Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)

The prediction of freight congestion (cargo peaks) is an important tool for decision making and it is this paper’s main object of study. Forecasting freight flows can be a useful tool for the whole logistics chain. In this work, a complete methodology is presented in order to obtain the best model t...

Full description

Autores:
Ruiz Aguilar, Juan Jesús
Turias, Ignacio J.
Moscoso López, José A.
Jiménez Come, María J.
Cerbán, María M.
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/60588
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/60588
http://bdigital.unal.edu.co/58920/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
freight forecasting
classification
congestion
artificial neural networks
multiple comparison tests
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_4c6e7c27c624dd081846e11544b62012
oai_identifier_str oai:repositorio.unal.edu.co:unal/60588
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruiz Aguilar, Juan Jesús559b57e5-78fe-4096-a953-955ec892f51a300Turias, Ignacio J.5287cc8a-990d-4c80-837d-14f3ccddb542300Moscoso López, José A.b2c13870-0f07-43cb-8dfb-36be9387c4f7300Jiménez Come, María J.c44cb764-1416-419a-9dc0-beb4a8f4383b300Cerbán, María M.e6543cff-a003-4805-8e3e-301c6cca42ef3002019-07-02T18:39:46Z2019-07-02T18:39:46Z2016-01-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60588http://bdigital.unal.edu.co/58920/The prediction of freight congestion (cargo peaks) is an important tool for decision making and it is this paper’s main object of study. Forecasting freight flows can be a useful tool for the whole logistics chain. In this work, a complete methodology is presented in order to obtain the best model to predict freight congestion situations at ports. The prediction is modeled as a classification problem and different approaches are tested (k-Nearest Neighbors, Bayes classifier and Artificial Neural Networks). A panel of different experts (post–hoc methods of Friedman test) has been developed in order to select the best model. The proposed methodology is applied in the Strait of Gibraltar’s logistics hub with a study case being undertaken in Port of Algeciras Bay. The results obtained reveal the efficiency of the presented models that can be applied to improve daily operations planning.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/47027Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaRuiz Aguilar, Juan Jesús and Turias, Ignacio J. and Moscoso López, José A. and Jiménez Come, María J. and Cerbán, María M. (2016) Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain). DYNA, 83 (195). pp. 163-172. ISSN 2346-218362 Ingeniería y operaciones afines / Engineeringfreight forecastingclassificationcongestionartificial neural networksmultiple comparison testsForecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)Artículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL47027-284369-1-PB.pdfapplication/pdf607456https://repositorio.unal.edu.co/bitstream/unal/60588/1/47027-284369-1-PB.pdf0806a26f12fba13be9231e9f5a61a6c3MD51THUMBNAIL47027-284369-1-PB.pdf.jpg47027-284369-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9236https://repositorio.unal.edu.co/bitstream/unal/60588/2/47027-284369-1-PB.pdf.jpgd54d354bf054a292dab190f5c88b447dMD52unal/60588oai:repositorio.unal.edu.co:unal/605882023-04-07 23:05:00.927Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
title Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
spellingShingle Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
62 Ingeniería y operaciones afines / Engineering
freight forecasting
classification
congestion
artificial neural networks
multiple comparison tests
title_short Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
title_full Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
title_fullStr Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
title_full_unstemmed Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
title_sort Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain)
dc.creator.fl_str_mv Ruiz Aguilar, Juan Jesús
Turias, Ignacio J.
Moscoso López, José A.
Jiménez Come, María J.
Cerbán, María M.
dc.contributor.author.spa.fl_str_mv Ruiz Aguilar, Juan Jesús
Turias, Ignacio J.
Moscoso López, José A.
Jiménez Come, María J.
Cerbán, María M.
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
freight forecasting
classification
congestion
artificial neural networks
multiple comparison tests
dc.subject.proposal.spa.fl_str_mv freight forecasting
classification
congestion
artificial neural networks
multiple comparison tests
description The prediction of freight congestion (cargo peaks) is an important tool for decision making and it is this paper’s main object of study. Forecasting freight flows can be a useful tool for the whole logistics chain. In this work, a complete methodology is presented in order to obtain the best model to predict freight congestion situations at ports. The prediction is modeled as a classification problem and different approaches are tested (k-Nearest Neighbors, Bayes classifier and Artificial Neural Networks). A panel of different experts (post–hoc methods of Friedman test) has been developed in order to select the best model. The proposed methodology is applied in the Strait of Gibraltar’s logistics hub with a study case being undertaken in Port of Algeciras Bay. The results obtained reveal the efficiency of the presented models that can be applied to improve daily operations planning.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-01-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T18:39:46Z
dc.date.available.spa.fl_str_mv 2019-07-02T18:39:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2346-2183
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/60588
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/58920/
identifier_str_mv ISSN: 2346-2183
url https://repositorio.unal.edu.co/handle/unal/60588
http://bdigital.unal.edu.co/58920/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/47027
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.references.spa.fl_str_mv Ruiz Aguilar, Juan Jesús and Turias, Ignacio J. and Moscoso López, José A. and Jiménez Come, María J. and Cerbán, María M. (2016) Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain). DYNA, 83 (195). pp. 163-172. ISSN 2346-2183
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas.
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/60588/1/47027-284369-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/60588/2/47027-284369-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 0806a26f12fba13be9231e9f5a61a6c3
d54d354bf054a292dab190f5c88b447d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090001464426496