Nonlinear time series forecasting using mars
One of the most important uses of artificial neural networks is to forecast non-linear time series, although model-building issues, such as input selection, model complexity and parameters estimation, remain without a satisfactory solution. More of research efforts are devoted to solve these issues....
- Autores:
-
Velásquez Henao, Juan David
Franco Cardona, Carlos Jaime
Camacho, Paula Andrea
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/73262
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/73262
http://bdigital.unal.edu.co/37737/
- Palabra clave:
- Artificial neural networks
comparative studies
ARIMA models
nonparametric methods.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4cacb44c70ed9c901dca18ccd7aa6e33 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/73262 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velásquez Henao, Juan David6e2af894-3c59-45bb-95d4-43331c36572d300Franco Cardona, Carlos Jaime070ee56f-5115-438d-ab21-4368f0109d59300Camacho, Paula Andrea9ed49be2-e582-41a4-95d3-98928fd6fb573002019-07-03T16:05:42Z2019-07-03T16:05:42Z2014-04-21https://repositorio.unal.edu.co/handle/unal/73262http://bdigital.unal.edu.co/37737/One of the most important uses of artificial neural networks is to forecast non-linear time series, although model-building issues, such as input selection, model complexity and parameters estimation, remain without a satisfactory solution. More of research efforts are devoted to solve these issues. However, other models emerged from statistics would be more appropriated than neural networks for forecasting, in the sense that the process of model specification is based entirely on statistical criteria. Multivariate adaptive regression splines (MARS) is a statistical model commonly used for solving nonlinear regression problems, and it is possible to use it for forecasting time series. Nonetheless, there is a lack of studies comparing the results obtained using MARS and neural network models, with the aim of determinate which model is better. In this paper, we forecast four nonlinear time series using MARS and we compare the obtained results against the reported results in the technical literature when artificial neural networks and the ARIMA approach are used. The main finding in this research, it is that for all considered cases, the forecasts obtained with MARS are lower in accuracy in relation to the other approaches.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/39699Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDYNA; Vol. 81, núm. 184 (2014); 11-19 Dyna; Vol. 81, núm. 184 (2014); 11-19 2346-2183 0012-7353Velásquez Henao, Juan David and Franco Cardona, Carlos Jaime and Camacho, Paula Andrea (2014) Nonlinear time series forecasting using mars. DYNA; Vol. 81, núm. 184 (2014); 11-19 Dyna; Vol. 81, núm. 184 (2014); 11-19 2346-2183 0012-7353 .Nonlinear time series forecasting using marsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTArtificial neural networkscomparative studiesARIMA modelsnonparametric methods.ORIGINAL39699-199781-1-PB.pdfapplication/pdf432354https://repositorio.unal.edu.co/bitstream/unal/73262/1/39699-199781-1-PB.pdf21f22e5623a3ab41c2ba7d7e4e25c9c8MD51THUMBNAIL39699-199781-1-PB.pdf.jpg39699-199781-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9516https://repositorio.unal.edu.co/bitstream/unal/73262/2/39699-199781-1-PB.pdf.jpgf59d6f21266ce1385892e8ba3d916e12MD52unal/73262oai:repositorio.unal.edu.co:unal/732622023-06-27 23:06:48.777Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Nonlinear time series forecasting using mars |
title |
Nonlinear time series forecasting using mars |
spellingShingle |
Nonlinear time series forecasting using mars Artificial neural networks comparative studies ARIMA models nonparametric methods. |
title_short |
Nonlinear time series forecasting using mars |
title_full |
Nonlinear time series forecasting using mars |
title_fullStr |
Nonlinear time series forecasting using mars |
title_full_unstemmed |
Nonlinear time series forecasting using mars |
title_sort |
Nonlinear time series forecasting using mars |
dc.creator.fl_str_mv |
Velásquez Henao, Juan David Franco Cardona, Carlos Jaime Camacho, Paula Andrea |
dc.contributor.author.spa.fl_str_mv |
Velásquez Henao, Juan David Franco Cardona, Carlos Jaime Camacho, Paula Andrea |
dc.subject.proposal.spa.fl_str_mv |
Artificial neural networks comparative studies ARIMA models nonparametric methods. |
topic |
Artificial neural networks comparative studies ARIMA models nonparametric methods. |
description |
One of the most important uses of artificial neural networks is to forecast non-linear time series, although model-building issues, such as input selection, model complexity and parameters estimation, remain without a satisfactory solution. More of research efforts are devoted to solve these issues. However, other models emerged from statistics would be more appropriated than neural networks for forecasting, in the sense that the process of model specification is based entirely on statistical criteria. Multivariate adaptive regression splines (MARS) is a statistical model commonly used for solving nonlinear regression problems, and it is possible to use it for forecasting time series. Nonetheless, there is a lack of studies comparing the results obtained using MARS and neural network models, with the aim of determinate which model is better. In this paper, we forecast four nonlinear time series using MARS and we compare the obtained results against the reported results in the technical literature when artificial neural networks and the ARIMA approach are used. The main finding in this research, it is that for all considered cases, the forecasts obtained with MARS are lower in accuracy in relation to the other approaches. |
publishDate |
2014 |
dc.date.issued.spa.fl_str_mv |
2014-04-21 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T16:05:42Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T16:05:42Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/73262 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/37737/ |
url |
https://repositorio.unal.edu.co/handle/unal/73262 http://bdigital.unal.edu.co/37737/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/dyna/article/view/39699 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.ispartofseries.none.fl_str_mv |
DYNA; Vol. 81, núm. 184 (2014); 11-19 Dyna; Vol. 81, núm. 184 (2014); 11-19 2346-2183 0012-7353 |
dc.relation.references.spa.fl_str_mv |
Velásquez Henao, Juan David and Franco Cardona, Carlos Jaime and Camacho, Paula Andrea (2014) Nonlinear time series forecasting using mars. DYNA; Vol. 81, núm. 184 (2014); 11-19 Dyna; Vol. 81, núm. 184 (2014); 11-19 2346-2183 0012-7353 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/73262/1/39699-199781-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/73262/2/39699-199781-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
21f22e5623a3ab41c2ba7d7e4e25c9c8 f59d6f21266ce1385892e8ba3d916e12 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089907075809280 |