Nonlinear time series forecasting using mars

One of the most important uses of artificial neural networks is to forecast non-linear time series, although model-building issues, such as input selection, model complexity and parameters estimation, remain without a satisfactory solution. More of research efforts are devoted to solve these issues....

Full description

Autores:
Velásquez Henao, Juan David
Franco Cardona, Carlos Jaime
Camacho, Paula Andrea
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73262
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73262
http://bdigital.unal.edu.co/37737/
Palabra clave:
Artificial neural networks
comparative studies
ARIMA models
nonparametric methods.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_4cacb44c70ed9c901dca18ccd7aa6e33
oai_identifier_str oai:repositorio.unal.edu.co:unal/73262
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velásquez Henao, Juan David6e2af894-3c59-45bb-95d4-43331c36572d300Franco Cardona, Carlos Jaime070ee56f-5115-438d-ab21-4368f0109d59300Camacho, Paula Andrea9ed49be2-e582-41a4-95d3-98928fd6fb573002019-07-03T16:05:42Z2019-07-03T16:05:42Z2014-04-21https://repositorio.unal.edu.co/handle/unal/73262http://bdigital.unal.edu.co/37737/One of the most important uses of artificial neural networks is to forecast non-linear time series, although model-building issues, such as input selection, model complexity and parameters estimation, remain without a satisfactory solution. More of research efforts are devoted to solve these issues. However, other models emerged from statistics would be more appropriated than neural networks for forecasting, in the sense that the process of model specification is based entirely on statistical criteria. Multivariate adaptive regression splines (MARS) is a statistical model commonly used for solving nonlinear regression problems, and it is possible to use it for forecasting time series. Nonetheless, there is a lack of studies comparing the results obtained using MARS and neural network models, with the aim of determinate which model is better. In this paper, we forecast four nonlinear time series using MARS and we compare the obtained results against the reported results in the technical literature when artificial neural networks and the ARIMA approach are used. The main finding in this research, it is that for all considered cases, the forecasts obtained with MARS are lower in accuracy in relation to the other approaches.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/39699Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDYNA; Vol. 81, núm. 184 (2014); 11-19 Dyna; Vol. 81, núm. 184 (2014); 11-19 2346-2183 0012-7353Velásquez Henao, Juan David and Franco Cardona, Carlos Jaime and Camacho, Paula Andrea (2014) Nonlinear time series forecasting using mars. DYNA; Vol. 81, núm. 184 (2014); 11-19 Dyna; Vol. 81, núm. 184 (2014); 11-19 2346-2183 0012-7353 .Nonlinear time series forecasting using marsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTArtificial neural networkscomparative studiesARIMA modelsnonparametric methods.ORIGINAL39699-199781-1-PB.pdfapplication/pdf432354https://repositorio.unal.edu.co/bitstream/unal/73262/1/39699-199781-1-PB.pdf21f22e5623a3ab41c2ba7d7e4e25c9c8MD51THUMBNAIL39699-199781-1-PB.pdf.jpg39699-199781-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9516https://repositorio.unal.edu.co/bitstream/unal/73262/2/39699-199781-1-PB.pdf.jpgf59d6f21266ce1385892e8ba3d916e12MD52unal/73262oai:repositorio.unal.edu.co:unal/732622023-06-27 23:06:48.777Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Nonlinear time series forecasting using mars
title Nonlinear time series forecasting using mars
spellingShingle Nonlinear time series forecasting using mars
Artificial neural networks
comparative studies
ARIMA models
nonparametric methods.
title_short Nonlinear time series forecasting using mars
title_full Nonlinear time series forecasting using mars
title_fullStr Nonlinear time series forecasting using mars
title_full_unstemmed Nonlinear time series forecasting using mars
title_sort Nonlinear time series forecasting using mars
dc.creator.fl_str_mv Velásquez Henao, Juan David
Franco Cardona, Carlos Jaime
Camacho, Paula Andrea
dc.contributor.author.spa.fl_str_mv Velásquez Henao, Juan David
Franco Cardona, Carlos Jaime
Camacho, Paula Andrea
dc.subject.proposal.spa.fl_str_mv Artificial neural networks
comparative studies
ARIMA models
nonparametric methods.
topic Artificial neural networks
comparative studies
ARIMA models
nonparametric methods.
description One of the most important uses of artificial neural networks is to forecast non-linear time series, although model-building issues, such as input selection, model complexity and parameters estimation, remain without a satisfactory solution. More of research efforts are devoted to solve these issues. However, other models emerged from statistics would be more appropriated than neural networks for forecasting, in the sense that the process of model specification is based entirely on statistical criteria. Multivariate adaptive regression splines (MARS) is a statistical model commonly used for solving nonlinear regression problems, and it is possible to use it for forecasting time series. Nonetheless, there is a lack of studies comparing the results obtained using MARS and neural network models, with the aim of determinate which model is better. In this paper, we forecast four nonlinear time series using MARS and we compare the obtained results against the reported results in the technical literature when artificial neural networks and the ARIMA approach are used. The main finding in this research, it is that for all considered cases, the forecasts obtained with MARS are lower in accuracy in relation to the other approaches.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-04-21
dc.date.accessioned.spa.fl_str_mv 2019-07-03T16:05:42Z
dc.date.available.spa.fl_str_mv 2019-07-03T16:05:42Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/73262
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/37737/
url https://repositorio.unal.edu.co/handle/unal/73262
http://bdigital.unal.edu.co/37737/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/dyna/article/view/39699
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.ispartofseries.none.fl_str_mv DYNA; Vol. 81, núm. 184 (2014); 11-19 Dyna; Vol. 81, núm. 184 (2014); 11-19 2346-2183 0012-7353
dc.relation.references.spa.fl_str_mv Velásquez Henao, Juan David and Franco Cardona, Carlos Jaime and Camacho, Paula Andrea (2014) Nonlinear time series forecasting using mars. DYNA; Vol. 81, núm. 184 (2014); 11-19 Dyna; Vol. 81, núm. 184 (2014); 11-19 2346-2183 0012-7353 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/73262/1/39699-199781-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/73262/2/39699-199781-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 21f22e5623a3ab41c2ba7d7e4e25c9c8
f59d6f21266ce1385892e8ba3d916e12
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089907075809280