., Mir Hassan Ahmed, S. K., Desai, S., Leo Daniel Amalraj, E., & Rasul, A. (2014). In Vitro Screening for Abiotic Stress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp. . International Journal of Bacteriology, 2014, 1–6. https://doi.org/10.1155/2014/195946Qurashi, A. W., & Sabri, A. N. (2012). Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels. Journal of Basic Microbiology, 52(5), 566–572. https://doi.org/10.1002/JOBM.201100253Riva, V., Mapelli, F., Dragonetti, G., Elfahl, M., Vergani, L., Crepaldi, P., La Maddalena, N., & Borin, S. (2021). Bacterial Inoculants Mitigating Water Scarcity in Tomato: The Importance of Long-Term in vivo Experiments. Frontiers in Microbiology, 12, 1328. https://doi.org/10.3389/fmicb.2021.675552Rolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P., & Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany, 110, 27–35. https://doi.org/10.1016/j.envexpbot.2014.09.006Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Pierotti Cei, F., Borin, S., Sorlini, C., Zocchi, G., & Daffonchio, D. (2015). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17(2), 316–331. https://doi.org/10.1111/1462-2920.12439Rozo-Leguizamón, Y., Tofiño- Rivera, A. P., Gómez-Latorre, D. A., Gómez-Ramírez, L. F., & Tamayo-Molano, P. J. (2018). Modelo productivo del fríjol para el Caribe seco colombiano. In L. Gaona-García (Ed.), Modelo productivo para el cultivo de cacao (Theobroma cacao) para el departamento de Santander. Corporación Colombiana de Investigación Agropecuaria. http://editorial.agrosavia.co/index.php/publicaciones/catalog/download/29/20/361-1?inline=1Sade, N., Galkin, E., & Moshelion, M. (2015). Measuring Arabidopsis, Tomato and Barley Leaf Relative Water Content (RWC). BIO-PROTOCOL, 5(8). https://doi.org/10.21769/bioprotoc.1451Saeid, A., Prochownik, E., & Dobrowolska-Iwanek, J. (2018). Phosphorus Solubilization by Bacillus Species. Molecules, 23(11). https://doi.org/10.3390/MOLECULES23112897Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C., Rana, M., & Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59689-7Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., & Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8(1), 3560. https://doi.org/10.1038/s41598-018-21921-wSaleem, M., Nawaz, F., Hussain, M. B., & Ikram, R. M. (2021). Comparative Effects of Individual and Consortia Plant Growth Promoting Bacteria on Physiological and Enzymatic Mechanisms to Confer Drought Tolerance in Maize (Zea mays L.). Journal of Soil Science and Plant Nutrition, 21(4), 3461–3476. https://doi.org/10.1007/S42729-021-00620-Y/TABLES/3Samarah, N., & Alqudah, A. (2009). Effects of late-terminal drought stress on seed germination and vigor of barley (Hordeum vulgare L.). Archives of Agronomy and Soil Science, 57(1), 27–32. https://doi.org/10.1080/03650340903191663Samarah, N. (2005). Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25(1), 145–149. https://doi.org/10.1051/AGRO:2004064Sánchez-Rodríguez, E., del Mar Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J., Leyva, R., Romero, L., & Ruiz, J. M. (2010). Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant and Soil, 335(1), 339–347. https://doi.org/10.1007/S11104-010-0422-2/METRICSSandhya, V., & Ali, S. Z. (2015). The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology (Russian Federation), 84(4), 512–519. https://doi.org/10.1134/S0026261715040153/METRICSSandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation 2010 62:1, 62(1), 21–30. https://doi.org/10.1007/S10725-010-9479-4Sandhya, V., Shrivastava, M., Ali, S. Z., & Sai Shiva Krishna Prasad, V. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43(1), 22–34. https://doi.org/10.3103/s1068367417010165Sandhya, V., Z., A. S., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46(1), 17–26. https://doi.org/10.1007/S00374-009-0401-ZSati, D., Pande, V., Pandey, S. C., & Samant, M. (2022). Recent Advances in PGPR and Molecular Mechanisms Involved in Drought Stress Resistance. Journal of Soil Science and Plant Nutrition 2021 23:1, 23(1), 106–124. https://doi.org/10.1007/S42729-021-00724-5Scarpellini, M., Franzetti, L., & Galli, A. (2004). Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiology Letters, 236(2), 257–260. https://doi.org/10.1111/J.1574-6968.2004.TB09655.XScharwies, J. D., & Dinneny, J. R. (2019). Water transport, perception, and response in plants. Journal of Plant Research 2019 132:3, 132(3), 311–324. https://doi.org/10.1007/S10265-019-01089-8Secretaría Distrital de Ambiente. (2021a). Informe Mensual de Calidad del Aire de Bogotá - Junio 2021 (Issue 00716). http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe mensual Junio 2021.pdfSecretaría Distrital de Ambiente. (2021b). Informe Mensual de Calidad del Aire de Bogotá - Noviembre 2021. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe mensual Noviembre 2021 vf.pdfSelvakumar, G., Bindu, G. H., Panneerselvam, P., & Ganeshamurthy, A. N. (2017). Potential and prospects of aerobic endospore-forming bacteria (AEFB) in crop production. In Bacilli and Agrobiotechnology (pp. 213–236). Springer International Publishing. https://doi.org/10.1007/978-3-319-44409-3_10Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216. https://doi.org/10.1111/pbi.12603Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327. https://doi.org/10.1007/S12571-011-0140-5/TABLES/3Shirinbayan, S., Khosravi, H., & Malakouti, M. J. (2019). Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, 133, 138–145. https://doi.org/10.1016/j.apsoil.2018.09.015Shulse, C. N., Chovatia, M., Agosto, C., Yoshikuni, G. Y., Hamilton, M., Deutsch, S., Yoshikuni, Y., & Blow, M. J. (2019). Engineered root bacteria release plant-available phosphate from phytate. Applied and Environmental Microbiology, 85(18). https://doi.org/10.1128/AEM.01210-19Singh, D. P., Singh, V., Gupta, V. K., Shukla, R., Prabha, R., Sarma, B. K., & Patel, J. S. (2020). Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Scientific Reports, 10(1), 4818. https://doi.org/10.1038/s41598-020-61140-wSingh, H. B., Vaishnav, A., & Sayyed, R. Z. (2021). Antioxidants in Plant-Microbe Interaction. In Harikesh Bahadur Singh, A. Vaishnav, & R. Z. Sayyed (Eds.), Antioxidants in Plant-Microbe Interaction. Springer Singapore. https://doi.org/10.1007/978-981-16-1350-0Smirnoff, N. (2005). Antioxidants and Reactive Oxygen Species in Plants. In Nicholas Smirnoff (Ed.), Antioxidants and Reactive Oxygen Species in Plants. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470988565Smith, I. K., Vierheller, T. L., & Thorne, C. A. (1988). Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 175(2), 408–413. https://doi.org/10.1016/0003-2697(88)90564-7Smith, R. H., Bhaskaran, S., & Miller, F. R. (1985). Screening for drought tolerance in Sorghum using cell culture. In Vitro Cellular Amp; Developmental Biology 1985 21:10, 21(10), 541–545. https://doi.org/10.1007/BF02620883Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.xSuárez, J. C., Anzola, J. A., Contreras, A. T., Salas, D. L., Vanegas, J. I., Urban, M. O., Beebe, S. E., & Rao, I. M. (2022). Photosynthetic and grain yield responses to intercropping of two common bean lines with maize under two types of fertilizer applications in the colombian amazon region. Scientia Horticulturae, 301, 111108. https://doi.org/10.1016/j.scienta.2022.111108Sun, C., Gao, X., Chen, X., Fu, J., & Zhang, Y. (2016). Metabolic and growth responses of maize to successive drought and re-watering cycles. Agricultural Water Management, 172, 62–73. https://doi.org/10.1016/j.agwat.2016.04.016Taiz, L., & Zeiger, E. (2003). Plant physiology. In Annals of Botany (3 edition, Vol. 91, Issue 6). https://doi.org/10.1093/aob/mcg079Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science, 11, 1407. https://doi.org/10.3389/fpls.2020.556972Tanumihardjo, S. A., McCulley, L., Roh, R., Lopez-Ridaura, S., Palacios-Rojas, N., & Gunaratna, N. S. (2020). Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Global Food Security, 25, 100327. https://doi.org/10.1016/J.GFS.2019.100327Tiwari, G., Duraivadivel, P., Sharma, S., & Hariprasad, P. (2018). 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Scientific Reports 2018 8:1, 8(1), 1–12. https://doi.org/10.1038/s41598-018-35565-3Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108–117. https://doi.org/10.1016/j.plaphy.2015.11.001Tiwari, S., Prasad, V., Chauhan, P. S., & Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science, 8, 283109. https://doi.org/10.3389/FPLS.2017.01510/BIBTEXUllah, A., Sun, H., Yang, X., & Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal, 15(3), 271–284. https://doi.org/10.1111/pbi.12688UN, U. N. D. of E. and S. A. (2019). World Population Prospects 2019 Highlights. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdfVaishnav, A., & Choudhary, D. K. (2019). Regulation of Drought-Responsive Gene Expression in Glycine max L. Merrill is Mediated Through Pseudomonas simiae Strain AU. Journal of Plant Growth Regulation, 38(1), 333–342. https://doi.org/10.1007/s00344-018-9846-3Vardharajula, S., Zulfikar, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact, 6(1), 1–14.Velázquez-Márquez, S., Conde-Martínez, V., Trejo, C., Delgado-Alvarado, A., Carballo, A., Suárez, R., Mascorro, J. O., & Trujillo, A. R. (2015). Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant Physiology and Biochemistry, 96, 29–37. https://doi.org/10.1016/j.plaphy.2015.07.006Vieira, V. L., Araújo, P., Gomes, G., Fracetto, M., Marcos, A., Silva, M., Prudencio, A., Pereira, A., Gomes Freitas, C. C., Martins, F., Barros, R., Santana, C., Feiler, H. P., Pereira Matteoli, F., Cury Fracetto, F. J., Bran, E. J., & Cardoso, N. (2023). Potential of growth-promoting bacteria in maize (Zea mays L.) varies according to soil moisture. Microbiological Research, 271, 127352. https://doi.org/10.1016/j.micres.2023.127352Vieira, V. L., Lira, M. A., Severino de Souza, V., Coelho de Araújo, J., Cury, F., Dini, F., Arthur, P. de A., Mendes, J., do Rêgo, F., & Monteiro, G. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564Vílchez, J. I., García-Fontana, C., Román-Naranjo, D., González-López, J., & Manzanera, M. (2016). Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Frontiers in Microbiology, 7(SEP), 1577. https://doi.org/10.3389/FMICB.2016.01577/BIBTEXVinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. In Current Opinion in Biotechnology (Vol. 16, Issue 2, pp. 123–132). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2005.02.001Vishnupradeep, R., Bruno, L. B., Taj, Z., Karthik, C., Challabathula, D., Tripti, Kumar, A., Freitas, H., & Rajkumar, M. (2022). Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology & Innovation, 25, 102154. https://doi.org/10.1016/J.ETI.2021.102154Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011Wang, C. J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., Wang, Y. P., & Guo, J. H. (2012). Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth-Promoting Rhizobacterium Strains. PLoS ONE, 7(12), 1–10. https://doi.org/10.1371/journal.pone.0052565Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., Raza, A., Rehman, A., Hossain, A., & Sabagh, A. E. L. (2021). Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability 2021, Vol. 13, Page 4799, 13(9), 4799. https://doi.org/10.3390/SU13094799Wellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2Wilhite, D. A., Glantz, M. H., & And Glantz, M. H. (1985). Understanding the Drought Phenomenon:The Role of Definitions. http://digitalcommons.unl.edu/droughtfacpubhttp://digitalcommons.unl.edu/droughtfacpub/20Willey, J. M., Sherwood, L. M., & Woolverton, C. J. (2008). Prescott,Harley, and Klein’s Microbiology (7th ed.). Colin Wheatley/Janice Roerig-Blong.Xiao, B., Chen, X., Xiang, C., Tang, N., & Zhang, Q. (2009). Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant, 2.Xin, L., Zheng, H., Yang, Z., Guo, J., Liu, T., Sun, L., Xiao, Y., Yang, J., Yang, Q., & Guo, L. (2018). Physiological and proteomic analysis of maize seedling response to water deficiency stress. Journal of Plant Physiology, 228, 29–38. https://doi.org/10.1016/j.jplph.2018.05.005Yan, M. (2015). Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. South African Journal of Botany, 99, 88–92. https://doi.org/10.1016/J.SAJB.2015.03.195Yarzábal, L. A. (2010). Agricultural Development in Tropical Acidic Soils: Potential and Limits of Phosphate-Solubilizing Bacteria. 209–233. https://doi.org/10.1007/978-3-642-05076-3_10Yevjevich, V. (1967). AN OBJECTI VE APPROACH TO DEFINITIONS AND INVESTIGATIONS OF CONTINENTAL HYDROLOG IC DROUGHT S AN OBJECTIVE APPROACH TO DEFINITIONS AND INVESTIGATIONS OF CONTINENTAL HYDROLOGIC DROUGHTS.You, J., & Chan, Z. (2015). Ros regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6(DEC), 1–15. https://doi.org/10.3389/fpls.2015.01092Zaman-Allah, M., Zaidi, P. H., Trachsel, S., Cairns, J. E., Vinayan, M. T., & Seetharam, K. (2016). PHENOTYPING FOR ABIOTIC STRESS TOLERANCE IN MAIZE: DROUGHT STRESS. CIMMYT. https://repository.cimmyt.org/handle/10883/17716?show=fullZambrano-Moreno, D. C., Avellaneda-Franco, L., Zambrano, G., & Bonilla-Buitrago, R. R. (2016). Scientometric analysis of Colombian research on bio-inoculants for agricultural production. Universitas Scientiarum, 21(1), 63–81. https://doi.org/10.11144/JAVERIANA.SC21-1.SAOCZarei, T. (2022). Balancing water deficit stress with plant growth-promoting rhizobacteria: A case study in maize. Rhizosphere, 24, 100621. https://doi.org/10.1016/j.rhisph.2022.100621Zarei, T., Moradi, A., Kazemeini, S. A., Akhgar, A., & Rahi, A. A. (2020). The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays L. var saccharata) productivity under limited availability of irrigation water. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/S41598-020-77305-6Zeiger, E., & Taiz, L. (2007). Fisiología vegetal. Volumen 2. Universitat Jaume I.Zhang, N., Yang, D., Wang, D., Miao, Y., Shao, J., Zhou, X., Xu, Z., Li, Q., Feng, H., Li, S., Shen, Q., & Zhang, R. (2015). Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics, 16(1), 685. https://doi.org/10.1186/s12864-015-1825-5Zhang, Q., Acuña, J. J., Inostroza, N. G., Mora, M. L., Radic, S., Sadowsky, M. J., & Jorquera, M. A. (2019). Endophytic Bacterial Communities Associated with Roots and Leaves of Plants Growing in Chilean Extreme Environments. Scientific Reports 2019 9:1, 9(1), 1–12. https://doi.org/10.1038/S41598-019-41160-XZhao, T., Deng, X., Xiao, Q., Han, Y., Zhu, S., & Chen, J. (2020). IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Industrial Crops and Products, 155, 112788. https://doi.org/10.1016/j.indcrop.2020.112788Zhao, X., Jiang, Y., Liu, Q., Yang, H., Wang, Z., & Zhang, M. (2020). Effects of Drought-Tolerant Ea-DREB2B Transgenic Sugarcane on Bacterial Communities in Soil. Frontiers in Microbiology, 11, 704. https://doi.org/10.3389/fmicb.2020.00704Zia, A., Walker, B. J., Oung, H. M. O., Charuvi, D., Jahns, P., Cousins, A. B., Farrant, J. M., Reich, Z., & Kirchhoff, H. (2016). Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum. The Plant Journal, 87(6), 664–680. https://doi.org/10.1111/tpj.13227Saravanakumar, D., Kavino, M., Raguchander, T., Subbian, P., & Samiyappan, R. (2011). Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiologiae Plantarum, 33(1), 203–209. https://doi.org/10.1007/s11738-010-0539-1InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85381/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1144051124.2023.pdf1144051124.2023.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf4309841https://repositorio.unal.edu.co/bitstream/unal/85381/2/1144051124.2023.pdf0ed319920e300f3502dac62455cdca6bMD52THUMBNAIL1144051124.2023.pdf.jpg1144051124.2023.pdf.jpgGenerated Thumbnailimage/jpeg4394https://repositorio.unal.edu.co/bitstream/unal/85381/3/1144051124.2023.pdf.jpgc133cb270a8cc34832739ff748f9223dMD53unal/85381oai:repositorio.unal.edu.co:unal/853812024-01-19 23:03:45.465Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=