Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
The prediction of freight congestion (cargo peaks) is an important tool for decision making and it is this paper’s main object of study. Forecasting freight flows can be a useful tool for the whole logistics chain. In this work, a complete methodology is presented in order to obtain the best model t...
- Autores:
-
Ruiz Aguilar, Juan Jesús
Turias, Ignacio J.
Moscoso López, José A.
Jiménez Come, María J.
Cerbán, María M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60588
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60588
http://bdigital.unal.edu.co/58920/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
freight forecasting
classification
congestion
artificial neural networks
multiple comparison tests
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_4c6e7c27c624dd081846e11544b62012 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60588 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruiz Aguilar, Juan Jesús559b57e5-78fe-4096-a953-955ec892f51a300Turias, Ignacio J.5287cc8a-990d-4c80-837d-14f3ccddb542300Moscoso López, José A.b2c13870-0f07-43cb-8dfb-36be9387c4f7300Jiménez Come, María J.c44cb764-1416-419a-9dc0-beb4a8f4383b300Cerbán, María M.e6543cff-a003-4805-8e3e-301c6cca42ef3002019-07-02T18:39:46Z2019-07-02T18:39:46Z2016-01-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60588http://bdigital.unal.edu.co/58920/The prediction of freight congestion (cargo peaks) is an important tool for decision making and it is this paper’s main object of study. Forecasting freight flows can be a useful tool for the whole logistics chain. In this work, a complete methodology is presented in order to obtain the best model to predict freight congestion situations at ports. The prediction is modeled as a classification problem and different approaches are tested (k-Nearest Neighbors, Bayes classifier and Artificial Neural Networks). A panel of different experts (post–hoc methods of Friedman test) has been developed in order to select the best model. The proposed methodology is applied in the Strait of Gibraltar’s logistics hub with a study case being undertaken in Port of Algeciras Bay. The results obtained reveal the efficiency of the presented models that can be applied to improve daily operations planning.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/47027Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaRuiz Aguilar, Juan Jesús and Turias, Ignacio J. and Moscoso López, José A. and Jiménez Come, María J. and Cerbán, María M. (2016) Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain). DYNA, 83 (195). pp. 163-172. ISSN 2346-218362 Ingeniería y operaciones afines / Engineeringfreight forecastingclassificationcongestionartificial neural networksmultiple comparison testsForecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)Artículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL47027-284369-1-PB.pdfapplication/pdf607456https://repositorio.unal.edu.co/bitstream/unal/60588/1/47027-284369-1-PB.pdf0806a26f12fba13be9231e9f5a61a6c3MD51THUMBNAIL47027-284369-1-PB.pdf.jpg47027-284369-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9236https://repositorio.unal.edu.co/bitstream/unal/60588/2/47027-284369-1-PB.pdf.jpgd54d354bf054a292dab190f5c88b447dMD52unal/60588oai:repositorio.unal.edu.co:unal/605882023-04-07 23:05:00.927Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) |
title |
Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) |
spellingShingle |
Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) 62 Ingeniería y operaciones afines / Engineering freight forecasting classification congestion artificial neural networks multiple comparison tests |
title_short |
Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) |
title_full |
Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) |
title_fullStr |
Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) |
title_full_unstemmed |
Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) |
title_sort |
Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) |
dc.creator.fl_str_mv |
Ruiz Aguilar, Juan Jesús Turias, Ignacio J. Moscoso López, José A. Jiménez Come, María J. Cerbán, María M. |
dc.contributor.author.spa.fl_str_mv |
Ruiz Aguilar, Juan Jesús Turias, Ignacio J. Moscoso López, José A. Jiménez Come, María J. Cerbán, María M. |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering freight forecasting classification congestion artificial neural networks multiple comparison tests |
dc.subject.proposal.spa.fl_str_mv |
freight forecasting classification congestion artificial neural networks multiple comparison tests |
description |
The prediction of freight congestion (cargo peaks) is an important tool for decision making and it is this paper’s main object of study. Forecasting freight flows can be a useful tool for the whole logistics chain. In this work, a complete methodology is presented in order to obtain the best model to predict freight congestion situations at ports. The prediction is modeled as a classification problem and different approaches are tested (k-Nearest Neighbors, Bayes classifier and Artificial Neural Networks). A panel of different experts (post–hoc methods of Friedman test) has been developed in order to select the best model. The proposed methodology is applied in the Strait of Gibraltar’s logistics hub with a study case being undertaken in Port of Algeciras Bay. The results obtained reveal the efficiency of the presented models that can be applied to improve daily operations planning. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T18:39:46Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T18:39:46Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2346-2183 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60588 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/58920/ |
identifier_str_mv |
ISSN: 2346-2183 |
url |
https://repositorio.unal.edu.co/handle/unal/60588 http://bdigital.unal.edu.co/58920/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/47027 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.references.spa.fl_str_mv |
Ruiz Aguilar, Juan Jesús and Turias, Ignacio J. and Moscoso López, José A. and Jiménez Come, María J. and Cerbán, María M. (2016) Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain). DYNA, 83 (195). pp. 163-172. ISSN 2346-2183 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas. |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60588/1/47027-284369-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/60588/2/47027-284369-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
0806a26f12fba13be9231e9f5a61a6c3 d54d354bf054a292dab190f5c88b447d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090001464426496 |